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Abstract

Alternative cell differentiation pathways are believed to arise from the concerted action of signalling pathways and
transcriptional regulatory networks. However, the prediction of mammalian cell differentiation from the knowledge of the
presence of specific signals and transcriptional factors is still a daunting challenge. In this respect, the vertebrate
hematopoietic system, with its many branching differentiation pathways and cell types, is a compelling case study. In this
paper, we propose an integrated, comprehensive model of the regulatory network and signalling pathways controlling Th
cell differentiation. As most available data are qualitative, we rely on a logical formalism to perform extensive dynamical
analyses. To cope with the size and complexity of the resulting network, we use an original model reduction approach
together with a stable state identification algorithm. To assess the effects of heterogeneous environments on Th cell
differentiation, we have performed a systematic series of simulations considering various prototypic environments.
Consequently, we have identified stable states corresponding to canonical Th1, Th2, Th17 and Treg subtypes, but these
were found to coexist with other transient hybrid cell types that co-express combinations of Th1, Th2, Treg and Th17
markers in an environment-dependent fashion. In the process, our logical analysis highlights the nature of these cell types
and their relationships with canonical Th subtypes. Finally, our logical model can be used to explore novel differentiation
pathways in silico.
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Introduction

Alternative cell differentiation pathways are believed to arise

from the concerted action of signalling pathways and transcrip-

tional regulatory networks. However, the prediction of mamma-

lian cell differentiation from the knowledge of the presence of

specific signals and transcriptional factors is currently a daunting

challenge. In this respect, the vertebrate hematopoietic system,

with its many branching differentiation pathways and cell types, is

a compelling case study. In particular, numerous publications

describe molecular and genetic interactions involved in the control

of the late stages of (TCRab+, CD4+) T helper (Th) cell

differentiation, and yet our current knowledge on cell lineage

branching is clearly incomplete, as demonstrated by recent reports

on novel Th cell types [1–4]. The existence of some of these cell

types was revealed following the identification of novel transcrip-

tion factors [2] or cytokines [1,3]. However, several Th cell

phenotypes recently described likely result from reassorted

expression of already known genes [4,5].

Beyond the expression of diverse and cell-specific antigen

receptor genes, the appreciation of the heterogeneity of late Th

cell lineages emerged from the characterisation of Th1 and Th2

cell types [6]. Both cell types arise following the sustained

activation of uncommitted Th0 cell precursors and can be

characterised by the expression of mutually exclusive sets of

cytokines: Th1 cells produce IFN-c, whereas Th2 cells express IL-

4, IL-5 and IL-6. These cytokine profiles have a critical influence

on the selection of a specific immune response, driving pro-

inflammatory or allergic responses, and promoting alternative

antibody classes. The cellular dichotomy has been mechanistically

explained by the mutual inhibition between the master transcrip-

tion factors T-bet and GATA-3 at the single cell level, as well as by

cross-regulatory mechanisms at the cell population level [7].

Indeed, the cytokines produced by each Th subtype drives the

differentiation of precursors into the same pathway while

inhibiting alternative pathways.

Additional T-helper subtypes have been recently identified.

Regulatory T cells that depend on the transcription factor Foxp3

are capable of preventing (auto)immunity by inhibiting the

activation and proliferation of other cells [8]. Furthermore, pro-

inflammatory Th17 cells expressing IL-17 and dependent on

RORct have been characterised. Current evidences indicate that

late Th cell differentiation pathways are more complex and likely

comprise further, non-canonical cell types [5,9–12], whose

mechanistic underpinnings and functional roles remain to be

established.

Effective immunity to many fungi and bacteria requires that the

T cell response is dominated by pro-inflammatory effector Th1 or
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Th17 cells. Allergic reactions, whether beneficial or deleterious,

are strictly dependent on Th2 cells. Avoiding spontaneous

autoimmunity or controlling the collateral damage of effective

immune responses to infection involves a fine balance between

regulatory T cells and other Th cells. Genetic defects or accidental

failures affecting this delicate balance can lead to irreversible

immunopathology.

The issue is not only how heterogeneous are these cell types,

but, perhaps more importantly, how is the heterogeneity of Th

cells sustained and controlled? How does antigen-specific memory

correlate with the predominance of an appropriate Th cell

branch? How plastic or resilient are the differentiated Th cells?

During their lifetime, naive and memory Th cells face a

changing environment in time and space. The lymphoid tissues

are heteregeneous and provide variable local cytokine contexts to

circulating Th cells. How robust are the Th subtypes with respect

to these heterogeneous environments? Will a Th cell that

differentiated into a Th1 phenotype in a lymph node always

remain in this state or can it switch to another cell type if it faces a

different environment? Evidences for substantial plasticity have

been recently reported. For example, in vitro stimulation of Th2

cells in the presence of TGF-b generates a non-canonical cell type

expressing IL-10 and IL-9 in the absence of Foxp3 [5,10].

Furthermore, Foxp3+ regulatory T cells loose the expression of

this key transcription factor in the absence of effector T cells in vivo

and can then drive inflammatory responses [13].

How many instances of such conversions should be expected?

Are some Th cells irreversibly committed and others more plastic?

It is difficult to address these questions directly due to the current

impossibility to follow a single cell as it circulates in the body,

during the rather long time scale of cell differentiation. Instead,

studies are usually made on cell populations and therefore measure

the predominance of one or another cell type. However, using

mathematical modelling, these questions can be addressed in terms

of stability and robustness of differentiation states of the molecular

network underpinning the cellular phenotypes.

Mathematical modelling has been used recurrently to formalise

hypothetic regulatory schemes in immunology. Early phenome-

nological models represented the development of Th1 vs Th2

responses from naive Th0 cells using ordinary differential

equations [14–17]. In these models, the subcellular molecular

network controlling the state of the cell was implicit behind the

transitions between cell types. These models accounted for the role

of cell interactions in driving population commitment and

sustained polarised responses. In general, they featured mutual

inhibitions among cell populations, thereby enabling multistability.

Alternative population stationary states were interpreted as

polarised cell responses. However, such cell population models

are unable to predict novel cell types or to question their plasticity

because cell properties are hardwired in the model structure.

