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Abstract

Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may
be achieved by how grid cells in the medial entorhinal cortex (MEC) input to place cells. Grid cells exhibit hexagonal grid
firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple
scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells
learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral
axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential
oscillations (MPOs) whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs), both increase
along this axis. Slower (faster) subthreshold MPOs and slower (faster) EPSPs correlate with larger (smaller) grid spacings and
field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned
by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear
velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in
intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A
response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known
spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is
homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal
projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a
mechanistic ‘‘neural relativity’’ that may clarify how episodic memories are learned.
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Introduction

A gradient of spatial scales in medial entorhinal cortex
Navigating the world requires the brain to learn and maintain

memory of spatial positions within various environments. Place

cells in the hippocampal areas CA1 and CA3 demonstrate a

neural code for position in large spaces that higher mammals

inhabit [1] and thereby play a critical role in spatial navigation.

CA3 receives major projections from layer II of the medial

entorhinal cortex (MEC) [2], where grid cells are predominant

[3,4]. Unlike place cells, individual grid cells fire at multiple

positions. When an animal navigates in an open field, these

positions form a regular hexagonal grid uniformly covering the

entire navigable environment. These cells are found throughout

the length of MEC with the spatial period of their firing fields

increasing from the dorsomedial to the ventrolateral end [4–6].

In particular, Brun and colleagues [6] recorded from a total of

143 grid cells within layers (II, III, V/VI) of MEC located between

1% to 75% the distance along the dorsoventral axis, while rats ran

back and forth on a 18 m long linear track. The recorded cells

were divided into three groups based on their anatomical location

with respect to the postrhinal border of MEC; namely, dorsal,

intermediate and ventral. The one-dimensional periodic spatial

responses of these cells in the two running directions were

processed separately to estimate characteristic properties of grid

cells, such as grid spacing, grid field width, peak firing rate, and

mean firing rate. The main finding was that both grid spacing and

field width increased from dorsal group to ventral group, for either

running direction. Interestingly, distributions of these variables

increased not only in mean but also in variability with distance

along the dorsoventral axis. However, the peak firing rate

decreased from dorsal group to ventral group, and there was a

negative trend for mean firing rate.

The presence of multiple spatial scales on the dorsoventral axis

of MEC has important implications for the development of the

hippocampal place cells [7–9]. Several self-organizing map (SOM)

models have been proposed that show how signals from grid cells

of multiple spatial scales can together induce the learning of

hippocampal place cells that are capable of representing position

in the larger spaces that higher mammals navigate (e.g., [10,11]).

In particular, Gorchetchnikov and Grossberg [11] showed this

expansion of the scale of the spatial representation from grid cells
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to place cells arises due to the fact that the SOM is sensitive to the

most frequent coactivations of grid cells across multiple scales,

which on a linear track occur with a spatial period equal to the

least common multiple of the inducing grid spacings. But how do

grid cells learn to fire at multiple positions that form a hexagonal

grid in two-dimensional open environments? And how does the

spatial scale of grid cells increase along the dorsoventral axis of

MEC, enabling their target place cells to represent ever-larger

spaces? Recent data and modeling provide some clues, forming

the basis for the current work.

Correlating stellate cell oscillation frequency with grid
cell spatial scale

Excitatory projections to the hippocampal formation from

layer II of MEC are primarily from stellate cells [12]. That makes

them the most likely candidates for grid cells. In vitro whole-cell

patch clamp recordings [13,14] have shown that these stellate

cells exhibit subthreshold membrane potential oscillations

(MPOs) in response to steady current injection. The temporal

period of these oscillations increases from the dorsomedial to the

ventrolateral end of MEC, thereby correlating with the observed

gradient in spatial period and size of the firing fields of grid cells.

In addition, voltage-clamp recordings in these cells demonstrated

that the time constants of the hyperpolarization-activated cation

current Ihð Þ decreases along the dorsoventral axis of MEC

[15,16]. Knockout of the HCN1 subunit in the hyperpolariza-

tion-activated cyclic nucleotide-gated (HCN) channels, which

control Ih kinetics [17], flattens the dorsoventral gradient of MPO

frequency [18]. In addition, the rise and fall times of excitatory

postsynaptic potentials (EPSPs) in these cells progressively

become longer along the dorsoventral axis [19]. The variation

in EPSP kinetics was attributed to differences in the membrane

conductance mediated by HCN and leak potassium channels.

Combined, all these results suggest a correlation between the rate

of intrinsic dynamics in MEC layer II stellate cells and the spatial

scale of grid cells.

Model accomplishments
This article develops a SOM neural model, called Spectral

Spacing for reasons summarized below, to explain the above data.

This model shows how a gradient of cell response rates along the

dorsoventral axis of MEC can control the development of grid

cells whose hexagonal grid firing fields exhibit a gradient of spatial

scales and whose MPOs exhibit a gradient of frequencies. These

results combine several conceptual and technical advances.

First, these results are part of an emerging general entorhinal-

hippocampal model architecture (see also [20]), which shows that,

despite their different receptive field structures, both grid cells and

place cells may be learned using the same SOM laws. Thus, both

grid cell periodic hexagonal firing fields and place cell unimodal

firing fields, despite their different appearances, may arise from the

same neural mechanisms due to the different inputs that they

receive at their respective stages in the entorhinal-hippocampal

hierarchy.

Second, these SOM laws have been proposed to control

development and learning in many other parts of the brain,

notably the visual cortex. Thus, both grid and place cells may

develop using general SOM principles of brain map organization.

Third, the linear velocity and angular velocity path integration

inputs that drive model learning are derived from realistic

trajectories of rats in spatial learning and memory experiments.

Fourth, these linear velocity and angular velocity estimates can

both be transformed into position codes by ring attractors.

Fifth, the rate gradient mechanism for spatial learning in the

MEC pathway and its hippocampal projections is homologous to a

rate gradient mechanism that has been used to model temporal

learning in the lateral entorhinal cortex (LEC) pathway and its

hippocampal projections. Spatial and temporal representations in

the medial and lateral processing streams may hereby arise from

homologous mechanisms, thereby embodying a mechanistic

‘‘neural relativity’’ in the entorhinal-hippocampal system. This

homology may clarify why spatial and temporal representations

both occur in hippocampus, and provides new clues about how

episodic memories may be learned.

In summary, this model system exhibits parsimony and unity,

both in its use of similar ring attractor mechanisms to code the

linear and angular velocity path integration inputs that drive

learning, and in its use of a rate gradient mechanism that can

support the learning of both spatial and temporal codes.

Even more striking is the fact that both grid cell and place cell

receptive fields emerge by detecting, learning, and remembering

the most frequent and energetic coactivations of their inputs. This

co-occurrence property is different from the property of oscillatory

interference that some other models have proposed (e.g., [21]).

Oscillatory interference models have, to the present, been used to

explain properties of grid cells, without showing how they can be

learned, or how such a learning process can generate the different

grid spatial scales along the dorsoventral extent of MEC.

Moreover, several articles (e.g., [13,22]) have interpreted the

gradient of subthreshold MPO frequencies in MEC layer II stellate

cells as strong evidence for an oscillatory interference-based firing

of grid cells. In sharp contrast, the grid cells in the Spectral

Spacing model exhibit the gradient of MPO frequencies as an

epiphenomenon of SOM learning mechanisms, thereby showing

that this gradient can occur in the absence of an oscillatory

interference mechanism.

In order to better understand what aspects of the Spectral

Spacing model are needed to explain how spatial and temporal

properties of grid cell firing change along the dorsoventral extent

of MEC, several model and input variations were simulated (see

Simulation Settings). These simulations demonstrate that, at

least among these variations, only a response rate gradient,

combined with input cells that have normalized receptive fields,

can explain all the data mentioned above.

Author Summary

Spatial navigation is a critical competence of all higher
mammals, and place cells in the hippocampus represent
the large spaces in which they navigate. Recent modeling
clarifies how this may occur via interactions between grid
cells in the medial entorhinal cortex (MEC) and place cells.
Grid cells exhibit hexagonal grid firing patterns across
space and come in multiple spatial scales that increase
along the dorsoventral axis of MEC. Signals from multiple
scales of grid cells combine to activate place cells that
represent much larger spaces than grid cells. This article
shows how a gradient of cell response rates along the
dorsoventral axis enables the learning of grid cells with the
observed gradient of spatial scales as an animal navigates
realistic trajectories. The observed gradient of grid cell
membrane potential oscillation frequencies is shown to be
a direct result of the gradient of response rates. This
gradient mechanism for spatial learning is homologous to
a gradient mechanism for temporal learning in the lateral
entorhinal cortex and its hippocampal projections, thereby
clarifying why both spatial and temporal representations
are found in the entorhinal-hippocampal system.

How Grid Cells May Learn Multiple Spatial Scales
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Stripe cells and ring attractors
The input cells to the grid cells are called stripe cells [23]. They

are called stripe cells because each cell fires with a preferred

movement direction and spatial period, thereby giving rise to

stripes of activation (Figure 1A). Suggestive data about these cells

in deeper layers of MEC were reported in [4]. In addition, Krupic,

Burgess, and O’Keefe [24] have reported data showing stripe-like

spatial firing profiles for a group of cells in the dorsal

parasubiculum, which projects to layer II of MEC [25,26].

