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Abstract

Computational efforts to identify functional elements within genomes leverage comparative sequence information by
looking for regions that exhibit evidence of selective constraint. One way of detecting constrained elements is to follow a
bottom-up approach by computing constraint scores for individual positions of a multiple alignment and then defining
constrained elements as segments of contiguous, highly scoring nucleotide positions. Here we present GERP++, a new tool
that uses maximum likelihood evolutionary rate estimation for position-specific scoring and, in contrast to previous bottom-
up methods, a novel dynamic programming approach to subsequently define constrained elements. GERP++ evaluates a
richer set of candidate element breakpoints and ranks them based on statistical significance, eliminating the need for biased
heuristic extension techniques. Using GERP++ we identify over 1.3 million constrained elements spanning over 7% of the
human genome. We predict a higher fraction than earlier estimates largely due to the annotation of longer constrained
elements, which improves one to one correspondence between predicted elements with known functional sequences.
GERP++ is an efficient and effective tool to provide both nucleotide- and element-level constraint scores within deep
multiple sequence alignments.
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Introduction

The identification and annotation of all functional elements in

the human genome is one of the main goals of contemporary

genetics in general, and the ENCODE project in particular

[1,2,3]. Comparative sequence analysis, enabled by multiple

sequence alignments of the human genome to dozens of

mammalian species, has become a powerful tool in the pursuit

of this goal, as sequence conservation due to negative selection is

often a strong signal of biological function. After constructing a

multiple sequence alignment, one can quantify evolutionary rates

at the level of individual positions and identify segments of the

alignment that show significantly elevated levels of conservation.

Several computational methods for constrained element (CE)

detection have been developed, with most falling into one of two

broad categories: generative model-based approaches, which

attempt to explicitly model the quantity and distribution of

constraint within an alignment, and bottom-up approaches, which

first estimate constraint at individual positions and then look for

clusters of highly constrained positions. A widely used generative

approach, phastCons [4], uses a phylo-Hidden Markov Model

(HMM) to find the most likely parse of the alignment into

constrained and neutral hidden states. While HMMs are widely

used in modeling biological sequences, they have known

drawbacks: transition probabilities imply a specific geometric state

duration distribution, which in the context of phastCons means

predicted constrained and neutral segment length. This may bias

the resulting estimates of element length and total genomic

fraction under constraint.

One of the leading bottom-up approaches is GERP [5], which

quantifies position-specific constraint in terms of rejected substitu-

tions (RS), the difference between the neutral rate of substitution

and the observed rate as estimated by maximum likelihood, and

heuristically extends contiguous segments of constrained positions

(RS.0) in a BLAST-like [6] manner. However, GERP is

computationally slow because its maximum likelihood computation

uses the Expectation Maximization algorithm [7] to estimate a new

set of branch lengths for each position of the alignment; this step is

also undesirable methodologically because it involves estimating k

real-valued parameters from k nucleotides of data. Furthermore, the

extension heuristic used by GERP (and other bottom-up methods

[8]) may induce biases in the length of predicted CEs.

In this work we present GERP++, a novel bottom-up method

for constrained element detection that like GERP uses rejected

substitutions as a metric of constraint. GERP++ uses a significantly

faster and more statistically robust maximum likelihood estimation
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procedure to compute expected rates of evolution that results in a

more than 100-fold reduction in computation time. In addition,

we introduce a novel criterion of grouping constrained positions

into constrained elements using statistical significance as a guide

and assigning p-values to our predictions. We apply a dynamic

programming approach to globally predict a set of constrained

elements ranked by their p-values and a concomitant false positive

rate estimate. Using GERP++ we analyzed an alignment of the

human genome and 33 other mammalian species, identifying over

1.3 million constrained elements spanning over 7% of the human

genome with high confidence. Compared to previous methods, we

predict a larger fraction of the human genome to be contained in

constrained elements due to the annotation of many fewer but

longer elements, with a very low false positive rate.

Results

Overview of Algorithm
Like other bottom-up approaches, the GERP++ algorithm

consists of two components: calculation of position-specific

constraint scores for each column of a multiple alignment, and

subsequent aggregation of neighboring columns into segments that

score significantly higher than expected by chance (Fig 1; see

Methods for more detailed description). These are largely

independent procedures: the GERP++ score for a specific position

depends entirely on the nucleotides at that position and not on any

global element predictions, while identification of statistically

significant high-scoring segments depends only on the additivity of

individual position scores and can potentially be used in

conjunction with other position-specific scoring metrics.