More recently, models of the cellular networks driving Th cell

differentiation and polarisation have been formulated using logical

[18] (for an earlier logical model of T-cell regulation, see [19]) or

ordinary differential equations [20,21]. These models assume

cross-inhibiting master transcription factors to generate canonical

Th subtypes, thereby precluding cell plasticity.

In this paper, we propose an integrated, comprehensive model

of the regulatory network and signalling pathways accounting for

the core control of Th cell differentiation. As most available data

are qualitative, we rely on a qualitative, logical formalism to

perform extensive dynamical analyses. To cope with the size and

complexity of the resulting network, we use an original model

reduction approach described in detail elsewhere [22].

To assess the effects of heterogeneous environments on Th cell

differentiation, we have performed systematic simulations, consid-

ering various prototypic environments. As we shall see, stable

states corresponding to canonical Th1, Th2, Th17 and Treg

subtypes are readily identified, but they are found to coexist with

other hybrid cell types that co-express combinations of Th1, Th2,

Treg and Th17 markers in an environment-dependent fashion. In

the process, our logical analysis highlights the nature of these cell

types and their relationships to canonical Th subtypes.

Methods

Logical modelling formalism
The precise roles of the different molecular species involved in

the regulation of T cell differentiation are sparsely known. Even in

the cases where direct regulatory interactions have been

documented, little or no quantitative information is available on

the relative strengths or rates of these processes.

The extended logical formalism [23,24] is a discrete modelling

framework well adapted to biological systems where available

information is qualitative. In this framework, a regulatory network

is modelled in terms of a regulatory graph, where nodes represent

regulatory components (proteins, complexes, genes, etc.), whereas

arcs represent interactions between these components (i.e tran-

scriptional activations or inhibitions, phosphorylations, etc.). In

addition, each regulatory component is associated with a logical

variable denoting its qualitative concentration or level of activity. In

many cases, Boolean variables capture the most relevant situations

(i.e. a Boolean variable takes the value 1 if the component is

present or active, 0 otherwise). It is worth noting that components

may represent phenomenological features besides specific molec-

ular species (e.g. cell proliferation, see Table 1). Whenever needed

(i.e when different levels of a component have distinct functional

consequences), multi-valued variables are introduced. In our Th

model, ternary variables have been associated with several

interleukin receptor components (IL4RA, IL4R, IL2R, IL12RB1),

as well as with STAT5, which can be up-regulated depending on

signalling.

Next, logical rules are defined for each regulatory component to

specify its target activity level according to the levels of its

Author Summary

T lymphocytes play a key role in the regulation of the
immune response in mammals. Various T-helper subtypes
(Th1, Th2, Th17, Treg,…) have been identified over the
years, characterised by the expression of specific tran-
scription factors and cytokines, which have a critical
influence on the selection of different immune responses,
driving pro-inflammatory or allergic responses, promoting
alternative antibody classes, or preventing (auto)immunity
by inhibiting the activation and proliferation of other cells.
To gain insight into the heterogeneity and the plasticity of
late T-helper lineages, we have built an integrated model
of the regulatory network and signalling pathways
controlling Th cell differentiation. Relying on a logical
modelling framework, we have performed a systematic
series of simulations to assess the effects of heterogeneous
environments on Th cell differentiation. We have identified
stable states corresponding to canonical Th1, Th2, Th17
and Treg subtypes, but also to hybrid cell types co-
expressing combinations of Th1, Th2, Treg and Th17
markers in an environment-dependent fashion. Our
analysis highlights the nature of these cell types and their
relationships with canonical Th subtypes.

Diversity and Plasticity of Th Cell Types
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Table 1. List of regulatory components.

Component(s) Qualification Behaviour Reference(s)

IFNG_e, TGFB_e,
IL{2,4,6,10,12,15}_e,
IL{17,21,23,27}_e

External cytokines. Input of the model representing the external
environment. We do not consider the arrest
of the activation.

APC Denotes the presence of
an Antigen-Presenting Cell.

Input of the TCR module. We do not
consider the arrest of the activation.

CGC, IFNGR{1,2},
IL{4,6,10,15,27}RA, GP130,
IL{2,10}RB

Subchains of the cytokine receptors. Assumed to be constitutively
expressed at functional levels.

IL12RB2 Subchain of IL-12R. Inhibited by STAT6 (present otherwise). [18,53]

IL12RB1 Subchain of the IL-12 and IL-23 receptors. Always present with a higher level (required
for IL-12 signalling) in presence of IRF1.

[54]

IL2RA High affinity subchain of the IL-2 receptor. Activated by NFAT, NFKB, STAT5, SMAD3 and FOXP3. [32,55]

IL4RA Subchain of the IL-4 receptor. Constitutively expressed, it is
upregulated by a high level of STAT5.

IFNGR, TGFBR,
IL{4,6,10,15,17}R, IL
{21,23,27}R

Cytokine receptors, composed of
subchains as described in Table 2.

Active when their subchains and the
cytokine (external or from the same cell)
are present.

IL12R IL-12 receptor. As other receptors but requires a
higher level of IL12RB1.

[54]

IL23R IL-23 receptor. As other receptors but also requires RORct and STAT3. [56]

IL4R IL-4 receptor. As other receptors, high level of
receptor requires a high level of IL4RA.

IL2R IL-2 receptor, composed of
three subchains (CGC, IL-2Ra and IL-2Rb).

CGC and IL2RB are mandatory, while IL2RA is
only needed for higher levels of IL2R.

[32]

TCR, CD28 T Cell Receptor and its co-receptor. Activated by APC.

IKB Denotes IkB. Inhibited by the TCR pathway. [30]

NFKB Denotes NFkB. Inhibited by IKB and FOXP3. [57]

IRF1 Transcription factor. Activated by STAT1. [54]

STAT1 Transcription factor. Activated by IFNBR, IFNGR and IL27R. [18,58,59]

STAT3 Transcription factor. Activated by IL6R, IL10R, IL21R, IL23R, and IL27R. [34,59]

STAT4 Transcription factor. Activated by IL12R and inhibited by GATA3. [18]

STAT5 Transcription factor. Activated by IL2R, IL4R, and IL15R. High levels of
IL2R or IL4R are required for high levels of STAT5.