In the GRIDSmap model [23] and the Spectral Spacing model

simulations, the stripe cells process linear velocity inputs that are

modulated by head direction as the model animal navigates a

realistic trajectory that was reported in the data of [4]; see

Figure 1B. These signals are assumed to be computed in vivo from

vestibular estimates of linear and angular acceleration, which are

generated in the otolithic organs and semicircular canals,

respectively, of the inner ears [27].

In addition to its preferred direction and spatial scale, each

stripe cell is assumed to have a preferred spatial phase (Figure 1C).

A set of stripe cells for a given direction and spacing, which differ

only in spatial phase, can be represented by cells constituting a

one-dimensional ring attractor (Figure 1D). In such a ring

attractor, linear velocity projected onto the preferred direction

moves an activity bump around the ring of stripe cells (see

Figure 1D and Equations 1.1–1.4). One revolution of the activity

bump corresponds to traversal of a length equal to the associated

stripe spacing along the direction (Figure 1A). The spatial firing of

a stripe cell as the animal moves at a constant speed on a straight

path is assumed to have a Gaussian profile, for simplicity, with

different stripe cells in the ring having different spatial offsets for

Figure 1. Linear path integration inputs. (A) Spatial response of a model stripe cell with a spacing of 20 cm in a 100 cm6100 cm environment.
(B) Realistic rat trajectory in the same sized environment used in our simulations (data: [4]). (C) Small-scale (solid; spacing of 20 cm) and large-scale
(dashed; spacing of 35 cm) stripe fields of four spatial phases (colors) along their preferred direction. Note the normalized stripe fields; that is, the
area under each stripe field is a constant between the two scales. (D) Depiction of how the bump of activity in each directional ring attractor can be
moved by linear movements of an animal with a component along the preferred direction.
doi:10.1371/journal.pcbi.1002648.g001

How Grid Cells May Learn Multiple Spatial Scales
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their peak firing. The movement of the activity bump depends on

the component of linear velocity along the associated direction. As

a result, the spatial firing pattern of a given stripe cell in a two-

dimensional environment resembles Gaussian-modulated oriented

stripes with a fixed spacing that uniformly spread across the entire

environment (Figure 1A). Because of the periodic boundary

condition, each stripe cell operates over a limited spatial scale

equivalent to the spacing between its adjacent stripe fields.

As noted above, each stripe cell ring attractor includes cells that

are sensitive to a given spatial scale, both spatial period and spatial

phase, and movement direction. The set of all stripe cells, across all

spatial periods, spatial phases, and directions, taken together,

implicitly represent the spatial position of the animal. In particular,

stripe cells of different spacings can represent the animal’s position

at multiple spatial resolutions.

Head direction cells and ring attractors
The firing of a stripe cell with a prescribed directional

preference is modulated by a head direction signal via a cosine

law that projects the current direction of the navigating animal at

each time onto the stripe cell’s preferred direction (see Equation

1.1). Head direction estimates have been modeled by ring

attractors that are sensitive to angular velocity signals [28–35].

Both linear velocity and angular velocity signals in the Spectral

Spacing model are thus assumed to be transformed into

movements of activity bumps in ring attractors in order to

perform linear and angular path integration, respectively (cf.

[23,36]). Adult-like head direction cells are already present in the

parahippocampus by P16 when rat pups begin to explore their

environments for the first time [37,38]. If both stripe cells and

head direction cells are indeed computed by ring attractors, then

this provides a plausible explanation of how stripe cells could be

ready at this developmental stage to support the learning of grid

cells.

SOM dynamics and learning
Stripe cells with multiple directional preferences and spatial

phases for a given spatial period initially project with random

adaptive weights to cells in the category learning layer of a SOM.

SOM cells obey membrane, or shunting, equations and interact in

a recurrent on-center off-surround network. Self-excitatory feed-

back enables the resolution of competition among the map cells in

order to choose one or a few winners. The self-excitatory feedback

does this by contrast-enhancing the activity of winning category

cells [39], but it can also cause perseveration of activity in the

winning cells, even after their bottom-up inputs shut off. A

perseverating cell could inhibit other map cells, via the recurrent

off-surround, that would be needed to represent different

combinations of inputs that arise as an animal continues to

navigate. Activity-dependent habituative gating of the positive

feedback signals causes a collapse of such persistent self-activation,

and thereby allows different map cells to become active and learn

at different times as the bottom-up stripe cell input pattern changes

with the animal’s navigational movements in space. In other

words, habituative gating helps to ‘‘whiten’’ the learned spatial

fields of the map cells. Habituative gating has been used in SOM

models of other parts of the brain since being introduced in [40]. It

has helped, for example, to simulate complex properties of map

development in visual cortical area V1 (e.g., [41–43]).

Signals from winning map cells trigger learning in the abutting

synapses of pathways from the stripe cells. The adaptive weights in

these synapses track a normalized time-average of the signals in

the pathways from the stripe cells while their target map cells are

active. After learning, the bottom-up signals can efficiently activate

map cells that exhibit hexagonal grid fields.

In addition to these basic SOM ingredients, the current model

investigates how a gradient of response rates in the map cells can

lead to learning of a gradient of model grid cell spatial scales whose

properties match neurophysiological data from multiple experi-

ments about grid cells along the dorsoventral axis of the MEC. See

the subsection below on the Scale selection problem.

The learning law is called a competitive instar learning law because it

selectively strengthens the adaptive weights from coactive stripe

cells to active map cells while it competitively self-normalizes the

total adaptive weight abutting each map cell [40,41,44,45]. This

learning law enables each grid cell to arise as a learned spatial

category in a SOM. The competitive aspect in the learning law

may be interpreted in terms of how developing axons abutting a

target neuron compete for limited target-derived neurotrophic

factor support in order to survive [46–48], and its conservation of

total synaptic weight is consistent with neurobiological data (e.g.,

[49]).

Such a competitive instar learning law is different from a purely

Hebbian learning law, which allows adaptive weights to increase

but does not allow them to decrease. The instar learning law

permits both weight increases (long-term potentiation) and weight

decreases (long-term depression). It hereby enables the weights to

adapt to the spatial pattern of signals from the stripe cells. This

pattern sensitivity enables grid cell learning to become sensitive to

temporal co-occurrences of stripe cell firing.

Simultaneously active stripe cells are more likely to strongly

activate map cells whose bottom-up weight patterns closely match

their activity pattern. Adaptation of the weights to a map cell

occurs only when its activity is above a threshold (see C in

Equation 1.6). This postsynaptic activity-based gating ensures

faster adaptation of incoming weights for more active map cells.

During each learning episode, the weights tend towards the

average normalized pattern of the inputs. Thus, the likelihood of

the map cells becoming tuned to particular sets of inputs, which

consistently succeed in driving them, gradually increases. Note

that the bottom-up connections from stripe cells to grid cells

remain adaptive for the lifetime of the animal, and not just during

the development period.

The GRIDSmap model [23] learned grid cells in response to a

wide choice of stripe cell directional preferences. For example,

hexagonal grid firing fields were learned even when stripe cell

directions differed by 7, 10, 15, 20, 60, or random numbers of

degrees. GRIDSmap hereby overcame a problem of the oscillatory

interference models of grid cells (e.g., [21,22]), which created a

hexagonal grid spatial firing pattern using hard-wired inputs from

exactly three band cells (a similar concept to stripe cells, proposed

earlier by [21]) with directional preferences differing by 60u. Band

cells in oscillatory interference models, unlike stripe cells, are

defined by the interference of two theta frequency MPOs. SOM

models are, in contrast, able to select among multiple possible

combinations of stripe cell inputs to learn only a subset of

combinations that are favored in terms of both frequency and total

activation. Why hexagonal grid patterns are favored can be

explained in terms of a simple trigonometric property of two-

dimensional space to which a SOM is sensitive as an animal

navigates [20,23]. By this property, among all possible subsets of

coactive stripe cells experienced during two-dimensional naviga-

tion, the ones that are most frequent and energetic are those

comprising three stripe cells whose directional preferences differ

from each other by 60u [20,23]. These favored coactivations of

stripe cells occur at positions that form a regular hexagonal grid

when the model animal navigates in an open field.

How Grid Cells May Learn Multiple Spatial Scales

PLOS Computational Biology | www.ploscompbiol.org 4 October 2012 | Volume 8 | Issue 10 | e1002648



SOM hierarchy: From stripe cells to place cells via grid
cells

Until recently, SOM models of place cell learning used idealized

or hand-crafted grid cells (e.g., [10,11]). Pilly and Grossberg [20]

proposed the GridPlaceMap model to show how grid and place

receptive fields, despite their different characteristics, can emerge

simultaneously at different levels in a SOM hierarchy, obeying the

same laws for neuronal dynamics and synaptic plasticity, by

responding to the most frequent and energetic coactivations of

their corresponding input neurons. This medial entorhinal-

hippocampal hierarchy of stripe, grid, and place cells enables

the brain to represent increasingly large spaces, and provides

increasingly large spatial information per cell in predicting the

spatial position of an animal.