Constraint intensity at individual alignment positions is quanti-

fied in terms of ‘‘rejected substitutions’’ (RS), defined as the number

of substitutions expected under neutrality minus the number of

substitutions ‘‘observed’’ at the position [5]. Thus, positive scores

represent a substitution deficit (which would be expected for sites

under selective constraint), while negative scores represent a

substitution surplus. To estimate this quantity at each aligned

position, GERP++ begins with a pre-defined neutral tree relating

the genomes present within the alignment that supplies both the

total neutral rate across the entire tree and the relative length of

each individual branch. For each alignment column, we estimate a

scaling factor, applied uniformly to all branches of the tree, that

maximizes the probability of the observed nucleotides in the

alignment column. The product of the scaling factor and the neutral

rate defines the ‘observed’ rate of evolution at each position.

Then, in the element-finding step, GERP++ uses the position-

specific RS scores to generate a set of candidate elements. For each

putative element it computes a p-value based on the element’s

length and score (defined as the sum of RS scores for each position

within the element) that represents the probability of observing

such an element in the null model. These p-values are used to rank

CEs in order of significance and report a set of non-overlapping

predictions, starting with the lowest (best) p-value. Rather than

applying a fixed cutoff, GERP++ estimates the false positive rate

by randomly permuting the input RS-scores and treating any

prediction within the shuffled sequence as a false positive, similar

to the first version of GERP [1,5].

Constraint in the Human Genome
We used GERP++ to analyze the TBA alignment of the human

genome to 33 other mammalian species (the most distant

mammalian species is Platypus) spanning over 3 billion positions

with a phylogenetic scope of 5.83 substitutions per neutral site. We

identified 1,354,034 constrained elements covering 214,749,502

nucleotides, or approximately 7% of the human genome, with an

estimated false positive rate of 0.86% at the nucleotide level (see

Methods for details). Compared to a slightly negative background

average of 20.125 RS, GERP++ predictions and certain known

functional elements display an elevated level of constraint, in

excess of 1.7 RS. GERP++ elements range in size from 4 to nearly

2000 bases, with mean length of 158.6 nucleotides. The minimum

(4 bases) and maximum lengths (2000 bases) are parameters of the

algorithm, and the tail of the length distribution (Fig S2A) suggests

that with a more permissive upper bound even longer elements

could be identified.

We observe significant variation among entire chromosomes of

both average RS score and fraction of positions predicted to

belong to constrained elements (Fig 2). The mean constraint level

varied from 20.3 to 20.05 RS with the exception of chromosome

X, which was the only chromosome with a positive average RS

score, just under 0.1 RS. This result is consistent with earlier work

[9], which suggested that the X chromosome in rodents has a

reduced mutation rate. We also observe substantial fluctuation in

the fraction of each chromosome predicted to be inside

constrained elements, which varied from 1% of the Y chromosome

to 4–9% for other chromosomes. We expect this metric to be low

for the Y chromosome because a large portion of the alignments

for the Y chromosome are too shallow to perform a rate

estimation, but even when adjusting for ‘‘effective’’ chromosome

size much of the fluctuation remains (Fig 2B). Surprisingly, despite

a low fraction of the Y chromosome being within constrained

elements, it does not have a particularly low average RS score,

while the X chromosome does not exhibit a high CE fraction

despite the positive average RS. In fact, there appears to be at best

weak correlation between these two metrics of constraint: since the

null model is derived from the actual distribution of RS scores for

a given region, any (additive) difference in RS score applied

uniformly to every position in the region would not change the p-

value of any candidate element (although in practice this would

alter the exact boundaries, resulting in a slightly different

candidate set). The chromosomal fraction within predicted

constrained elements ultimately depends more on the distribution

Author Summary

There are millions of sequences in the human genome that
perform essential functions, such as protein-coding exons,
noncoding RNAs, and regulatory sequences that control the
transcription of genes. However, these functional sequenc-
es are embedded in a background of DNA that serves no
discernible function. Thus, a major challenge in the field of
genomics is the accurate identification of functional
sequences in the human genome. One approach to identify
functional sequences is to align the genome sequences of
many divergent species and search for sequences whose
similarity has been maintained during evolution. We have
developed GERP++, a software tool that utilizes this
‘‘comparative genomics’’ approach to identify putatively
functional sequences. Given a multiple sequence alignment,
GERP++ identifies sites under evolutionary constraint, i.e.,
sites that show fewer substitutions than would be expected
to occur during neutral evolution. GERP++ then aggregates
these sites into longer, potentially functional sequences
called constrained elements. Using GERP++ results in
improved resolution of functional sequence elements in
the human genome and reveals that a higher proportion of
the human genome is under evolutionary constraint (,7%)
than was previously estimated.

Constrained Element Detection Using GERP++
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and variance of the scores rather than the mean. Unfortunately,

this is impossible to quantify exactly due to confounding factors

such as differences in alignment quality and depth.