[32]

STAT6 Transcription factor. Activated by IL4R. [18]

proliferation Denotes cell proliferation. Triggered by high levels of STAT5, its arrest is not
considered here. We assume that cell proliferation
is required for the production of all cytokines but IL2.

[60,61]

NFAT Transcription factor. Activated by TCR and CD28. We assume it is
required for the production of all cytokines.

[32,62,63]

TBET Denote T-bet, the master
switch for the Th1 subtype.

Activated by itself and STAT1 and inhibited by GATA3. [18]

RUNX3 Transcription factor Activated by TBET. [64]

GATA3 Denotes GATA-3, the master
switch for the Th2 sub type.

Activated by itself and STAT6 and inhibited by TBET. [18]

FOXP3 Transcription factor specific to Treg cells. Activated by NFAT, TGFB (through SMAD3), and IL2 (through
STAT5) and inhibited by IL6 (through STAT3). Based on promoter
binding data, we further assume inhibition by STAT1 and RORGT.

[37,55,65–69]

RORGT Denotes RORct, required for
the production of IL17.

Self-maintained and activated by STAT3 and TGFBR. Potential
intermediate in STAT3 activation by TGFBR.

[11,43,56,70]

TGFB Denotes TGF-b. Produced by the Treg, assumed to be activated by FOXP3.

SMAD3 Signal transduction component. Activated by TGFB. [55,67]

IFNG Denotes IFN-c. Activated by NFAT, proliferation, TBET/RUNX3 and
STAT4/IRAK. Activation by NFAT inhibited by FOXP3.
Inhibited by STAT3.

[18,57,64]

IL2 Denotes interleukin-2. Activated by NFAT anf NFKB. STAT5 and STAT6
cooperate to inhibit IL2 production. FOXP3 cooperates
with NFAT to inhibit IL2. TBET cooperates with RelA
(NFkB subunit) to inhibit IL2.

[32,68,71,72]

Diversity and Plasticity of Th Cell Types
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regulators. Whereas some authors consider standard logical

functions for all components, we do not impose such a restriction.

For example, although STAT1 and IL21 both receive three

activatory interactions, their logical rules differ: the rule assigned

to STAT1 stipulates that STAT1 = 1 if IFNBR = 1 or IFNGR = 1

or IL27R = 1 (otherwise STAT1 = 0), whereas the rule assigned to

IL21 stipulates that IL21 = 1 if NFAT = 1 and proliferation = 1

and STAT3 = 1.

Given a regulatory graph and starting from a (set of) initial

state(s), successor states can be recursively computed. This results

in a new graph, called state transition graph, which describes the

dynamical behaviour of the system. In this graph, a node denotes a

state of the system (i.e., a tuple giving the levels of the regulatory

components), whereas an arc linking two states denotes a possible

state transition.

Considering a state, if the activity level of a component differs

from the target level defined by its logical rule, there is an updating

call on the corresponding variable. We generally assume that a

state has as many successors as updated components (fully

asynchronous dynamics), potentially leading to alternative behav-

iours. The computation of the state transition graph can be

restricted by considering a set of priority classes. Each regulatory

component is then associated to a priority class and is updated

only in the absence of concurrent updating call with a higher

priority [25].

Considering a state transition graph, it is particularly interesting

to identify the attractors, which correspond to potential asymptotical

behaviours, being either stable states (states without any successor)

or cyclical components (denoting oscillatory behaviours).

Model reduction
The asynchronous dynamical analysis of increasingly large

regulatory graphs can be very challenging due to the exponential

growth of the state transition graphs. A solution consists in

reducing the model by removing (intermediate) components.

We have recently proposed an algorithm to automatically

compute the logical rules for a user-defined reduced model [22].

Starting with a detailed model, the computation of a reduced

model is performed by iteratively removing regulatory compo-

nents. Auto-regulated components are not entitled for removal,

thereby avoiding the loss of dynamical properties associated with

regulatory circuits (see below). Removing a regulatory component

G implies a revised wiring where all targets of G are directly

regulated by the regulators of G. The logical rules of the targets of

G are modified accordingly to conserve the (indirect) effects of its

regulators.

This reduction method ensures the preservation of a number of

dynamical properties of the original model. In particular, stable

states and more complex attractors are conserved. However,

additional cyclical attractors may arise from the isolation of

transient cycles of the original system. An attractor which is

reachable in the reduced model is also reachable in the full model,

but the reverse is not always true, as the reduction may lead to the

loss of some trajectories (see [22] for further details).

Feedback circuit analysis
One asset of the logical framework is the possibility to analyse

the dynamical roles of the regulatory circuits (circular chains of

interactions) embedded in a regulatory graph. The dynamical roles

of isolated regulatory circuits depend on their signs. A circuit is

positive if it encompasses an even number of inhibitions, whereas a

negative circuit involves an odd number of inhibitions. During the

eighties, R. Thomas conjectured that a positive circuit is required

to generate multiple attractors, whereas a negative circuit is

necessary for sustained oscillations [26]. Since then, these rules

have inspired several theorems in different mathematical frame-

works (see [27] for a brief survey). In this work, we focus on

positive circuits, which enable the existence of alternative

differentiated cell lineages, each corresponding to one attractor.

While the presence of a positive circuit is necessary for the

existence of multiple stable states, this condition is not sufficient.

Indeed, when regulatory circuits are embedded in large networks,

external regulators may prevent some circuits to generate the

expected dynamical behaviour. Circuit functionality contexts can

then be defined in terms of constraints on the values of the

regulators of circuit members (see [28] for further details). In

practice, in large regulatory graphs, a tiny fraction of the

regulatory circuits are usually functional (i.e. have non-empty

functionality contexts). Such circuit functionality analysis pinpoints

crucial regulatory structures (usually with a predominance of short

circuits) that are responsible for salient dynamical features.

GINsim, a software dedicated to logical dynamical
modelling

Developed in Java, the software GINsim provides a user interface

to set up logical models, as well as to compute state transition

graphs under diverse updating schemes, including the use of

priority classes [29]. GINsim further implements an efficient

algorithm for the determination of all stable states of a logical

model, as well as the reduction method and the regulatory circuit

analysis briefly mentioned above (see also [28]).

Table 1. Cont.