Scale selection problem
Both the GRIDSmap and the GridPlaceMap models learn

hexagonal grid firing fields whose spatial scale is derived from that

of the input stripe cells. In particular, stripe cells with the same

period were used to learn grid fields of a given spatial scale. Stripe

cells of different spatial scales were assumed to activate different

locations along the dorsoventral axis in layer II of MEC, thereby

giving rise to grid cells with different spatial scales. But how is the

selection of just one spatial scale of stripe cells realized for each

grid cell scale? What would happen if stripe cells of multiple scales

initially projected to the map layer before grid cell learning began,

as in Figure 2? In other words, how do grid cells learn to select

among, not only multiple directional preferences and spatial

phases, but also among the multiple spatial scales, of their stripe

cell inputs? What properties of the dynamics of a map cell can

select the spatial scale to which it will learn to respond as a grid

cell?

Cell response rates select grid cell spatial scale and
controls MPO frequency

This article shows that the rates at which the category cells and

their corresponding habituative transmitters respond, called the

response rate (parameter mm in Equation 1.5) and habituation rate

(parameter gm in Equation 1.7), respectively, can help to select the

spatial scale of the stripe cells to which the category cells will learn

to respond, and thus the spatial scale of the learned hexagonal grid

firing fields, as well as the MPO frequencies with which these grid

cells respond in vitro to a steady current input. Whereas a

dorsoventral gradient in either response rate or habituation rate

can explain the corresponding gradient in learned spatial scale and

MPO frequency of grid cells, only a gradient in response rate was

found to be consistent with data regarding the associated

dorsoventral gradient in peak and mean firing rates of grid cells

[6]; see the Results section for details. Different cell response

rates also indirectly alter the rates at which the habituative

transmitters inactivate and recover (see Figure 3D).

Figure 2. Model depiction. The Spectral Spacing model responds to the navigational movements of an animal along a realistic trajectory and with
stripe cells of multiple spatial scales initially projecting to the population of category learning cells at some location along the dorsoventral axis of
MEC. Model simulations were conducted with 25 category cells in each of 10 MEC local populations that differed in the rate of intrinsic cellular
dynamics, and with input stripe cells of nine directional preferences, four spatial phases, and up to three spatial scales.
doi:10.1371/journal.pcbi.1002648.g002

How Grid Cells May Learn Multiple Spatial Scales
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Figure 3. Case 1 results. Results of Case 1 in which a single category cell responded to a stripe cell-like input S(t)~e{
(t{0:695)2

0:0627

� �
shown in (A). (B)

Cell responses defined by Vm
j {C

h iz� �2

for different response rates (mm: 1 (cyan), 0.5 (red), 0.2 (green), and 0.1 (blue)) in the absence of self-

excitatory feedback. Here, cell potential Vm
j

� �
follows:

dVm
j

dt
~10mm {AVm

j z B{Vm
j

� �
Sð Þ

h i
. (C) Cell responses defined by Vm

j {C
h iz� �2

in the

pr esence of sel f -exc ita tor y fe edback t ha t is not ha bi tua t iv el y gate d. In this ca se, c el l pote nt i a l Vm
j

� �
fo l l ows:

dVm
j

dt
~10mm {AVm

j z B{Vm
j

� �
Sza Vm

j

h iz� �2
 !" #

. (D) Dynamics of the habituative transmitter zm
j

� �
in the presence of self-excitatory

feedback that is habituatively gated. (E) Cell responses defined by the habituatively gated product V m
j

h iz� �2

zm
j for the case in (D). (F) Cell responses
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Spectral Timing and Spectral Spacing
Remarkably, this response rate gradient for spatial learning is

computationally homologous to a rate gradient that was

proposed over 20 years ago to explain hippocampal data about

temporal learning [50–52]. The model for temporal learning was

called a Spectral Timing model because its different cell

populations respond with a ‘‘spectrum’’ of different rates. The

current model may therefore be called a Spectral Spacing

model. Whereas the rate gradient for spatial learning is proposed

to occur in MEC and its hippocampal projections, the rate

gradient for temporal learning is proposed to occur in LEC and

its hippocampal projections. This homology may provide new

clues about how episodic memories are learned. See the

Discussion section for further comments about this predicted

form of ‘‘neural relativity’’ in the entorhinal-hippocampal

system.

Methods

The Spectral Spacing model that is developed in this article

significantly refines and modifies the GRIDSmap model of [23]

to explain how a cell response rate gradient [19] can generate

learning of a gradient in grid cell spatial scale [5,6] from among

multiple spatial scales of input stripe cells. In addition, the

learned grid cells exhibit activity patterns whose properties

simulate data about the gradient of MPO frequency [13,14] and

of peak and mean firing rates [6] along the dorsoventral axis in

layer II of MEC. The Spectral Spacing model also computa-

tionally investigates different variations of stripe cell properties

(peak firing rate, stripe field width) across spatial scales to

predict what may be observed in future experiments. Besides

these major conceptual advances, the Spectral Spacing model

also incorporates several technical advances over the GRID-

Smap model that enable it to learn a greater number of stable

grid cells in a larger population of self-organizing cells; see the

Differences with GRIDSmap model subsection in the

Discussion section.

We first provide below a complete mathematical description of

the Spectral Spacing model and its variations. The values of

parameters that do not differ across simulation cases are listed in

Table 1. The values for the other parameters are specified in the

Simulation Settings subsection below. Table 2 lists experimen-

tal evidence in support of the various model components.

Numerical integration was performed using Euler’s forward

method with a fixed time step Dt.

Spectral Spacing model equations
Stripe cells. As noted above, stripe cells integrate linear

velocity in multiple directions, spatial phases, and spatial scales in

ring attractor circuits. They are algorithmically computed, for

simplicity, as follows [23]: If at time t an animal heads along

allocentric direction Q tð Þ with velocity v tð Þ, then the velocity vd tð Þ
along direction d is:

vd tð Þ~cos d{Q tð Þð Þv tð Þ: ð1:1Þ

The displacement Dd tð Þ traversed along direction d with respect

to the initial position is calculated by path integration of the

corresponding velocity:

Dd tð Þ~
ðt
0

vd tð Þdt: ð1:2Þ

This directional displacement variable is converted into activa-

tions of stripe cells that prefer different spatial phases p along a

ring attractor that is selectively tuned to direction d and spatial

scale s. Let xdps tð Þ be the activity of a stripe cell whose spatial

fields are oriented perpendicular to direction d with spatial

phase p and spatial period s. This stripe cell has maximal

activity at periodic positions nszp along direction d , for all

integer values of n; see Figure 1A. Activity xdps tð Þ will thus be

maximal whenever (Dd modulo s) = p, where the modulo

operator computes the remainder when Dd is divided by s,

and thus resets the displacement modulo the period s. This

periodically reset displacement, computed with respect to spatial

phase p is:

Ddps tð Þ~ Dd tð Þ{pð Þ modulo s: ð1:3Þ

Thus, if the stripe cell xdps tð Þ has a Gaussian-like spatial firing

profile, then its activity can be modeled as:

xdps tð Þ~rs
:exp {

min Ddps tð Þ,s{Ddps tð Þ
� �� �2

2ss
2

 !
, ð1:4Þ

where rs is the maximal activity and ss is the standard deviation

of each of its individual stripe fields along the direction d. The

simulations were carried out with two, or three, spatial scales s
of stripe cells converging on individual category cells. Learning

determines which stripe cell spatial scale gains control of each

category cell through time, and how that results in its learned

grid scale. Simulations demonstrate how the response rate of a

category cell determines its learned grid scale. The directional

displacement variables Dd tð Þ were all initialized to 0 at the start

of each learning trial.

Category cells. The membrane potential Vm
j of the MEC

layer II category cell j in population m along the dorsoventral axis

obeys shunting dynamics within a recurrent on-center off-

surround network [40,44]. The membrane potential Vm
j of the

defined by V m
j {C

h iz� �2

for the case in (D). For (D–F), cell potential Vm
j

� �
and habituative transmitter zm

j

� �
follow

dVm
j

dt
~10mm {AVm

j z B{Vm
j

� �
Sza Vm

j

h iz� �2

zm
j

 !" #
and

dzm
j

dt
~10gm 1{zm

j

� �
{czm

j a Vm
j

h iz� �2
 !2

0
@

1
A, respectively.

doi:10.1371/journal.pcbi.1002648.g003

Table 1. Values of model parameters that do not differ across
various simulation cases.

A B C a b c l C Dt (s)

3 1 0.5 17.5 1.5 0.2 0.025 0.1 0.002

doi:10.1371/journal.pcbi.1002648.t001
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jth cell in population m therefore obeys the equation:

dVm
j

dt
~10 mm {AVm

j z B{Vm
j

� � X
dps

wm
dpsjxdpsz

 "

a Vm
j

h iz� �2

zm
j

!
{ CzVm

j

� �X
k=j

b Vm
k {C

� 	z� �2

#
z

snoise
dW

dt
:

ð1:5Þ

The model was run in several variations to demonstrate the effects

of gradients in cell response rates or habituation rates. This

analysis points to the fact that a gradient of response rates mm, with

all other parameters held fixed, leads to learned grid cells that best

match neurophysiological data. Thus, in one set of simulations, 10

non-interacting populations of category cells, each with 25 cells,

were assumed to occur at different anatomical locations on the

dorsoventral axis. The only parameter that was varied across these

populations was the response rate mm, with values of 1, 0.9, 0.8,

0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1. This is similar to the anatomical

gradient of response rates proposed in the Spectral Timing model

to account for the learning of adaptively timed behaviors [50].