Estimating Detectable Constraint
The only major parameter for GERP++ is a false positive rate

cutoff that determines at what point the algorithm should stop

generating predictions in order to avoid too many false discoveries.

Throughout its execution GERP++ keeps track of the constrained

elements predicted so far, as well as estimates of the number and total

size of false positive predictions for the specified cutoff level.

Examining how these quantities grow as the cutoff parameter

increases permits us to estimate the amount of total constraint that

can be detected using this methodology and give an approximate

upper bound on the amount of constraint within the human genome.

Let B(c) be the number of bases within constrained elements

predicted at false positive cutoff c, and let B*(c) = B(c)2F(c) be the

same quantity adjusted for false positive predictions by subtracting

the estimated number of false positive bases (as found in shuffled

alignments) at cutoff c. Fig 3 shows B and B* as a function of c from

0 to 50%: while B continues to increase, B* starts to level off right

as B begins to grow linearly. This suggests that maxc B*(c) can be

Figure 1. Overview of GERP++. (1) For each position of the multiple alignment we compute the conservation score in rejected substitutions by
subtracting the estimated evolutionary rate from the neutral rate. The neutral rate is computed by removing species gapped at that position from the
phylogenetic tree and summing the branch lengths of the resulting projected tree; the evolutionary rate is estimated by computing the maximum
likelihood rescaling of the projected tree. (2) Given position-specific conservation scores, we generate a set of candidate elements. (3) For each
candidate element, we compute a p-value to represent the likelihood of observing a segment of equal length and greater than or equal score under
the null model. We then select a non-overlapping set of elements in order of increasing p-value.
doi:10.1371/journal.pcbi.1001025.g001

Constrained Element Detection Using GERP++
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used to estimate the total number of bases in constrained elements

that can be annotated using this method in any given region or the

entire genome. Approximately 225 megabases, or nearly 7.3% of

the human genome can be detected as contained in CEs using

GERP++ at the mammalian phylogenetic scope. If we adjust for

the portions of the genome where rate estimation was not

performed (but with a deeper alignment might be in the future), we

estimate that up to 8% of the human genome consists of CEs

detectable using this kind of methodology. Combined with the

observation that about 190 megabases, or 6.2% can be detected at

Figure 2. Per-chromosome constraint intensity. (A) Mean RS score for all alignment positions where evolutionary rate was computed. Note the
elevated average score for chromosome X. (B) Fraction of chromosome that falls into predicted constrained elements. Light green bars show fraction
of entire chromosome, while dark green bars show fraction adjusted for regions where no rate computation was performed and no elements could
span (see Methods).
doi:10.1371/journal.pcbi.1001025.g002

Constrained Element Detection Using GERP++
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a false positive cutoff of 0 (Fig 3), we obtain a fairly narrow

estimate of 6–8% of the human genome under detectable

evolutionary constraint, in the mammalian scope. We note that

this estimate depends on alignment quality, since we may fail to

pinpoint constrained elements not only due to method-intrinsic

limitations but also because an appropriate signal may be absent in

a given multiple alignment.

Association of Predicted CEs with Known Functional
Elements

We next examine the relationship between evolutionary

constraint and several classes of biologically important regions.

Overall, coding exons exhibit by far the strongest levels of

constraint, as quantified both by the average RS score within

functional elements (Fig 4A), and by fraction of bases that overlap

the predicted CEs (see Table 1). Both 59 and 39 UTR regions show

weaker but noticeable constraint levels and, somewhat surprising-

ly, introns on average have slightly lower RS scores than the

overall genomic baseline. However, a nontrivial fraction of introns

does exhibit evidence of constraint, as nearly 7% of intron

positions overlap predicted elements (Table 1), and these positions

make up a large fraction of constrained element bases (see Fig 4B).

Over 94% of the coding exons in the human genome overlap at

least one predicted CE; conversely, only about 16% of constrained

elements overlap a coding exon. CEs that overlap exons are on

average ,60 nucleotides or 40% longer, and consequently have

more than two-fold higher scores, than elements that do not

overlap exons (both t-tests significant at p-value,2.2?10216).

While overall these results are consistent with what was observed

using the previous version of GERP [5] on much more limited

alignments, the length difference between exon-associated and

non-overlapping CEs is somewhat smaller than what was

previously found. This is partially explained by the differences in

the pattern of constraint between coding exons and other regions.

Because the previous GERP by default only merges blocks of

contiguous constrained positions if they are separated by at most

one unconstrained position [5], it is far more likely to generate

longer elements in exonic regions where most unconstrained bases

correspond to 3rd positions of a codon and are usually flanked by

constrained positions. In noncoding regions where unconstrained

positions are distributed more irregularly and often occur

consecutively, the previous GERP algorithm [5] ends up

fragmenting longer constrained regions and generating shorter

elements. Because GERP++ does not base merging decisions on

any such fixed threshold it is able to better annotate longer

noncoding CEs.