Component(s) Qualification Behaviour Reference(s)

IL4 Denotes interleukin-4. Activated by GATA3, NFAT and proliferation.
TBET and RUNX3 inhibit IL4 cooperatively. FOXP3 blocks its
activation by NFAT. STAT1 inhibits IL4 through IRF1.

[18,57,64,73,74]

IL10 Denotes interleukin-10. Activated by NFAT, proliferation, GATA3 IL6 and
TGFBR (probably through STAT3).

[34,75]

IL17 Denotes interleukin-17. Activated (cooperatively) by STAT3 and RORGT and
inhibited by IL2 (through STAT5) and FOXP3.
We further assume inhibitions by STAT1 and STAT6.

[11,43,56,
59,76,77]

IL21 Denotes interleukin-21. Activated by STAT3. [43]

IL23 Denotes interleukin-23. Activated by STAT3. [43,56]

This table lists the regulatory components considered in the Th cell differentiation network model, along with their qualifications, behaviours and related references.
doi:10.1371/journal.pcbi.1000912.t001

Diversity and Plasticity of Th Cell Types
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We used GINsim to build a comprehensive logical model by

integrating a large set of documented molecular actors and

interactions. The resulting model is available in the model

repository linked to the GINsim website. As GINsim allows the

user to document a model by associating annotations (textual

comments, links and references) with each component, extensive

documentation has been integrated in the model file (see Dataset

S1).

Model simulations
In the case of the model presented here, we have to deal with

many input nodes that collectively handle local environmental

conditions. Varying the values of these inputs, all possible fates of a

given cell can be computed in terms of attractors reachable in

these diverse local environments.

Our simulations aim at determining how naive cells can

differentiate into specialised cells, depending on local environ-

ments, and how these differentiated cells respond to environmental

changes. In this respect, we have defined a set of prototypic local

environments (i.e. in terms of specific combinations of values for

APC and external cytokines), that are biologically meaningful. For

each of these environments, a simulation is performed starting

from a state corresponding to naive Th cells. All the resulting

attractors consist in stable states (i.e. attractors reduced to a unique

state, each corresponding to a cell lineage). These stable states are

in turn taken as initial states for a new round of simulations,

considering different local environments. We have chained such

simulations until no new stable state could be found, thereby

allowing us to assess the behaviour of each cell lineage depending

on the local environment. These simulations have been performed

using priority classes assigning a higher rank to the receptors (TCR

and cytokine receptors) and their downstream signal transducers

and/or transcription factors (NFAT and the STATs) over other

components.

Stable states, expression patterns and cell types
As we wish to take into account the roles of various external

cytokines on the activation and differentiation of Th cells, we

expect to find many possible stable states, some differing from each

other only by minor component activities, and thus corresponding

to the same Th subtype. Similar stable states can be grouped and

denoted by the value of a vector encompassing the major

transcription factors (GATA-3, T-bet, RORct, Foxp3) and

cytokines expressed by specific Th subtypes (IFN-c, TGF-b, IL-

2, etc.). The resulting patterns corresponding to different (quiescent,

activated, or anergic) modalities of the same Th subtype can be

further grouped into cell constellations, where simulated cellular state

transitions are denoted by arcs linking the corresponding cell

types.

Results

Building blocks of the T cell regulatory network
The logical formalism enables a modular approach for the

construction of large regulatory network models, where parts of

the network are defined and studied separately, before merging

them to generate a comprehensive model. The Th cell network

has been constructed by combining several ‘‘modules’’ illustrated

in Figure 1 and described below.

TCR signalling and costimulation. The first building block

is the TCR signalling module involved in the control of all aspects

of Th cell life cycle, including activation and differentiation. A

comprehensive Boolean model of this signalling cascade has been

recently published [30]. In brief, T cells receive coordinated inputs

Figure 1. Model building blocks. Left: (simplified) TCR signalling pathway. The node denoted NFAT represents the joint activity of NFAT and AP1.
Middle: generic cytokine module. IL_e represents the cytokine present in the environment; IL represents the autocrine production of the same
cytokine; ILR1 and ILR2 represent two different receptor sub-chains; ILR represents the activated receptor, which in turn activates STAT. Right: IL2R
regulation and its effect on cell proliferation. The bottom row gives the logical functions used for one of the components of each module. ‘‘^’’ and
‘‘_’’ stand for AND and OR logical operators, respectively.
doi:10.1371/journal.pcbi.1000912.g001

Diversity and Plasticity of Th Cell Types
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from the antigen presenting cell via the TCR itself (an heterodimer

of an alpha chain with a beta chain) and via the costimulation

receptor CD28. For the sake of simplicity, we represent these

coordinated inputs by a single variable, denoted APC, and we

assume that these signals converge downstream to activate NFAT/

AP1 (represented by the component NFAT) and NFkB (see

Figure 1, left). This simplified pathway captures the essential

dynamical features of the more complete model network analysed

in [30].

Cytokine signalling. Cytokines play an important role in the

control of T cell differentiation. Cytokine signalling proceeds via

the JAK-STAT pathway. Cytokine binding to its receptor chains

leads to the phosphorylation of specific JAK and STAT factors,

the latter being translocated into the nucleus where they activate

the transcription of target genes.

A generic logical model for cytokine signalling is shown in

Figure 1 (middle). The generic cytokine is represented by two

components, IL and IL_e. IL represents the production of the

cytokine by the T cell under study, whereas IL_e represents the

presence of cytokine in the environment, to which Th cells (when

activated) may contribute. The presence of cytokines in the

environment (whatever their autocrine or paracrine origin) is

considered in terms of initial conditions in the simulations.

The generic cytokine module has been replicated and adapted

for different cytokines, taking into account the relevant receptor

chains, and the specific JAK and STAT components downstream

(see Table 2). ILR represents the activated state of the cytokine

receptor: it is active when its subunits are crosslinked to the

corresponding cytokine, which may have an autocrine or

paracrine origin. This can be represented by the logical function

ILR1 and ILR2 and (IL or IL_e). Note that several subchains

and STATs are shared between different cytokine modules. We

consider that a STAT is active when at least one of its activating

cytokine receptors is active.

To enable the analysis of the model in terms of stable states, we

provisionally ignore SOCS-dependent negative feedbacks.