In Equation 1.5, A is the decay parameter corresponding to the

leak conductance; B and {C are the reversal potentials of the

excitatory and inhibitory channels, respectively; wm
dpsj is the

synaptic weight of the projection from the stripe cell with activity

xdps in Equation 1.4 to the category cell j in population m;

a Vm
j

h iz� �2

is the on-center self-excitatory feedback signal of the

cell, which helps to resolve the competition among category cells

within cell population m, where V½ �z~max V ,0ð Þ defines a

threshold-linear function, and a is the gain coefficient; zm
j is the

habituative transmitter gate of category cell j; b is the connection

strength of the inhibitory signal Vm
k {C

� 	z� �2

from category cell

k in the off-surround to category cell j within population m; and

term snoise
dW

dt
injects additive noise into the cellular dynamics,

where W is a Brownian motion process with independent

increments sampled from a Gaussian distribution with zero mean

and standard deviation equal to snoise. At each time step (Dt) of

numerical integration, a zero mean Gaussian random variable of

variance s2
noiseDt is added to the cell potential. The output activity

of category cell j is given by Vm
j {C

h iz� �2

, which is the same as

its recurrent inhibitory signal to other cells in the population. The

membrane potential of each category cell was initialized to 0 at the

start of each learning trial.

Adaptive weights. The adaptive weights wm
dpsj of projections

from stripe cells to category cells are governed by a variant of the

competitive instar learning law [40,41]:

dwm
dpsj

dt
~l Vm

j {C
h iz� �2

1{wm
dpsj

� �
xdps{wm

dpsj

X
p,q,rð Þ= d,p,sð Þ

xpqr

2
4

3
5,

ð1:6Þ

where l is the learning rate; the category cell output signal

Vm
j {C

h iz� �2

gates learning on and off; and the learning rule

defines a self-normalizing competition among afferent synaptic

weights to the target cell, leading to a maximum learned total

weight to the cell of 1. Each weight wm
dpsj was initialized to a

random value drawn from a uniform distribution between 0 and

0.1 at the start of the first learning trial.

Equation (1.6) can be rewritten with term 1{wm
dpsj

� �
xdps{

h
wm

dpsj

P
p,q,rð Þ= d,p,sð Þ

xpqr� replaced by xdps{wm
dpsj

P
p,q,rð Þ

xpqr

 !
, which

Table 2. List of experimental evidence for various model components.

Model component Equation reference Experimental evidence

Stripe cells in parasubiculum
(preliminary SfN abstract)

xdps in Equation 1.5 [24]

Anatomical projections from parasubiculum
to layer II of MEC

P
dps

wm
dpsjxdps in Equation 1.5 [25,26]

Dorsoventral gradient in the rate of temporal
summation of MEC layer II stellate cells

mm in Equation 1.5 [19]

Self-excitatory feedback in MEC layer II
stellate cells based on a Ca2+-sensitive
nonspecific cation current (ICAN)

z B{Vm
j

� �
a Vm

j

h iz� �2
 !

in Equation 1.5
[53,54]

Inhibitory interneurons in layer II of MEC
{ CzVm

j

� � P
k=j

b Vm
k {C

� 	z� �2

in Equation 1.5
[55]

Adaptation in MEC layer II stellate cells related
to Ca2+-dependent K+ (AHP) currents

zm
j in Equation 1.5; and Equation 1.7 [56]

Competition among developing axons
abutting a map cell

{wm
dpsj

P
p,q,rð Þ= d,p,sð Þ

xpqr in Equation 1.6 [47,48]

Conservation of total synaptic weight
P
dps

wm
dpsj~1 when Equation 1.6 converges [49]

Postsynaptic activity-dependent plasticity
Vm

j {C
h iz� �2

in Equation 1.6
[57]

doi:10.1371/journal.pcbi.1002648.t002
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shows that the weight wm
dpsj is attracted to a time-average of the

ratio of input activities during the times when the gating, or

learning, signal Vm
j {C

h iz� �2

is positive. This fact embodies the

intuition that the learning law conserves the total number of

synaptic learning sites at each map cell by a homeostatic

combination of excitatory and inhibitory influences.

Habituative gating. The habituative transmitter zm
j of cate-

gory cell j in population m is defined by:

dzm
j

dt
~10gm 1{zm

j

� �
{czm

j a Vm
j

h iz� �2
 !2

2
4

3
5: ð1:7Þ

In Equation 1.7, gm determines the response rate of the transmitter

dynamics (called the habituation rate) and c modulates the depletion

rate of the transmitter. The habituative transmitter of each category

cell was initialized to its maximum value of 1 at the start of each

learning trial.

Intuitively, Equation 1.7 says that the transmitter zm
j is depleted,

or inactivated, via mass action by the signal that it gates (see

Equation 1.5). In particular, term 1{zm
j

� �
controls the gate

recovery rate to the target level of 1, and term

{czm
j a Vm

j

h iz� �2
 !2

controls the gate inactivation rate, which

is proportional to the current gate strength zj times the square of

the signal a Vm
j

h iz� �2
 !

that zm
j gates in Equation 1.5. The

squaring operation causes the gated signal to first increase and

then decrease through time in response to excitatory input (cf.,

[58]), thereby limiting the duration of intense cell activity, and thus

cell perseveration. This duration is inversely proportional to both

the response rate mm (see Figure 3F) and the habituation rate gm.

Post-processing
The 100 cm6100 cm environment was divided into

2.5 cm62.5 cm bins. During each learning trial, the amount of

time spent by the navigated trajectory in the various spatial bins was

tracked. The output activity of each category cell in every spatial bin

was accumulated as the trajectory visited that bin. The occupancy

and activity maps were smoothed using a 565 Gaussian kernel with

standard deviation equal to one. At the end of each learning trial,

smoothed and unsmoothed rate maps for each category cell were

obtained by dividing the cumulative activity variable by cumulative

occupancy variable in each bin. Peak and mean firing rates for a

category cell in a given trial were obtained by considering all spatial

bins in the corresponding rate map. For each category cell, six local

maxima with rw0:05 and closest to the central peak in the spatial

autocorrelogram of its smoothed rate map were identified. Gridness

score, related to rotational symmetry, was then derived using the

method described in [38], and grid spacing was defined as the

median of the distances of these six local maxima from the central

peak [5]. Grid orientation was defined as the smallest positive angle

with the horizontal axis made by line segments connecting the

central peak to each of these local maxima [5]. Grid field width was

estimated by computing the width of the central peak in the spatial

autocorrelogram at which the correlation equals zero or there is a

local minimum, whichever is closer to the central peak [37].

Further, inter-trial stability of each category cell for a given trial was

computed as the correlation coefficient between its smoothed rate

maps from the current and immediately previous trials, considering

only those bins with rate greater than zero in at least one of the two

trials [38]. A gridness score greater than 0 was used to classify map

cells as having hexagonal grid-like spatial firing fields.

Current injection paradigm
In vitro experiments by [13] and [14] were simulated by injecting

steady current input I into the category cells in the absence of

bottom-up inputs
P
dps

wm
dpsjxdps~0

 !
and local recurrent inhibi-

tory interactions
P
k=j

b Vm
k {C

� 	z� �2

~0

 !
. The membrane

potential Vm
j of each category cell in this paradigm was obtained

using Equation 1.5:

dVm
j

dt
~10mm {AV m

j z B{Vm
j

� �
a Vm

j

h iz� �2

zm
j

 !
zI

" #
z

snoise
dW

dt
:

ð1:8Þ

The habituative transmitter gate zm
j was defined once again by

Equation 1.7. The membrane potential trace of each cell for the

duration of the current injection was used to estimate the

underlying frequency of the MPO as the one maximizing its

power spectrum. The power spectrum was calculated using the

Fast Fourier Transform (FFT) of the potential trace after

subtracting its mean.

Spectral Spacing model variations
We considered two variations of the model equations to clarify

what combination of mechanisms best explains neurobiological

data.

Variation 1. This variation uses the same habituative gating

and learning laws as in the GRIDSmap model [23]:

Category cells:

dVm
j

dt
~10mm {AV m

j z B{Vm
j

� � X
dps

wm
dpsjxdpsz

 "

a Vm
j

h iz� �2
!

zm
j { CzVm

j

� �X
k=j

b Vm
k {C

� 	z� �2

#
z

snoise
dW

dt
:

ð2:1Þ

Adaptive weights:

dwm
dpsj

dt
~l Vm

j {C
h iz� �2

xdps 2{
X
pqr

wm
pqrj

 !
{

"

wm
dpsj

X
p,q,rð Þ= d,p,sð Þ

xpqr

3
5:

ð2:2Þ

Habituative gating:

dzm
j

dt
~10gm 1{zm

j

� �
{czm

j

X
dps

wm
dpsjxdpsza Vm

j

h iz� �2
 !2

2
4

3
5:
ð2:3Þ
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In the learning Equation 2.2, all the weights compete for a

constant total available weight (chosen to be 2) via term

2{
P
pqr

wm
pqrj

 !
, rather than just the weight of the corresponding

projection, as in term 1{wm
dpsj

� �
in Equation 1.6. The advantages

of the current learning law are summarized below in the

subsection that compares the current model properties with those

of GRIDSmap.