To further test this hypothesis, and to investigate a potentially

useful signal for detecting coding exons, we introduce a metric that

rigorously quantifies this pattern of constraint for any region. For

any given segment, we define the 3-periodicity bias as the

maximum over the 3 possible reading frames of the mean RS score

at positions 1 and 2 minus the mean RS score at position 3. This

metric quantifies a periodic bias in constraint and effectively deals

with unknown reading frame location and lack of a reading frame

altogether, since the maximum is taken over all 3 possibilities. As

Figure 3. Estimating detectable constraint. The red curve represents the number of bases within predicted constrained element as a function of
the false positive cutoff parameter. The blue curve represents the number of predicted bases minus the expected number of false positive bases, also
as a function of the false positive cutoff.
doi:10.1371/journal.pcbi.1001025.g003

Constrained Element Detection Using GERP++
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Figure 4. Relationship between CEs and known functional elements. (A) Mean rejected substitution scores for entire human genome,
constrained elements predicted by GERP++, and known annotated exons, introns, and UTR regions. (B) Breakdown of constrained element positions
by region type.
doi:10.1371/journal.pcbi.1001025.g004

Constrained Element Detection Using GERP++
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Fig 5 shows, the 3-periodicity bias is a strong signal characteristic

of coding exons (mean 2.96) compared to other regions such as

UTRs, introns, and ncRNAs (mean 0.13–0.38, difference

significant at p-value,2.2?10216). We partitioned the constrained

elements predicted by GERP++ according to exon overlap, and

found that CEs overlapping coding exons have a much greater

mean 3-periodicity bias (Table 2). However, the difference

between CEs that did not overlap any annotated exons, and

known nonexonic regions such as introns was still significant,

Table 1. Fraction of functional regions covered by
constrained elements on a nucleotide level.

Annotation % Coverage by CEs

Exons 84.6%

Introns 6.9%

UTR59 23.7%

UTR39 33.9%

ncRNA 10.1%

doi:10.1371/journal.pcbi.1001025.t001

Figure 5. Distributions (smoothed histograms) of 3-periodicity bias for known exons (red), introns (green), CEs that overlap exons
(orange), and CEs not overlapping exons (blue).
doi:10.1371/journal.pcbi.1001025.g005

Table 2. Mean 3-periodicity bias for different types of
regions.

Type Mean 3-periodicity Bias

Exons 2.96

59 UTR 0.57

39 UTR 0.32

Introns 0.18

CEs overlapping exons 2.46

CEs not overlapping exons 0.55

doi:10.1371/journal.pcbi.1001025.t002

Constrained Element Detection Using GERP++
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suggesting some of these CEs intersect unannotated exonic

regions. To test this hypothesis, we checked the constrained

elements that did not overlap any known coding exons against

exon predictions made by the computational gene prediction tool

CONTRAST [10]. We found 16,881 CEs (making up 1.5% of all

CEs that did not overlap known genes) that overlapped

CONTRAST predictions, and these CEs had a significantly

higher 3-periodicity bias (1.33) than those that did not overlap

CONTRAST predictions (0.54). As this latter figure is still higher

than the average 3-periodicity of clearly non-exonic elements, it is

possible that a fraction of these elements overlap unannotated

exons or pseudogenes with recently lost function. It is interesting to

note that the difference between 3-periodicity bias of GERP++
CEs that overlap known exons (2.46) and CEs that overlap

CONTRAST predictions (1.33) is also significant. This is likely a

combination of two factors: false positives (or errors in identifying

the exact boundary) in CONTRAST predictions, and selection

bias that manifests as exons with higher 3-periodicity being more

conserved and/or easier to identify, and thus annotated in the

UCSC Known Genes set.

Comparison with PhastCons
We compared the GERP++ constrained element predictions in

placental mammals (see Methods) to phastCons [4], the leading

generative model-based tool. Not surprisingly, we found significant

overlap between GERP++ and phastCons predictions: 80% of

GERP++ predictions overlapped at least one phastCons predic-

tion, and vice versa. However, aside from both algorithms

detecting clearly constrained areas, there are substantial differ-

ences: GERP++ predicts significantly fewer elements, which are

much longer on average (see Fig S2B for distribution of phastCons

element lengths) and cover a substantially larger portion of the

human genome - almost twice as much as the 4% predicted by

phastCons (Fig 6A). As a result, on a nucleotide level GERP++
overlaps 90% of phastCons predictions while only half of GERP++
CE positions are covered by phastCons.