IL2 and cell cycle. As IL2 plays a particular role in the

control of Th cell differentiation and proliferation, it deserves a

more detailed description. The IL2/IL2R module shown in

Figure 1 (right) extends the general cytokine module by

considering an explicit feedback onto IL2 through STAT5, as

well as the effect of STAT5 on cell proliferation [31] (for details on

the regulation of IL2 and of its receptor, see [32]). Note that, in

our full model (Figure 2), IL2 and IL2RA are further regulated by

NFAT, NFKB and FOXP3, not shown in Figure 1.

IL2 signalling is also involved in the activation of induced cell

death (for a review, see [33]), which is not explicitly considered

here.

Regulatory network controlling Th cell activation and
differentiation

All the modules must then be integrated to build a

comprehensive model. The TCR signalling module functions as

an input, since it is not regulated by any other component. Several

cytokine receptors share subchains and targets. For example, the

common gamma chain (CGC) is shared by IL2, IL4, IL7, IL9 and

IL15 receptors that lead to the activation of STAT5 (cf. Table 2).

Furthermore, the cytokine modules are connected through a

number of cross-regulatory interactions. Figure 2 displays the

whole regulatory graph assembled for this study, while Table 1

provides a brief description of all the components included in the

model (Dataset S1). The logical rules associated with each

component are given in Text S1, along with biological

justifications and bibliographical references.

Reduced model
Which cell types and differentiation pathways can be predicted

from the logical model just described? The different cell types

correspond to attractors in the state transition graph, i.e. regions of

the state transition graph from which the system cannot escape.

Among these attractors, stable states can be readily determined

[28]. Other attractors may consist in (intertwined) terminal cycles.

Their identification requires a thorough analysis of the state

transition graph.

As our regulatory network encompasses too many components

to enable a direct analysis of the full state transition graph, we have

applied the reduction method described in Section ‘‘Model

reduction’’. Regarding the selection of the components for

reduction, we face a compromise between computational

performance and biological readability. Selecting TCR, CD28,

cytokines receptors and their subchains, along with the interme-

diate components RUNX3, IRF1, SMAD3, IKB and NFKB for

reduction, we obtain a regulatory graph containing 34 compo-

nents (see Figure 3 and Dataset S2). Although the resulting logical

model is still too large to compute the whole state transition graph

(encompassing over 38:109 states), it is now amenable to

simulations starting from selected initial states. Indeed, in this

regulatory graph, 13 out of 34 components represent environ-

mental conditions (inputs), which are fixed for each simulation.

With 21 internal components, the system has ‘‘only’’ about 4.5

millions of possible states, most of which are not reachable when

starting from a specific initial state.

A further reduction leads to a graph conserving the 13 inputs,

but only 12 internal nodes: TBET, GATA3, RORGT, FOXP3,

STAT3, STAT5, IL2, IL4, IFNG, IL17, TGFB and proliferation.

Using this compact model, we could compute the full state

transition graphs for relevant input combinations. This led us to

identify 28 context-dependent stable states (corresponding to the

greyed-out cells in Figure 4) and to verify the absence of cyclic

attractors for the polarising environments considered. Since our

reduction preserves attractors [22], we can conclude that, for these

environments, all attractors of the original model are indeed stable

states. Furthermore, whenever a stable state can be reached in the

compact model from specific initial conditions, we can conclude

that it is also the case for the full model.

Table 2. List of cytokines.

Cytokines Chains Targets

IFNG IFNGR1, IFNGR2 STAT1

IL4 IL4RA, CGC STAT5, STAT6

IL6 IL6RA, GP130 STAT3

IL10 IL10RA,IL10RB STAT3

IL12 IL12RB1, IL12RB2 STAT4

IL15 IL2RB, CGC, IL15RA STAT5

IL21 CGC, GP130 STAT3

IL23 IL12RB1, GP130 STAT3

IL27 GP130, IL27RA STAT1, STAT3

List of the cytokines considered in our model, each corresponding to an
instance of the generic module shown in Figure 1 (middle). For each cytokine,
the corresponding receptor sub-chains and downstream targets are specified.
CGC stands for Common Gamma Chain. The IL-15 receptor has three subchains
(versus two in the generic module), all of which are required for proper
signalling.
doi:10.1371/journal.pcbi.1000912.t002
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Regulatory circuits and cell fate decisions. Regulatory

circuits are known to play a role in the emergence of essential

dynamical properties (cf. Section ‘‘Feedback circuit analysis’’). The

regulatory graph presented in Figure 2 encompasses 612 circuits.

We expect only a small fraction of them to be functional, with a

predominance of short positive circuits. Of special interest are the

auto-activations of the four master regulators: TBET, GATA3,

FOXP3, and RORGT, along with the cross-inhibitory circuit

involving TBET and GATA3. Indeed, each of these circuits may

function as a switch to maintain the differentiation of a specific Th

subtype.

Considering that each functional positive circuit can lead to two

attractors, the four auto-activations can possibly generate 16 (i.e.

24) attractors (combining the two possible states of the four related

components). However, the cross-inhibitory circuit (TBET-

GATA3) ensures that TBET and GATA3 are mutually exclusive,

leading to the 12 possible combinations (rows) shown in Figure 4.

The first five patterns correspond to the expected canonical Th0,

Th1, Th2, Th17 and Treg subtypes, while the last seven patterns

correspond to non-canonical Th subtypes expressing more than

one master regulator, i.e. with markers corresponding to more than

one canonical subtype. Each of these stable states may be

compatible or not with specific input configurations. Moreover,

additional positive circuits may be functional and thereby

introduce further expression variability. For example, the circuit

involving STAT3 can lead to stable patterns differing by the value

of STAT3 and its target cytokine genes.

To analyse how cell fate depends on initial and environmental

conditions, we have iterated several round of simulations, using the

reduced model shown in Figure 3 (34 components) and the

prototypic environments described in Figure 5 (cf. Section ‘‘Model

simulations’’). In the first round of simulations, we have used an

initial state corresponding to the Th0 subtype. Consequently, we

have obtained the stable states listed in Figure 6 and associated

with specific cell types (first column) according to the expression of

key lineage and activity markers.