Variation 2. This variation uses the Spectral Spacing

equations, with the addition that the recurrent inhibitory feedback

and output signals are also habituatively gated; see term

Vm
j {C

h iz� �2

zm
j of Equation 3.1:

Category cells:

dVm
j

dt
~10mm {AVm

j z B{Vm
j

� � X
dps

wm
dpsjxdps

 "
z

a Vm
j

h iz� �2

zm
j

!
{ CzVm

j

� �X
k=j

b Vm
k {C

� 	z� �2

zm
k

#
z

snoise
dW

dt
:

ð3:1Þ

Adaptive weights:

dwm
dpsj

dt
~l Vm

j {C
h iz� �2

zm
j

xdps 1{wm
dpsj

� �
{wm

dpsj

X
p,q,rð Þ= d,p,sð Þ

xpqr

2
4

3
5:

ð3:2Þ

Habituative gating:

dzm
j

dt
~10gm 1{zm

j

� �
{czm

j a Vm
j

h iz� �2
 !2

2
4

3
5: ð3:3Þ

Simulation settings
Stripe cells were simulated with two, or three, spatial periods

(two: s1 = 20 cm, s2 = 35 cm; three: s1 = 20 cm, s2 = 35 cm,

s3 = 50 cm), four spatial phases (p = [0, s=4, s=2, 3s=4] for the

stripe period s), and nine direction preferences (280u to 80u in

steps of 20u). Stripe cells were activated in response to linear

velocity and head direction inputs derived from a realistic rat

trajectory of ,10 min in a 100 cm6100 cm environment (data:

[4]); see Figure 1B. The trajectory was interpolated to increase its

temporal resolution to match with the time step of numerical

integration of model dynamics (2 ms), and it was assumed that the

head direction was parallel to the trajectory at any moment.

In each of the Cases 2–11 below, 40 learning trials were

employed. For these simulations except those in Case 3, the model

animal ran along the trajectory shown in Figure 1B in each trial.

For Case 3, a novel trajectory was created for each trial by rotating

the original trajectory by a random angle about the origin. In

order to ensure that such derived trajectories go beyond the square

environment only minimally, the original trajectory was prefixed

by a short linear trajectory from the origin to the actual starting

position at a running speed of 15 cm/s. The remaining minimal

outer excursions were bounded by the environment’s limits.

For each map cell, properties of grid cell firing like grid spacing,

grid field width, gridness score, grid orientation, peak rate, mean

rate, and inter-trial stability were computed for each trial; see

Post-processing subsection in the Methods section. The mean

and standard error of mean (SEM) of these properties within each

independent population of map cells were obtained to observe

various trends along the temporal rate gradient.

Case 1. Single cell: Rate gradient, fixed habituation,

small-scale stripe cell input. To better understand model cell

dynamics, we simulated the dynamics of a single category cell for

different response rates (mm~1, 0.5, 0.2, 0.1) at a fixed habituation

rate gm~0:05ð Þ in response to a time-varying bottom-up input

that is equivalent to the firing of a small-scale stripe cell in one of

its stripe fields traversed at a speed of 10 cm/s in its preferred

direction. Simulation results are provided in Figure 3.

Case 2. Spectral Spacing model: Rate gradient, fixed

habituation, no noise, two stripe cell scales. The model was

run with a gradient in response rate mmð Þ with the habituation rate

fixed gm~0:05ð Þ and in the absence of cellular noise snoise~0ð Þ.
The gradient contained 10 non-interacting populations, corre-

sponding to different anatomical locations along the dorsoventral

axis of MEC. Each population contained 25 category cells. The

only parameter that was varied across populations was the

response rate mmð Þ, with values of 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,

0.3, 0.2, and 0.1. Two stripe spacings (s1 = 20 cm, s2 = 35 cm)

were used. Stripe field width was assumed to vary in proportion to

stripe spacing. In particular, the standard deviation of the stripe

field Gaussian tuning was 8.84% of the stripe spacing

(si~0:0884:si; i~1,2; see Equation 1.4). The peak activity of

large-scale stripe cells was chosen to keep the total activity of each

stripe field for the different scales the same (ri~s1=si; i~1,2; see

Equation 1.4). In particular, as each stripe field is modeled by a

Gaussian function, its total activity is given by
ffiffiffiffiffiffi
2p
p

siri (see

Equation 1.4), which is a constant (
ffiffiffiffiffiffi
2p
p

(0:0884)s1) as

si~0:0884:si and ri~s1=si. Simulation results are provided in

Figures 4–10.

Case 3. Spectral Spacing model: Rate gradient, fixed

habituation, no noise, two stripe cell scales, novel

trajectories. The same model equations (Equations 1.5–1.7)

and input settings as in Case 2 were used, but the model animal

traversed a novel realistic trajectory on each trial. See above for

how these trajectories were chosen. Simulation results are

provided in Figure 11.

Case 4. Spectral Spacing model: Rate gradient, fixed

habituation, no noise, three stripe cell scales. This case also

used Case 2 equations and settings. However, three stripe cell

scales, with spacings of 20 cm, 35 cm, and 50 cm, were provided

as inputs to map cells, for comparison with the two stripe scale

simulations. All the other cases also simulated the model with two

stripe cell scales. Simulation results are provided in Figure 12.

Case 5. Spectral Spacing model: Rate gradient, fixed

habituation, noisy cells. In this case, the same equations and

settings as in Case 2 (Equation 1.5–1.7) were used, but noise was

injected into the membrane potential dynamics of all category cells

snoise~0:05ð Þ to test model robustness under noise. Illustrative

results are shown in Figures 13A and 13B.

Case 6. Spectral Spacing model (variation 1): Rate

gradient, fixed habituation, no noise. This is same as Case

2 except Equations 2.1–2.3 (variation 1) were employed for the

model. Illustrative results are shown in Figures 13A and 13B.
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Case 7. Spectral Spacing model (variation 2): Rate

gradient, fixed habituation, no noise. This is same as

Case 2 except Equations 3.1–3.3 (variation 2) were employed

for the model. Illustrative results are shown in Figures 13A and

13B.

Cases 8–10 below additionally tested model robustness when

stripe cell properties were varied. These results may help to search

for stripe cells with particular properties in new experiments. In

these simulations, peak activity and stripe field widths were varied

for the two stripe cell spatial scales.
Case 8. Spectral Spacing model: Rate gradient, fixed

habituation, no noise, constant stripe cell peak

activity. This is the same as Case 2 except stripe cells of either

scale had the same peak activity (r1~r2~1; Equation 1.4).

Figures 13C and 13D show illustrative results.

Case 9. Spectral Spacing model: Rate gradient, fixed

habituation, no noise, constant stripe cell field width. This

is the same as Case 2 except stripe cells had the same field width

between the two scales (si~0:0884:l1; i~1,2; Equation 1.4).

Figures 13C and 13D show illustrative results.

Case 10. Spectral Spacing model: Rate gradient, fixed

habituation, no noise, constant stripe cell peak activity and

field width. This is the same as Case 2 except stripe cells had

the same field width and peak activity between the two scales

(si~0:0884:s1,ri~1; i~1,2; Equation 1.4). Figures 13C and 13D

show illustrative results.

Case 11. Spectral Spacing model: Fixed rate, habituation

gradient, no noise. In this case, there was a gradient in

habituation rate gmð Þ with the response rate fixed mm~1ð Þ and no

noise snoise~0ð Þ. Here, nine non-interacting cell populations, each

Figure 4. Grid spacing distributions. (A, C) Data [6] and (B, D) Case 2 simulation results regarding the distribution of grid spacing at different
anatomical locations along the dorsoventral axis of MEC. Panels (A) and (B) provide error bar plots of grid spacing (mean +/2 SEM). In (B), blue and
red curves show grid spacing of learned map cells with gridness score .0 and those with gridness score .0.3, respectively, as a function of response
rate mmð Þ in the last trial. The two dashed lines parallel to the x-axis in (B) signify the two potential grid scales. In (D), grid spacings derived for all
model map cells are shown for each response rate. Note that map cells with gridness score .0.3 are identified by red squares, and those among the
remaining with gridness score .0 by blue squares, and the rest by black squares.
doi:10.1371/journal.pcbi.1002648.g004
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with 25 category/map cells, had different habituation rates gmð Þ,
with the values of 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, and

0.001. The settings for peak activities and stripe field widths were

the same as those in the response rate gradient with no noise (Case

2). Simulation results are provided in Figure 14.

Cases 12 and 13. Membrane potential oscillations:

Rate gradient, fixed habituation, noise; fixed rate,

habituation gradient, noise. MPOs with different periods

were generated in response to a constant current input to

simulate the in vitro studies of MEC layer II stellate cells at

different locations on the dorsoventral axis (Figures 15A and

15A; [13,14]). Two cases were simulated, one in which the

response rate varied along the dorsoventral axis with the

habituation rate fixed (Case 12; Figure 15B), similar to Case 2,

and the other in which the habituation rate was varied with the

response rate fixed (Case 13; Figure 15C), similar to Case 11

above. Constant current inputs of different amplitudes I~0.5,

1, 1.5, 2, and 2.5 in Equation 1.8 drove each category cell, in

the absence of any intercellular interactions, for 50 s

(Figure 16). Cellular noise snoise~0:05ð Þ was added to help

unmask damped oscillations [59].