Part of the reason for these differences is that often phastCons

predicts multiple elements where GERP++ makes one longer

prediction. PhastCons thus skips intermediate positions which may

be under weaker constraint yet still part of one large functional

element, as the example in Fig 6E shows. In order to demonstrate

that this is not an isolated occurrence and to quantify

fragmentation of known functional elements, we computed the

number of distinct predicted constrained elements overlapping

each annotated coding exon. While the total number of exons that

overlap at least one constrained element prediction is approxi-

mately the same between the two methods, GERP++ is

significantly more effective at identifying entire exons as a single

predicted CE, rather than fragmented between two or more CEs

like phastCons (Fig 6C & 6D). This phenomenon is not limited to

coding exons, as we observed similar behavior for experimentally

identified RNA Polymerase II (PolII) binding sites (see Methods),

which correspond to poised or active promoters. GERP++
overlaps a larger fraction of nucleotides within 50 base pairs of a

PolII binding site (26% vs 19% for phastCons), and exhibits

similarly reduced fragmentation as with coding exons (Fig 7).

Due in part to its ability to annotate larger elements in one

piece, GERP++ is more effective at predicting constraint within

several types of known functional regions. At the nucleotide level

GERP++ elements cover a substantially larger fraction of several

major types of functional elements, especially coding exons and

UTRs (Fig 6B). The improved resolution in detection of known

functional elements suggests GERP++ may also be more effective

at predicting unannotated regions that are not only constrained

but also functional.

Discussion

One of the main challenges in constrained element detection is

the lack of a clear gold standard for evaluating the quality of

predictions. Human functional elements are sometimes uncon-

strained at the mammalian scope or missed at the assembly or

alignment stages, and CE predictions that do not correspond to

any known annotations may have unknown function, and cannot

be definitively considered false positives. Given these limitations,

we have shown that GERP++ offers several advantages over its

predecessor GERP and makes fewer assumptions about the shape

of conservation than previous approaches such as PhastCons.

Previous bottom-up approaches have been limited largely by the

simple heuristics used to merge constrained positions into longer

elements; these heuristics may introduce biases in element length

due to patterned constraint such as the 3-periodicity in coding

exons. With GERP++ we evaluate a much richer set of candidate

elements, selecting and ranking final predictions according to

statistically meaningful p-values.

Despite the added computational cost at this stage, GERP++
overall is more than 100 times faster than GERP due to the

speedup in rate estimation. Because GERP++ estimates a single

parameter that directly translates into evolutionary rate, rather

than an independent parameter for each branch of the tree, the

computation is not only faster but also results in more statistically

robust estimates as alignment depth increases. GERP++ takes a

few days on a typical machine or a few hours on a small cluster to

complete an analysis of the human genome aligned to 33

mammalian species, and can scale to virtually any reasonable

genome size and alignment depth.

Our understanding of the evolutionary forces constraining

sequence variation is still limited, especially in noncoding regions.

This presents a challenge for generative model-based approaches,

which model implicitly or explicitly the distribution of length and

intensity of constrained elements and the total genomic fraction

under constraint. In contrast, rate estimation and element

prediction in GERP++ are largely independent procedures, and

while GERP’s rejected substitution metric [5] accurately quantifies

constraint intensity at individual positions, any additive position-

specific scoring scheme could potentially be used instead. For

example, in future implementations of the GERP++ package more

elaborate or context-dependent models of nucleotide evolution

could be easily incorporated in order to improve position-specific

evolutionary rate estimation without drastically changing the

overall algorithm.

One drawback of GERP++ and other similar approaches is

sensitivity to variation in and erroneous estimates of the neutral

rate of substitution. Neutral rate estimates are often subject to

some uncertainty and can vary depending on the methodology,

alignment quality, and genomic region. To test the ability of

GERP++ to tolerate a reasonable amount of error in neutral rate

estimates, we repeated our analysis with the neutral tree scaled up

or down by 5 or 10%. Not surprisingly, overestimating the neutral

rate leads to overprediction of constraint, and vice versa. For a

fixed false positive cutoff, we observed a linear relationship

between the input neutral rate and the amount of constrained

element bases predicted; a 5/10% change in neutral rate leads to

approximately 8/15% change in the number of predicted

constrained bases.