Plasticity of Th cell types. To check the stability of the

identified Th cell subtypes in changing environments, we have

performed a series of simulations using each of the stable states

listed in Figure 6 as initial configuration with each of the

prototypic environments listed in Figure 5. The results are

summarised in Figures 7 and 8.

In the absence of any input from the environment, resting Th0,

Th1, and Th2 are the only three attractors. These three cell types

can thus be considered as reference states, to which the other

stable states can be associated depending on the expression of

characteristic markers. However, these groups or constellations of

states are not disconnected. Obviously, any cell turning into a Th0

subtype can readily switch to states belonging to either of the two

other constellations, depending on the polarising environment.

According to our simulations, using proper (sequences of)

environmental input conditions, several differentiated Th subtypes

could be reprogrammed into various other subtypes.

By and large, Th1 cells tend to remain within the Th1 state

constellation, which includes activated, resting, and anergic

variants. For example, stimulation by APC will activate resting

Th1 into activated Th1 cells, inclusively in a pro-Treg environ-

ment. In either a pro-Th2 or pro-Treg environment, Th1 cells will

become anergic, while they will tend to express RORct with or

without IL-17 in a pro-Th17 environment. Anergic Th1 cells, as

well as non-canonical Th1 and Th17 mixed cell types, will remain

so provided that APC stimulus is sustained, but most likely turn to

resting Th1 cells in the absence of sustained TCR signalling. In a

pro-Treg environment, resting Th1 cells can up-regulate Foxp3

and further express both T-bet and Foxp3. This chimeric cell type

can loose Foxp3 under several conditions: in absence of TCR

stimulus and of other stimuli, they will revert to the Th1 resting

state; in the presence of APC alone (without pro-Treg stimuli) or

together with IL-12 (pro-Th1), they turn into the canonical

activated Th1 state; whereas in the presence of IL-12 they turn

into an anergic Th1 state.

Th2 differentiated cells expressing GATA-3 are even more

robust than Th1 cells and will always remain within the Th2

constellation (denoted in blue in Figure 8). In pro-Th1

environments, all Th2-like cells converge towards the anergic

Th2 subtype, devoid of cytokine production. According to our

model, in pro-Th17 or pro-Treg environments, Th2 cells may turn

on RORct and Foxp3, respectively. While Foxp3 expression will

be lost in the absence of IL-2, the expression of RORct is more

robust and can be maintained in all environments eliciting TCR

activation.

A subset of Th17 cells expressing RORct overlaps with all other

lineages. This results from the positive auto-regulation of RORct,

which is barely affected by other transcription factors. Thus, an

environment rich in TGF-b and IL-6 can lead to the activation of

RORct in virtually any cell type (Figure 8). This expression will be

stable until the cell switches to a resting state in the absence of

TCR signals from the APC. Interestingly, the production of IL-17

by Th17 cells expressing RORct alone is always transient, while a

hybrid Th1 RORct+ cell is predicted to express this cytokine

stably.

Treg cells can be maintained only in the presence of TCR-

stimulus delivered by APC and of IL-2 produced by other T cells.

However, in strong polarising environments, Tregs may differen-

tiate into mixed cell types associated with the Th1 or Th2 cell

constellations. For example, RORct could be activated in Th1

Foxp3+ cells dwelt in a pro-Th2 environment. Similarly, RORct

could be activated in canonical Foxp3+ cells dwelt in a pro-Th1

environment. These cells can then loose Foxp3 expression in

several environmental conditions, from pro-regulatory to pro-

inflammatory environments, coming closer to the Th1 subtype.

However, Foxp3 expression might be maintained in other

experimental conditions, in particular in sustained pro-Th2

environments. Foxp3+, RORct+, and GATA-3+ cells can arise

from anergic Th17 cells or from several Foxp3+ precursors by a

sustained pro-Th2 environment. Finally, Th0 cells can potentially

turn into Th2 via regulatory or Th17 intermediates.

Discussion

We have reconstructed the molecular network controlling the

activation and differentiation of Th cells and asked how many

stable states to expect, considering that these cells face a changing

local environment during their life span.

Components and cross-regulatory links were extracted from the

literature and, in some cases, from previous logical models [18,34].

Figure 2. Th differentiation regulatory graph, encompassing 65 components. The 13 input components are colored in black. Ellipses
denote Boolean components while rectangles denote ternary components. Green arrows denote activations, whereas red blunt ones denote
inhibitions. A peculiar blue arrow denotes the unique dual interaction. The greyed-out components have been reduced to generate the regulatory
graph displayed in Figure 3.
doi:10.1371/journal.pcbi.1000912.g002
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Figure 3. Reduced Th regulatory graph, encompassing 34 components. This graph has been obtained by applying the reduction method
described in Section ‘‘Model reduction’’ to the full model shown in Figure 2. Indirect interactions resulting from the reduction are displayed using
dotted lines. Greyed-out components can be further reduced to generate a more compact model, which still keeps the most relevant Th
differentiation markers.
doi:10.1371/journal.pcbi.1000912.g003
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It is likely that components or links were missed. To this adds the

problem of the definition of the logical functions driving the

behaviour of the components, particularly those involving complex

regulatory mechanisms.

This cautionary remark notwithstanding, our current model

recapitulates the differentiation of naive cells into Th1, Th2, Th17

and Treg subtypes. Strikingly, our model also gives rise to hybrid

states expressing markers characteristic of two or more canonical

Figure 4. Definition of alternative Th subtypes based on the expression of the master regulators. Each of the four master genes
considered (TBET, GATA3, RORGT and FOXP3) is positively auto-regulated. The first five rows correspond to the canonical Th cell subtypes expressing
no (Th0) or a single master regulator (Th1, Th17, Th2, Treg). The remaining rows correspond to hybrid Th cell subtypes that express more than one of
the master regulators, i.e. that show hybrid patterns. Additional positive circuits (proliferation and STAT3-related) generate further subtypes. The
circuit analysis predicts 48 stable patterns (4 for each of the 12 groups; each pattern corresponds to one cell of the table under the heading ‘‘Other
circuits’’). Only 28 of these patterns (greyed cells) are compatible with at least one of the input combinations considered here (cf. Figure 5). The values
in the cells indicate how many input combinations are compatible with this stable state. Five patterns are not compatible with any input combination
(cells with dashes).
doi:10.1371/journal.pcbi.1000912.g004

Figure 5. Environmental conditions used for the simulations. Each row corresponds to one prototypic environment, defined in terms of
combinations of APC and of seven different cytokine inputs. Presence/absence of the different inputs is denoted by grey/white cells. The coloured tile
code defined in the first column is used in Figure 7 to denote environmental conditions.
doi:10.1371/journal.pcbi.1000912.g005
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cell types. Cyclic attractors (potentially corresponding to oscilla-

tory behaviour) have been found only in restricted environmental

situations, whose biological relevance remains to be assessed.