Results

Effects of different response rates on individual cells
Figure 3 shows the results of the single cell simulation of Case 1

when that cell is given different response rates mm in Equation 1.5

in response to a stripe cell-like input (Figure 3A). Figure 3B shows

Figure 5. Grid field width distributions. (A, C) Data [6] and (B, D) Case 2 simulation results of the distribution of grid field width at different
anatomical locations along the dorsoventral axis of MEC. Panels (A) and (B) provide error bar plots of grid field width (mean +/2 SEM). In particular,
panel (B) shows grid field width of learned map cells with gridness score .0 as a function of response rate mmð Þ in the last trial. In (D), the width of the
central peak in the spatial autocorrelogram of the rate map of all model map cells is shown for each response rate. Note that map cells with gridness
score .0 are identified by blue squares, and the rest by black squares.
doi:10.1371/journal.pcbi.1002648.g005
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the cell responses Vm
j {C

h iz� �2

when the on-center feedback

term a Vm
j

h iz� �2

zm
j is removed. As noted previously, self-

excitatory feedback helps to contrast-enhance cell activity

(compare Figures 3B and 3F). However, if the habituative gate

zm
j in Equation 1.5 is held constant at the value of one, then the

outputs perseverate through time (Figure 3C). When transmitter

gating is restored, the gates respond more slowly along the

dorsoventral axis as their controlling cell activities do (Figure 3D),

even if the habituation rate gm is the same across response rates,

due to the activity-dependent term czm
j a Vm

j

h iz� �2
 !2

in

Equation 1.7. When the properties in Figures 3C and 3D are

combined multiplicatively in the on-center feedback term

a Vm
j

h iz� �2

zm
j , it has a unimodal form that grows and decays

more slowly as the cell response rate mm is decreased along the

dorsoventral axis (Figure 3E). The cell output signals

Vm
j {C

h iz� �2

along the axis inherit this variable-rate unimodal

form (Figure 3F). In particular, cells exhibit a temporally delayed

and broader response with a smaller peak activity for lower

response rates. The higher the response rate, the faster is the

activation of the membrane potential, allowing the cell activity to

buildup to a higher level that is then gated off as quickly by the

correlated change in the effective depletion rate of the

transmitter. In this way, the habituative transmitter gating

mechanism plays a role akin to a slow negative current that is

Figure 6. Grid cell peak and mean firing rates. (A, C) Data [6] and (B, D) Case 2 simulations regarding the (A, B) peak rates and (C, D) mean rates
of grid cells (from their smoothed spatial rate maps) at different anatomical locations along the dorsoventral axis of MEC. Error bars in each panel
show SEM. Model results are derived from learned map cells with gridness score .0 in the last trial.
doi:10.1371/journal.pcbi.1002648.g006
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activated by cell activity, much like the h-current Ihð Þ [60], and

AHP currents [61].

The results of this simulation clarify how scale selection occurs

(Cases 2–11). For a cell to respond with contrast-enhanced, or

above-threshold, activity at any moment with the help of its self-

excitatory feedback signal, its habituative transmitter needs to be

at a sufficient high level. But each time the cell responds

intensely, there is a collapse of the transmitter (Figure 3D), which

takes longer to recover for slower response rates because of the

increased duration of cell activity. This implies that, the slower

the response rate, the longer the minimum temporal duration

before the cell can again respond with above-threshold activity.

In other words, ventral MEC cells, which have slower response

rates in the model, favor periodic inputs that are presented with a

longer temporal interval, and dorsal MEC cells, which have faster

response rates, favor those that are presented with a shorter

temporal interval.

This property directly explains learned scale selectivity for the

case of a rat running forward at a constant speed on a linear track.

Then dorsal MEC cells in the model respond better to inputs at

periodic positions with relatively smaller spacings, while ventral

MEC cells respond better to those with relatively larger spacings.

However, the situation is more complicated when the rat navigates

along the type of two-dimensional real trajectory used in our

simulations, for which the running speed of the rat through time

varies between 0 cm/s and 146.6 cm/s with a mean of 14.03 cm/

s, a standard deviation of 9.8 cm/s, and a mean length of

piecewise linear segments of only 0.9 cm. How different response

rates selectively learn different spatial scales in response to such

realistic trajectories is discussed in the next subsection.

Figure 7. Case 2 results. Simulations for Case 2 of how (A) gridness score, (B) inter-trial stability, (C) percent of grid cells, and (D) grid orientation of
learned map cells with gridness score .0 in the last trial vary as a function of response rate mmð Þ. Panel (A) additionally plots gridness score of learned
map cells with gridness score .0.3 in the last trial (red curve). Circular mean and standard deviation for grid orientation were calculated over the
range [0u, 60u). Error bars in (A), (B), and (D) depict SEM. In (D), the inset provides a polar plot to depict mean grid orientation for various response
rates, with the 360u range scaled for the 60u range of orientations. The dashed lines parallel to the x-axis in (A)–(C) signify corresponding
experimentally measured values for adult dorsal grid cells [37,38].
doi:10.1371/journal.pcbi.1002648.g007

How Grid Cells May Learn Multiple Spatial Scales

PLOS Computational Biology | www.ploscompbiol.org 14 October 2012 | Volume 8 | Issue 10 | e1002648



From different response rates to different learned spatial
scales

Figure 4 compares neurophysiological data [6] with simulation

results for Case 2 regarding the distribution of grid spacing at

different anatomical locations along the dorsoventral axis of MEC.

MEC grid cells exhibit periodic spatial firing fields whose spacing

increases from the dorsal to the ventral ends (data: Figures 4A and

4C). Also, the spacing increases in variability along this axis. Brun

and coworkers [6] remarked that the rat brain seems to allocate

most of the grid cells to represent space at smaller scales, based on

data that both intermediate and ventral MEC also have cells

exhibiting periodic spatial responses with smaller spacings.

Emergent properties of model simulations (Figures 4B and 4D)

emulate these data. Figure 4B plots grid spacing (mean +/2 SEM)

of learned map cells with gridness score .0 (see blue curve) and of

those with gridness score .0.3 (see red curve) as a function of

response rate, or equivalently the distance along dorsoventral axis,

in the last trial. Figure 4D shows the distribution of spacing of all

map cells as a function of response rate. Learned map cells with

gridness score .0.3 are identified by red squares, and those among

the remaining with gridness score .0 are identified by blue

squares, and the rest by black ones. These results indicate that,

despite non-stationary variations in running speed and in heading

direction along a realistic trajectory in the open field, the response

rates of the map cells select the spatial scale of input stripe cells to

which the learned hexagonal grid firing fields maximally respond.

Faster response rates can more effectively sample smaller stripe cell

spatial periods, whereas slower response rates can do the same for

larger stripe cell spatial periods, for reasons that are stated more

precisely in the next paragraph. In this way, faster/dorsal MEC

cells learned grid fields with smaller spacings, and slower/ventral

MEC cells developed preference for larger grid spacings.

As noted earlier, for each input stripe scale considered

separately, the most frequent and energetic activations of grid

Figure 8. Model grid cell learning dynamics. Simulation results for Case 2 regarding how various measures of learned map cells with gridness
score .0 vary as a function of number of learning trials for two representative response rates (dorsal: mm~1 (green); ventral: mm~0:5 (blue)).
Reported measures are (A) grid spacing, (B) grid field width, (C) gridness score, and (D) inter-trial stability. Error bars in each panel indicate SEM.
doi:10.1371/journal.pcbi.1002648.g008
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Figure 9. Pruned weights of inputs from multi-scale stripe cells. Simulations for Case 2 of the learned spatial fields and synaptic weights from
stripe cells of two representative model grid cells, (A) one from a ventral location mm~0:5ð Þ, and (B) the other from a dorsal location mm~1ð Þ, in the
last trial. The top row in each panel shows the corresponding spatial rate map and autocorrelogram, with color coding from blue (min.) to red (max.).
Note the gridness score and peak firing rate on the top of the rate map, and the grid spacing on top of the autocorrelogram. And the two dashed
circles centered on the central peak in the autocorrelogram signify the two potential grid scales. The bottom row in each panel provides the adapted
weights from the stripe cells of the two scales (20 cm, 35 cm) to the corresponding cell. Note the solid curves trace the maximal weight from each
directional group of stripe cells, the dashed lines parallel to the x-axis signify the average weight level of the projections from the corresponding
scale, and the y-axes for the two spatial scales have different weight scales.
doi:10.1371/journal.pcbi.1002648.g009
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cells occur when sets of three stripe cells are coactivated whose

preferred directions differ by 60u [20]. Now consider a dorsal map

cell that becomes intensely active for the first time at some spatial

position. During this first learning episode, the synaptic weights of

its connections from stripe cells begin to get pruned to slowly

match the normalized average input pattern. Given the faster

dynamics of dorsal cells, this cell can again respond intensely to

consistent stripe cell activations from either spatial scale at nearby

positions as the animal moves around. Given the higher number of

fields for a small-scale grid structure in a limited environment, and

given the relatively lower peak activity of large-scale stripe cells,

this dorsal cell has a higher likelihood of developing tuning to an

appropriate set of stripe cells from the small scale. On the other

hand, the slower dynamics of ventral cells prevents them, on

average, from developing tuning to stripe cell coactivations from

the small scale, because they tend to recur faster than the recovery

rate of the ventral habituative transmitters. As a result, ventral cells

that develop grid-like spatial selectivity gradually prefer stripe cell

coactivations from the large scale. Increased variability in grid

spacing for ventral cells may be understood as a manifestation of

their weaker and temporally prolonged signal levels (Figure 3F),

which cause broader regions of space to be incorporated into their

developing selectivities. These results clarify how a gradient of

temporal response rate leads to selective learning of the gradient of

Figure 10. Spatial learning dynamics of two example model cells. Case 2 simulations showing the learned spatial fields of two representative
model cells, (A) one from a ventral location mm~0:5ð Þ, and (B) the other from a dorsal location mm~1ð Þ, across the learning trials. The top and bottom
row in each panel show the corresponding spatial rate map and autocorrelogram, respectively. Color coding from blue (min.) to red (max.) is used for
these. Note the trial number (e.g., T1 = trial 1) and gridness score on top of each rate map, and grid spacing on top of each associated
autocorrelogram.
doi:10.1371/journal.pcbi.1002648.g010
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grid spatial scale, and are thus consistent with a recent study using

HCN1 knockout mice regarding how manipulation of the

anatomical gradient in intrinsic properties of stellate cells affects

the gradient in grid scale [62].