It is important to note that our false positive rates and p-values

are computed based on the implicit assumption that the score

Constrained Element Detection Using GERP++
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Figure 6. GERP++ vs phastCons predictions. (A) Mean length (left), number (middle) and total length (right) of constrained elements predicted
by GERP++ (blue) and phastCons(yellow). (B) Nucleotide-level fraction of annotated exons, introns, UTRs and noncoding RNAs genes covered by
GERP++ (blue) and phastCons (yellow) predictions. (C&D) Histogram of number of distinct predicted GERP++ (blue, D) and phastCons(yellow, C)

Constrained Element Detection Using GERP++
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distribution is homogeneous within a region and all sites are

independent. While this assumption has been present in previous

approaches that also relied in permuted alignments for false

positive rate estimation, it is central to the GERP++ p-value

computation. Finally, the greedy manner of resolving candidate

element overlap conflicts by smallest p-value presents another

potential limitation, as for elements with equal average constraint

this will break ties in favor of the longer element. This may or may

not be biologically meaningful, especially if complicated conser-

vation patterns are involved or two strongly conserved functional

elements are very close together (and the segment between them is

at least somewhat constrained). These hypothetical effects are

likely mitigated by GERP++’s position-specific scores, which

enable higher resolution analysis within individual CEs, and which

ultimately may be the criterion upon which to decide whether any

particular long element may better be regarded as two shorter

ones.

GERP++ recapitulates known biology, at both the nucleotide

level and on the scale of entire functional elements and even

chromosomes. GERP++ scores are accurate enough to obtain a

strong signal of synonymous substitution in coding exons, and the

elevated average RS score for chromosome X (Fig 2A) agrees with

earlier findings [2,3]. Compared to phastCons, GERP++ predic-

tions overlap a larger fraction of known functional elements

(Fig 4B) and have greater 1:1 correspondence to constrained

coding exons (Fig 6C & 6D) and promoters (Fig 7). Our analysis

Figure 7. Mean distribution of PolII binding sites by number of overlapping CEs over 9 Encode PolII ChIP experiments, for GERP++
and phastCons.
doi:10.1371/journal.pcbi.1001025.g007

constrained elements overlapping each annotated coding exon. Note the difference in scale on the y-axis. (E) A constrained region slightly over 200
base pairs in length that contains a known exon, as annotated by GERP++ (labeled ‘GERP++’, black) and phastCons (purple track labeled ‘Mammal El’).
Note how phastCons fragments the exon into multiple CE predictions.
doi:10.1371/journal.pcbi.1001025.g006

Constrained Element Detection Using GERP++
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has also yielded interesting biological insights, including the likely

presence of unannotated coding exons among our predicted

constrained elements. We detect around 7% of the human genome

to be contained in CEs in the mammalian scope, a slightly larger

amount than previous predictions, yet with a lower estimated false

positive rate. While this estimate is inexact, our analysis suggests

6% and 8% as reasonable lower and upper bounds, a somewhat

tighter range than earlier estimates [1,2].

Computationally, GERP++ is efficient enough to perform

whole-genome analysis of deep mammalian alignments within a

few cpu-days, making it suitable for high-throughput analysis of

the ever increasing amounts of genomic data. We hope GERP++
will prove to be a useful tool in analyzing, quantifying, and

annotating constraint and discovering novel functional elements in

the human and other genomes for which sufficient comparative

data exist.

Methods

Availability
GERP++ is available at http://mendel.stanford.edu/SidowLab/

downloads/gerp/index.html

Estimation of Evolutionary Rates and RS Scores
Given a multiple sequence alignment and a phylogenetic tree

with branch lengths representing the neutral rate between the

species within that alignment, GERP++ quantifies constraint

intensity at each individual position in terms of rejected

substitutions [5], the difference between the neutral rate and the

estimated evolutionary rate at the position. For our analysis the

alignment was compressed to remove gaps in the reference

sequence (human), although the RS score computation algorithm

does not assume any specific reference sequence. In order to

estimate the evolutionary rate we model nucleotide evolution as a

continuous-time Markov process, which specifies for each pair of

nucleotides a and b and duration t the probability of a transforming

into b over time t, designated by pab(t). Many such evolutionary

models have been developed [11,12], each with its own set of

simplifying assumptions. GERP++ implements the HKY85 model

[13], but any time-reversible model (where papab(t) = pbpba(t) for all

pairs of nucleotides a and b) that permits efficient computation of

pab(t) can be used instead.

For each individual alignment column GERP++ labels the

leaves of the phylogenetic tree with the corresponding nucleotides

c1, …, ck; gapped species are projected out. Although this is not

necessarily ideal and sometimes leads to information loss, it avoids

some of the common difficulties and potentially serious biases that

accompany modeling gaps in alignments: aligner errors and

artifacts that result from simplified gap penalties and incorrect

handling of duplications and rearrangements, assembly mistakes,

and missing sequence data. Furthermore, this treatment of gaps

avoids explicitly penalizing constrained elements that have

undergone lineage-specific deletion [5].