Furthermore, our model analysis emphasises an unexpected

plasticity of the canonical cell types. Indeed, according to the

model, both Foxp3+ regulatory T cells and Th17 cells are highly

plastic and labile, whereas Th1 and Th2 subtypes are more readily

maintained across different environmental conditions.

Based on our results, canonical Foxp3+ regulatory T cells would

not be truly lineage committed, but would rather correspond to a

context-dependent stable state of the underlying regulatory

network. This is surprising considering the fundamental role of

these cells in avoiding autoimmunity. According to our model

analysis, the maintenance of a regulatory T cell phenotype would

require sustained TCR/CD28 and IL-2 signals. Indeed, the

absence of TCR stimulation can lead to the loss of Foxp3

expression and a conversion into a Th0 phenotype. Depending on

inputs, these cells can regain Foxp3 expression but also

differentiate into other cell types. Our model further predicts that

Treg cells may differentiate into Th1 or Th2 subtypes in proper

polarising environments. This plasticity of regulatory Foxp3+ T

cells is supported by several recent reports [13,35,36] showing that

fluorescence sorted Foxp3+ T cells loose Foxp3 expression and

their suppressive capacity, under experimental conditions consis-

Figure 6. Context-dependent stable states and their component expression patterns. A grey cell denotes the activation of the
corresponding component (column entries) for the corresponding stable state (row entries). Black cells denote higher activity levels (in the case of
multi-level components). Note that the values of the input nodes are omitted here. A state stable for a given input combination may become
unstable for other input values. Relationships between these stable states and selected environmental conditions (described in Figure 5) are given in
Figure 7. Activated cells (i.e. expressing NFAT and producing lineage-specific cytokines) and anergic cells (i.e. expressing NFAT but no lineage-specific
cytokine) are indicated, when this classification clearly applies. Note that different stable states sharing a common pattern in terms of expression of
master regulators but differing in the expression of other components are identified as the same Th cell subtype (as in the case of Th2 Foxp3+ RORct+
subtype at the end of the table).
doi:10.1371/journal.pcbi.1000912.g006
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tent with our simulations (e.g. loss of Foxp3 expression after

adoptive transfer of regulatory T cells in the absence of

conventional Foxp3- CD4 T cells, which provide IL-2 to the

former [13]). However, in addition to cells with labile Foxp3

expression, the regulatory Foxp3+ T pool apparently also contains

irreversibly committed cells, perhaps of thymic origin [35], which

cannot be easily explained with our model.

In our model analysis, Treg lability clearly depends on the

assumption that Foxp3 expression requires Stat5 and AP-1/NFAT

transcriptional activities. This might turn out to be an oversimpli-

fication as we might have overlooked some mechanisms preventing

regulatory cells to become conventional T cells and vice-versa.

Some data suggest that locus epigenetic regulation is needed for

sustainable Foxp3 expression [37], and that regulatory miRNAs are

likely involved [38]. Alternatively, the irreversible regulatory T cell

state might be explained by an additional positive loop involving a

transcription factor upstream of Foxp3. According to this scenario,

Foxp3 could merely control anergy and suppressive functions of

regulatory T cells, but would not be the Treg master regulator. The

recent characterisation of Th cells with partial Treg phenotype in

Foxp3-deficient mice supports this scenario [39]. Yet another

alternative is that higher order regulatory mechanisms stemming

Figure 7. Stability of Th cell subtypes and environment-dependent transitions. This figure summarises several simulation rounds,
displaying the context-dependent stable states (column entries) reached depending on eliciting initial states (row entries) and environmental
conditions (coloured tiles). The coloured tile code for environmental conditions is defined in Figure 5.
doi:10.1371/journal.pcbi.1000912.g007
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from intercellular interactions and population dynamics may

stabilise the Treg phenotype. Indeed, differential equation models

[40] suggest that stable regulatory T cells pools could be maintained

despite a continuous interconversion of cells. Further evidence is

provided by loss or gain of Treg phenotype depending on the

remaining populations [13].

Now, if our prediction of pervasive T cell plasticity is correct,

how can the classes of immune responses in which they

Figure 8. Graphical representation of the plasticity of cell subtypes depending on the environment. The Th cell subtypes observed in
silico are grouped into three main constellations (Th0, Th1 and Th2, delimited by different backgrounds). The different panels correspond to different
environmental conditions listed in Figure 5: (a) no stimulation, (b) APC only, (c) pro-Th1, (d) pro-Th2, (e) pro-Treg, and (f) pro-Th17. Arrows between
cell lineages denote switches elicited by the corresponding environment. Cell colouring denotes the activity of the master regulators: GATA3 (blue),
T-bet (red), Foxp3 (green) and RORct (orange).
doi:10.1371/journal.pcbi.1000912.g008
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predominate be so robust? This point is particularly intriguing in

the context of natural tolerance, presumably depending on labile

Tregs, or yet regarding persistent memory responses to bacterial

infections. Here again, the stability of the responses could stem

from regulatory feedbacks at the level of the T cell populations, as

intercellular interactions and cell population dynamics might

sustain and stabilise specific combinations of Th subtypes.

Regarding Treg mediated tolerance, stable and robust coexistence

of conventional Th cells and regulatory T cells has been obtained

using a cross-regulatory model encompassing positive and negative

feedback circuits at the population level in [41]. In stationary

populations, the production of IL-2 by conventional T cells

sustains the expression of Foxp3 by Tregs. Disruption of this

balance can lead to the conversion of Tregs into conventional Th

phenotypes, as observed in adoptive transfers [13]. Regarding Th

cell memory, the recent finding that memory cells relocate to the

bone marrow, where they remain quiescent in special niches [42],

raises the possibility that stromal cells may provide the

environment necessary to sustain a context-dependent memory

state.