Figure 5 shows neurophysiological data [6] and simulation

results for Case 2 regarding the distribution of grid field width at

different anatomical locations along the dorsoventral axis of MEC.

MEC cells exhibit periodic spatial firing fields whose width

increases from the dorsal to the ventral ends (data: Figures 5A and

5C). As for grid spacing, the grid field width also increases in

variability along the axis. Model simulations (Figures 5B and 5D)

match these data. An estimate for grid field width was obtained by

computing the width of the central peak in the autocorrelogram

where the correlation crosses zero. Figure 5B plots grid field width

(mean +/2 SEM) of learned grid cells as a function of response

rate, or the distance along the dorsoventral axis, in the last trial.

Figure 5D shows the distribution of field width of all map cells as a

function of response rate. Learned grid cells are identified by red

squares, while others by black ones.

Decrease of peak firing rate along the gradient
Figure 6 shows neurophysiological data [6] and simulation

results for Case 2 regarding the peak and mean firing rates of grid

cells at different anatomical locations along the dorsoventral axis

of MEC. Unlike grid spacing and grid field width, the peak firing

rate of MEC cells decreases from the dorsal to the ventral ends

(data: Figure 6A). There is also a negative trend for mean firing rate

along the axis (data: Figure 6C). The model simulates and explains

these data too by using the response rate gradient and normalized

grid cell receptive fields, respectively. Figures 6B and 6D plot

(mean +/2 SEM) peak and mean firing rates, respectively, of

learned grid cells as a function of response rate, or the distance

along the dorsoventral axis, in the last trial. As we have already

seen, faster response rates of map cells result in higher peak output

activities (see Figure 3F). Given that the total area of the grid firing

fields is roughly constant, or normalized, across spatial scales, a

decrease in peak firing rate along the dorsoventral axis explains a

decrease in mean firing rate.

Multiple learned cell properties match
neurophysiological grid cell data

Figure 7 shows how (A) gridness score, (B) inter-trial stability, (C)

percent, and (D) grid orientation of learned grid cells in the last

trial vary as a function of response rate for Case 2. Error bar plots

(mean +/2 SEM) are shown for gridness score, inter-trial stability,

and grid orientation. Due to the regular hexagonal structure of

grid cell spatial fields, grid orientation varies between 0u and 60u.
Moreover, since grid orientations of 0u and 60u are identical,

circular mean and standard deviation were calculated over the

range of [0u, 60u). The hexagonal and periodic quality of the

learned spatial firing fields, measured by the gridness score,

decreases with response rate. Similarly, the spatial stability of the

learned grid-like firing fields between consecutive trials, called the

inter-trial stability, tends to decrease for slower response rates, with

relatively poorer stability for the most ventral of the model MEC

cells. The decrease in gridness score with distance along the

model’s dorsoventral axis coincides with the decrease in the

proportion of learned grid cells. These three simulation results

together suggest poorer and less stable pattern learning for ventral

cells. Given the temporally delayed and broader output responses

of ventral cells, the periods when the postsynaptic learning gate

Vm
j {C

h iz� �2

in Equation 1.6 is positive do not correlate

temporally as well with the activities of the triggering coactive

stripe cells; compare the black curve in Figure 3A with the blue

curve in Figure 3F. This situation results in a persistent recoding of

the incoming weights for ventral cells as the trajectory is traversed,

explaining their weaker inter-trial stability and gridness score

measures. Fyhn and colleagues [3] have reported consistent data

showing lower spatial stability for cells in ventromedial MEC

compared to dorsolateral MEC (see their Figure 4J), but the

recording enclosures used were relatively small to appropriately

sample the large spatial scale of the ventral cells.

Model grid cells in each of the MEC local populations along the

dorsoventral axis did not learn exactly the same grid orientation.

However, given the recurrent inhibition among the category cells,

the different hexagonal grid fields that are learned as a result of

self-organization have minimal overlap among them, because of

which all possible grid orientations are not equally likely. This can

be understood as a consequence of how two sets of hexagonal grid

fields of the same scale can have the least total overlap only when

they share the same orientation. In SOM model simulations,

clustering around a dominant orientation is often observed [20].

This occurs despite the lack of excitatory coupling among

neighboring category cells, which helps to prevent a topographic

map of grid spatial phases from being learned (data: [5]). Existing

data on grid orientation at various dorsoventral locations are

preliminary (Figure 2e in [5]; Supplementary Figure 4 in [63]), but

seem to suggest a narrowly tuned distribution for grid cells

recorded on the same tetrode. In our simulations, we observed that

in general the spread of the orientation distribution is inversely

correlated with the number of learned grid cells in the local

population (see Figure 11H below for an example of a narrow

learned orientation distribution). More systematic work aimed at

ascertaining how the mean and spread of the grid orientation

distribution vary along the dorsoventral axis is needed. The

learned mean grid orientations along the response rate gradient,

for Case 2, have a circular standard deviation of 9.87u, suggesting

that grid orientations of different scales may not be similar. This is

expected as the different local populations in our model do not

mutually interact. The standard deviation of learned mean grid

orientations for various response rates was 12.05u when a novel

trajectory was used in each trial (see Figure 11G below), and was

12.76u when three input stripe cell spatial scales (20, 35, and

50 cm) were employed (see Figure 12F below).

Figure 8 presents simulation results for Case 2 regarding how

various measures of learned grid cells vary as a function of number

of learning trials, for two representative response rates (dorsal:

Figure 11. Case 3 results. Case 3 simulations in which the model animal runs along a novel realistic trajectory in each trial. The Simulation
Settings subsection in the Methods section describes how various novel trajectories are generated from one realistic rat trajectory. Several
measures of learned map cells with gridness score .0 in the last trial are shown as a function of response rate mmð Þ: (A) grid spacing, (B) grid field
width, (C) gridness score, (D) inter-trial stability, (E) percent of grid cells, (F) peak rate, and (G) grid orientation. Panel (H) shows the grid orientation
distribution of map cells with gridness score .0 in the last trial for the dorsal most MEC population mm~1ð Þ. In (A) and (C), the red curves plot the
corresponding measures of map cells with gridness score .0.3 in the last trial. The two dashed lines parallel to the x-axis in (A) signify the two
potential grid scales. Dashed lines parallel to the x-axis in (C)–(E) signify experimentally measured values for adult dorsal grid cells [37,38]. Error bars,
present in all panels but (E) and (H) show SEM.
doi:10.1371/journal.pcbi.1002648.g011
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Figure 12. Case 4 results. Case 4 simulations in which the category cells receive projections from input stripe cells of three spacings (20 cm, 35 cm,
and 50 cm). Several measures of learned map cells with gridness score .0 in the last trial are shown as a function of response rate mmð Þ: (A) grid
spacing, (B) grid field width, (C) gridness score, (D) inter-trial stability, (E) percent of grid cells, and (F) grid orientation. In (A) and (C), the red curves
plot the corresponding measures of map cells with gridness score .0.3 in the last trial. The three dashed lines parallel to the x-axis in (A) signify the
three potential grid scales. Dashed lines parallel to the x-axis in (C)–(E) signify experimentally measured values for adult dorsal grid cells [37,38]. Error
bars, present in all panels but (E) show SEM.
doi:10.1371/journal.pcbi.1002648.g012
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mm~1; ventral: mm~0:5). Reported measures are (A) grid spacing,

(B) grid field width, (C) gridness score, and (D) inter-trial stability.

Despite having to learn in response to two input stripe spatial

scales, dorsal MEC cells (green curves in the four panels) pick out

their spatial scale (grid spacing, grid field width) quickly and do not

change their preference through time (Figure 8A). There is not

much change in the inter-trial stability measure either (Figure 8D).

Average hexagonal gridness quality of the learned grid firing fields

for these model dorsal cells, however, shows gradual improvement

over trials (Figure 8C). This is consistent with developmental data

from rat pups regarding how emerging grid cells show significantly

more change (improvement) in gridness score than in grid spacing

[37]. Both the gradual improvement in gridness score of the grid

cells with faster rates (Figure 8C, green curve) and the more rapid

selection of grid spatial scales (separable curves in Figures 8A and

8B) reflect the tuning of bottom-up weights from stripe cells to grid

cells. The rapid separation during learning of fast and slow rate

grid cell properties can occur as soon as the different rates

preferentially select stripe cells of compatible scale. The more

gradual development of the gridness score for the faster response

cells requires, in addition, detection and selection of the subset of

projections from stripe cells of the smaller scale that are most

frequently and energetically coactivated, and the suppression of

less favorable correlations.