Once the gapped species are removed, the site-specific neutral

rate is computed as the sum of the branch lengths in the trimmed

tree. When there are fewer than 3 species remaining no rate

estimation is performed for that position, as there are not enough

species to even form a valid tree. We estimate by maximum

likelihood a homogeneous scaling factor of the neutral tree at each

position; similar but independently developed methods were used

for rate estimation in [14,15]. Specifically, we introduce a scaling

parameter r that represents the site’s rate of evolution relative to

neutrality. When r,1 the quantity (12r) can be naturally

interpreted as the fraction of neutral substitutions ‘‘rejected’’ by

evolutionary selection. GERP++ estimates r by maximum likeli-

hood, where the likelihood is given by L(r) = Pr(c1, …, ck | Tr),

where Tr is the neutral tree T scaled by r. For any given r, and

therefore fixed tree Tr, this function can be computed efficiently

using a dynamic programming algorithm due to Felsenstein [16].

If n is an internal node with children n1 and n2, and {c1, …, ck}n

represents the subset of the leaves corresponding to the subtree

rooted at n, then

Pr c1, . . . ,ckf gnDn~a
� �

~Pr c1, . . . ,ckf gn1Dn~a
� �

:Pr c1, . . . ,ckf gn2D
�

n~aÞ~ SbPr c1, . . . ,ckf gn1Dn1~b
� �

pab T r n,n1ð Þð Þ
�

: SbPrð

c1, . . . ,ckf gn2Dn2~b
� �

pab T r n,n2ð Þð Þ

where Tr(x,y) is the branch lengths in Tr between two neighboring

nodes x and y.

Since the leaf nucleotides are observed, this equation can be

used to compute the subtree probability for all internal nodes,

starting at the bottom and reaching the root, where we can com-

pute L(r) = Pr(c1, …, ck | Tr) =Sa Pr({c1, …, ck}n | root = a) pa.

Assuming a fixed alphabet and an evolutionary model where the

probabilities pab(t) are computable in constant time, this algorithm

runs in time O(k) where k is the number of species in the

phylogenetic tree.

Using this algorithm as a subroutine to calculate L(r), GERP++
computes the maximum likelihood value of r using Brent’s method

[17,18], a numerical optimization technique that tends to require

relatively few computations of the function being optimized. The

evolutionary rate for a site with neutral rate n is estimated to be rn,

and the final RS score is computed as n2rn = n(12r). As maximum

likelihood may estimate very large or even infinite values of r, we

impose a cap of r = 3 on GERP++ rate estimates, yielding RS scores

that range between 22n and +n. These scores are then used as the

basis for prediction of constrained elements within the region.

Computation of P-Values and Element Prediction
Given position-specific constraint scores, GERP++ generates a

list of elements that exhibit evidence of evolutionary constraint

beyond what is likely to occur by chance. For each element, we

compute a p-value that represents the probability of a random

neutral segment of equal length having an equal or higher RS

score. In addition to being used to select final predictions from the

set of candidate elements, these p-values in conjunction with

position-specific scores provide useful information for biological

analysis.

Every segment of contiguous multiple alignment columns is a

candidate element. Because considering all possible segments

within the alignment is computationally infeasible, GERP++
generates a list of candidate elements using several simple

biological heuristics to prune the possibilities. First, we impose a

user-specified minimum and maximum on candidate element

length; while real functional elements vary in length, very few

extend beyond several thousand bases, and even these will not be

missed entirely as GERP++ will identify their most constrained

parts. Second, since positive RS scores indicate constraint,

GERP++ allows only candidate elements that start and end at

positions with RS$0 and cannot be extended further in either

direction; this rule has the additional benefit of imposing sensible

boundary conditions on predicted elements. Finally, we only

consider candidate elements with score above a certain value,

which is a function of the element length and the median neutral

rate of the region. This allows pruning of candidate elements that

have low scores relative to their lengths, and since they will end up
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with poor p-values anyway ignoring them early reduces the

memory requirements considerably.

Using neutrality as the null hypothesis, we can now define p-

values for candidate and predicted elements on the basis of score

and length. If the probability of a single neutral position having RS

score x is given by P(x), then for an element of length L and score S

the p-value is the probability of having score at least S in exactly L

positions, and is given by:

pval L,Sð Þ~Sxpval L{1,S{xð Þ:P xð Þ

The RS score distribution is irregular (Fig S3) and therefore

cannot be easily modeled by common statistical distributions;

however, the p-values can be computed using dynamic program-

ming, for L = 1, …, Lmax, provided the distribution P(x) can be

computed and the space of possible scores x is not too large. The

latter is assured by discretizing to within a specified tolerance t;

since individual scores range from 22n to +n, there are 3n/t

possible discretized scores. We now build a histogram of these

discrete scores from the alignment, with two exceptions. First, we

exclude long consecutive runs of ‘‘shallow’’ positions (default at

least 10), i.e. positions with neutral rate below specified cutoff

(default 0.5 substitutions per site), as there are many such primate-

specific regions and they tend to skew the score distribution.