Among the model stable states, those corresponding to hybrid

cell types expressing two or more Th master regulators are

particularly striking. Most of these hybrid cell types co-express

RORct with another Th master regulator. The remaining hybrids

combine the expression of Foxp3 with other master regulators.

The generation of these hybrid stable states might reveal missing

cross-inhibitory mechanisms between RORct and Foxp3, or yet

among these and the two other master regulators. The

introduction of such cross-inhibitory circuits would grant mutually

exclusive expression of master regulators (as assumed for GATA-3

and T-bet and generalised in [21]). Some indications of additional

mutual inhibitions among master regulators can be found in the

recent literature (e.g. between Foxp3 and RORct [37,43]).

Alternatively, since predicted hybrid cell types tend to be anergic

(i.e. do not produce cytokines), they could have been overlooked in

routine experimental assays characterising cell populations based

on cytokine expression. In fact, the existence of some of these

hybrid phenotypes is supported by recent studies relying on more

sophisticated quantitative assays, thereby suggesting that mutually

exclusive master regulator expression might not be a general

principle of the Th regulatory network architecture. For example,

hybrid cells expressing both IFN-c and IL-17, dependent on T-bet

and RORct respectively, have been observed by flow cytometry

[44] or clonal analysis [45], thus resembling our in silico Th1

RORct+ subtype (row 7 in Figure 6). Other reports point to the

generation of hybrid cells similar to our Treg RORct+ subtype

(row 15 in Figure 6), following the induction of RORct and IL-17

expression in regulatory Foxp3+ T cells, both in mice [46,47] and

humans [48]. Furthermore, in the presence of IFN-c, Foxp3+
regulatory T cells have been shown to up-regulate T-bet [12],

leading to hybrid cells akin our Th1 Foxp3+ subtype (row 8 in

Figure 6). Finally, genetically enforcing GATA-3 expression does

not prevent differentiation of Th17 cells, leading to GATA-3+ IL-

17 expressing hybrid cells [49]. Whether these cells are an artefact

or reflect naturally occurring activated Th2 RORct+ cells (row 13

in Figure 6) remains to be established.

Altogether, these observations support the existence of several of

our predicted environment-dependent Th subtypes, thereby

warranting the investigation of the other predicted hybrids (e.g.

Th1 Foxp3+ RORct+ or Th2 Foxp3+ RORct+). Indeed, we have

identified several environment-dependent Foxp3+ subtypes ex-

pressing other master transcription factors characteristic of

canonical Th1, Th2 or Th17 cells. What are the functional

implications of these chimeric regulatory cells? Since Foxp3

inhibits the expression of the cytokines downstream of GATA-3,

T-bet, or RORct, these hybrid cells are expected to be anergic. In

an environment dominated by other effector Th cells, up-

regulation of a subset of genes not suppressed by Foxp3 could

allow chimeric cells to mingle within effector T cells, profiting

from local growth or survival factors, as suggested by population

dynamical modelling [41]. This hypothesis is supported by the

recent observation that essential Th1 or Th2 regulatory factors are

required in Foxp3+ cells to enable proper control of Th1 or Th2

responses, respectively [12,50].

The number of reported cytokines grows rapidly. Tentatively,

some of these cytokines could be predominantly expressed by

specific, yet undiscovered, cell types. One might thus wonder what

part of our conclusions could be retained as our knowledge on the

Th cell differentiation network grows. In this respect, we have

extended earlier models for Th1/Th2 bipolarisation [18,34], with

the aim to account for two additional cell fates (Treg and Th17

subtypes). Interestingly, although our model accounts for many

more cell fates, Th0, Th1 and Th2 subtypes are maintained as

reference subtypes, around which are organised the cellular

constellations displayed in Figure 8. This organisation can be

related to the definition of a robust GATA-3 and T-bet cross-

regulatory module [51] progressively embedded in a more

comprehensive regulatory network.

However, even this well established paradigm has been recently

challenged by reports demonstrating simultaneous and sustained

GATA-3 and T-bet co-expression in reprogrammed Th2 cells

[52]. Although mechanistic details still need to be worked out, this

finding suggests that Th cell plasticity may be even greater than

fostered by our model. Further refinements of the model (e.g. the

introduction of an additional level for T-bet, and potentially of

additional components) will be required to properly model the

generation of such hybrid Th2+1 cells.

More generally, the characterisation of the roles of additional

cytokines, transcription factors, and regulatory RNAs, or yet the

delineation of epigenetic regulatory mechanisms, should enable

proper model extensions and refinements, thereby leading to

refined predictions, while preserving the functional roles of the

most salient regulatory modules.

In conclusion, our results indicate that the pool of CD4 Th cells

is highly heterogeneous and that the structure of the gene network

promotes this heterogeneity. Diversity of antigen receptors and

their crossreactivity are the most salient features of the adaptive

immune system of the vertebrates, allowing the host to recognize

and potentially react to numerous antigens. The heterogeneity and

plasticity of Th cell types emphasised here might further

contribute to the capacity of the immune system to deal with

wide contingencies. Arguably, such plasticity does not fit well with

the classical depiction of T cell differentiation potential in terms of

a branching tree. Instead, our computational study points to a

reticulate network of alternative, environment-dependent, differ-

entiation and reprogramming events.

Supporting Information

Dataset S1 Complete annotated Th model. Compressed

archive (with extension ZGINML) for the complete, annotated

Th differentiation model, including the model file (XML file with

extension GINML) and parameter files. This file can be directly

opened with the freely available GINsim software.

Found at: doi:10.1371/journal.pcbi.1000912.s001 (0.01 MB ZIP)

Dataset S2 Reduced Th differentiation model. Compressed

archive (with extension ZGINML) for the reduced Th differen-

tiation model, including the model file (XML file with extension
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GINML) and parameter files. This file can be directly opened with

the freely available GINsim software.

Found at: doi:10.1371/journal.pcbi.1000912.s002 (0.01 MB ZIP)

Text S1 Th differentiation model documentation. Documenta-

tion for the complete Th differentiation model,which include

supporting data and links to relevant databases for each model

component.

Found at: doi:10.1371/journal.pcbi.1000912.s003 (0.18 MB PDF)
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