Additionally, remaining shallow positions are given a small penalty

to discourage GERP++ from predicting CEs consisting mostly of

shallow positions. Second, we exclude positions that belong to

clearly constrained regions, which are identified using a prelim-

inary pass of the algorithm (with false positive cutoff set to 0). All

other scores are used to build a score histogram for each region. In

order to eliminate artifacts caused by zero probabilities, we add a

small uniform prior to the histogram to ensure every discretized

score appears at least once.

Once all candidate elements have been assigned p-values,

GERP++ selects elements in a greedy manner, from smallest to

highest p-value, discarding any elements that overlap previously

reported elements. As the p-value increases so does the expected

false positive rate of our predictions; when this reaches a user-

specified threshold the algorithm terminates. While it would be

ideal to compute this directly from the p-values, the multiple

hypothesis correction in this case is non-trivial because GERP++
reports a non-overlapping set of predictions. Therefore, we adopt

the approach of Cooper et al [2,5] and estimate the false positive

rate by generating several independent permuted alignments.

These alignments are obtained by randomly shuffling columns of

the original multiple alignments, excluding long stretches of

shallow positions.

Overview of the Data
TBA [19] alignments of the human genome (hg18) to 43 other

vertebrate species were obtained from the UCSC genome browser

[20,21] together with a phylogenetic tree with the generally

accepted topology (Fig S1) and neutral branch lengths estimated

from 4-fold degenerate sites. Both the tree and alignments were

projected to the 34 mammalian species. The alignment was

compressed to remove gaps in the human sequence, and GERP++
scores were computed for every position with at least 3 ungapped

species present, or approximately 88.9% of the 3.08 billion

positions on the 22 autosomes and X/Y chromosomes. We used

the HKY85 [13] model of evolution with the transition/

transversion ratio set to 2.0 and nucleotide frequencies estimated

from the multiple alignment.

To limit memory requirements and allow parallelization of the

constrained element computation, each chromosome was broken

up into regions of approximately 2 megabases, with long segments

where no RS score was computed chosen as boundaries. These

boundary segments contain no information usable by GERP++
and because the algorithm never annotates constrained elements

spanning them, excluding such segments did not sacrifice any

predictive ability. These boundary regions made up approximately

6.8% of the human genome, including a 30.2 megabase region

that made up more than half of chromosome Y. Constrained

element predictions were generated using default parameters and

a 5% false positive cutoff measured in terms of number of

predictions; the estimated nucleotide-level false positive rate was

under 1%. As additional validation, we computed overlap between

our predictions and a set of ancestral repeats (L2) annotated by

RepeatMasker. We found the overlap to be in line with what we

expected given our estimated false positive rates: about 5% of the

repeats overlap a predicted CE, with around 1.6% nucleotide-level

overlap.

Gene, noncoding RNA, and PhastCons conserved element

annotations were obtained from the UCSC genome browser’s

[20,21] Known Genes [22], RNA Genes, and Conservation [4]

tracks respectively. To avoid skewed statistics due to alternative

splicing, gene annotations were resolved to a consistent nonover-

lapping set where any segment belonging to multiple conflicting

annotations was assigned a single annotation in the following order

of priority: coding exon, 59 UTR, 39 UTR, intron. For meaningful

comparison against phastCons, separate GERP++ scores and

constrained elements were generated according to the same

procedure as above but using only placental mammal data

(ignoring platypus and opossum in the alignment and projecting

them out of the phylogenetic tree).

PolII binding regions were defined as 50 bp upstream and

downstream of PolII binding ‘peaks’ as identified from ChIP-seq

experiments performed by the ENCODE Consortium [3]. A

100 bp window allows capture of the likely PolII binding site and

its flanking sequence. We obtained data from nine ChIP-seq

experiments conducted in two labs (the Snyder lab at Yale and the

Myers lab at Hudson Alpha) on six cell types. Data was

downloaded through the DCC at UCSC (ftp://encodeftp.cse.

ucsc.edu). All data have passed publication embargo periods.

Overlap statistics were calculated as described above for other

annotation sets and averaged across all nine experiments.

Supporting Information

Figure S1 Phylogenetic tree used for GERP++ analysis. Tree is

drawn to scale with respect to estimated neutral branch lengths.

Found at: doi:10.1371/journal.pcbi.1001025.s001 (0.12 MB PDF)

Figure S2 Distribution of constrained element lengths. (A)

GERP++. (B) PhastCons.

Found at: doi:10.1371/journal.pcbi.1001025.s002 (0.15 MB PDF)

Figure S3 Distribution of GERP++ RS scores for 2Mb region of

chromosome 1, excluding shallow (neutral rate,0.5) positions.

Found at: doi:10.1371/journal.pcbi.1001025.s003 (0.01 MB PDF)
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