The ventral MEC cells (blue curves in the four panels) exhibit

lower gridness scores (Figure 8C) and inter-trial stability

(Figure 8D) measures that do change much through time, but

show more fluctuation in their spatial measures through time

(Figures 8A and 8B), although they exhibit higher values overall.

As we have already discussed above, the slower dynamics of

ventral cells explains their poorer learning and lower stability. The

variability through time of their spatial scale may also be related to

their energetically smaller and temporally broader signal levels

(Figure 3F).

Figure 13. Results for Cases 5–10. (A, C) Grid spacing and (B, D) grid field width of learned map cells with gridness score .0 in the last trial as a
function of response rate mmð Þ for different model and input variations: Case 5 (red curves in (A) and (B)); Case 6 (blue curves in (A) and (B)); Case 7
(green curves in (A) and (B)); Case 8 (blue curves in (C) and (D)); Case 9 (green curves in (C) and (D)); and Case 10 (red curves in (C) and (D)). See the
Simulation Settings for detailed description of these various cases. The two dashed lines parallel to the x-axis in (A) and (C) signify the two
potential grid scales. Error bars in each panel depict SEM.
doi:10.1371/journal.pcbi.1002648.g013
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Figure 14. Case 11 results. Simulations for Case 11 in which it is the habituation rate that is varied with distance along the dorsoventral axis of
MEC. Several measures of learned map cells with gridness score .0 in the last trial are shown as a function of habituation rate gmð Þ: (A) grid spacing,
(B) grid field width, (C) gridness score, (D) inter-trial stability, (E) percent of grid cells, and (F) peak rate. In (A) and (C), the red curves plot the
corresponding measures for map cells with gridness score .0.3 in the last trial. The two dashed lines parallel to the x-axis in (A) signify the two
potential grid scales. And the dashed lines parallel to the x-axis in (C)–(E) signify experimentally measured values for adult dorsal grid cells [37,38].
Note the log10 scale of the x-axis in each panel. Error bars, present in all panels but (E), show SEM.
doi:10.1371/journal.pcbi.1002648.g014

How Grid Cells May Learn Multiple Spatial Scales

PLOS Computational Biology | www.ploscompbiol.org 22 October 2012 | Volume 8 | Issue 10 | e1002648



Learned adaptive weights are scale-selective
Figure 9 shows Case 2 simulations of learned spatial fields and

synaptic weights from stripe cells of two representative model grid

cells, (A) one from a ventral location mm~0:5ð Þ, and (B) the other

from a dorsal location mm~1ð Þ, in the last trial. The spatial

autocorrelograms of the rate maps (see top right in each panel of

Figure 9) make clear the underlying spatial scale of the grid fields.

Consistent with the exhibited spatial scales, only the maximal

adapted weights from each stripe cell ring attractor for the

corresponding scale show local peaks whose preferred directions

differ by 60u. These results are consistent with the explanation

given for the scale differences in Figure 4. Once again, the

temporal response rate constrains the spatial scale of the stripe cells

that can succeed in shaping and driving the emerging grid cells.

Figure 10 shows simulation results for Case 2 regarding the

learned spatial fields of two representative model cells, (A) one

from a ventral location mm~0:5ð Þ, and (B) the other from a dorsal

location mm~1ð Þ, across learning trials. These illustrate in greater

detail the relatively poorer inter-trial stability and higher pref-

erence for larger spatial scales for ventral MEC cells.

Novel realistic trajectory on each trial
Figure 11 presents simulation results for Case 3 in which the

model animal runs along a novel realistic trajectory in each trial.

Several measures of learned map cells in the last trial are shown as

a function of response rate mmð Þ; namely, (A) grid spacing, (B) grid

field width, (C) gridness score, (D) inter-trial stability, (E) percent of

grid cells, (F) peak rate, and (G) grid orientation. Additionally,

panel (H) shows the grid orientation distribution of learned map

cells for the dorsal most MEC population mm~1ð Þ. These results

demonstrate that the ability of the Spectral Spacing model to solve

the stripe scale selection problem (Figures 4–7) is not tied to the

particular navigation trajectory (see Figure 1B) that was used for

Case 2. The main quantitative differences with Case 2 are a

relatively higher gridness score and proportion of learned grid

cells, but lower inter-trial stability. These can be interpreted as

consequences of, respectively, experiencing more hexagonal grid

exemplars, and undergoing more persistent recoding of synaptic

weights from stripe cells as a result of denser environmental

coverage [20].

Three input stripe cell scales
Figure 12 presents simulation results for Case 4 in which the

category cells receive projections from input stripe cells of three

spacings (20 cm, 35 cm, and 50 cm). These stripe spacings were

chosen such that their ratio (1:1.7:2.5) matches that of the smallest

three grid spacings across rats [63]. Several measures of learned

map cells in the last trial are shown as a function of response rate

mmð Þ: (A) grid spacing, (B) grid field width, (C) gridness score, (D)

inter-trial stability, (E) percent of grid cells, and (F) grid

Figure 15. Membrane potential oscillations of medial entorh-
inal cells. (A) Data showing the frequency of subthreshold membrane
potential oscillations (MPOs) in the dorsal (filled bars) and ventral (open
bars) groups of rat MEC layer II stellate cells at three different mean
membrane potentials [14]. See also Figure 1C in [13]. (B) Simulations of
the frequency of MPOs of model category cells as a function of
response rate mmð Þ, which is proposed to decrease along the
dorsoventral axis of MEC, for current injections of different amplitudes
(I~0.5 (blue); 1 (green); 1.5 (red); 2 (cyan); and 2.5 (magenta)). (C)
Simulations of the frequency of MPOs of model category cells as a
function of habituation rate mmð Þ for current injections of different
amplitudes (I~0.5 (blue); 1 (green); 1.5 (red)). Error bars in (A–C)
indicate SEM.
doi:10.1371/journal.pcbi.1002648.g015
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Figure 16. Model membrane potential oscillation traces. Simulations of membrane potential (blue curves) and habituative transmitter (red
curves) traces in response to constant current injections of different amplitudes for a ventral category cell mm~0:1ð Þ and for a dorsal category cell
mm~1ð Þ, which are shown in the left and right columns, respectively. The three rows provide results for different current amplitudes: (A) and (B) for

I~1; (C) and (D) for I~1:5; and (E) and (F) for I~2. The inset in each panel zooms in on the noisy membrane potential fluctuation between 25 s and
27 s to highlight its relative frequency content.
doi:10.1371/journal.pcbi.1002648.g016
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orientation. These results demonstrate that the Spectral Spacing

model can also select from among three scales of input stripe cells

for grid scale gradient learning. Development of even larger grid

scales will require realistic trajectories of rats in much bigger

environments (i.e., much greater than 100 cm6100 cm). The

main quantitative differences with Case 2 are a relatively lower

gridness score and proportion of learned grid cells, but higher

inter-trial stability. More input stripe cells, due to the additional

scale, reduce the effective rate of change in the bottom-up weights

to map cells (see Equation 1.6). This reduced plasticity correlates

with more stability, but slows down the improvement in hexagonal

gridness of the spatial fields of the developing map cells.

Robustness of learning in model and input variations
Figure 13 summarizes for other model and input variations the

learned grid spacing (Figures 13A and 13C) and grid field width

(Figures 13B and 13D) of grid cells in the last learning trial as a

function of response rate. These model and input variations

include injection of noise into membrane potential dynamics of

map cells (Case 5); changes to the learning law and how the

habituative gating mechanism operates (Case 6; Equations 2.1–

2.3); a different signal function governing output activities of map

cells (Case 7; Equations 3.1–3.3); stripe cells with the same peak

activity between the two scales (Case 8); stripe cells with the same

field width between the two scales (Case 9); and stripe cells with

both the same peak activity and field width between the two scales

(Case 10). In all model variations but Case 8, which we discuss

below, learned grid spacing and field width vary as in the data

along the dorsoventral axis of MEC. Simulations for Cases 5, 6,

and 7 are shown in Figures 13A and 13B by blue, green, and red

curves, respectively, and simulations for Cases 8, 9, and 10 are

shown in Figures 13C and 13D by blue, green, and red curves,

respectively.

Key role of normalization in generating the spatial
gradient

In Case 8, unlike the data, dorsal cells learned hexagonal grid

fields derived from large-scale stripe cells. This case imposes the

same peak activity across both small-scale and large-scale stripe

cells. Thus, the stripe cell receptive fields are not normalized across

scales, and the large-scale stripe cells have a competitive advantage

since they are sampled by map cells for a longer time. This

advantage seems to be sufficient for them to win over small-scale

stripe cells with the same peak activity, despite the lower frequency

of their favored coactivations across space (7 for the stripe spacing

of 35 cm, compared to 23 for the stripe spacing of 20 cm, in a

100 cm6100 cm field), in driving the learning of large-scale grid

cells even for faster response rates. Thus, if stripe field widths

increase with stripe spacing, similar to grid cells [6], this result

suggests a need for a concomitant decrease in peak activity for

stripe cells; in other words, stripe cell receptive fields need to be

normalized.

Normalized receptive fields as a general design principle
Normalized receptive fields occur in many other examples of

multi-scale processing in the brain, and may be a general

principle of brain design. The general design theme is how to

achieve selective processing across multiple scales, so that the

largest scales do not always win the competition to represent

incoming data. Normalization ensures that the degree of brain

commitment covaries with the amount of evidence for that choice

[64]. In particular, normalized multiple scales help to ensure:

speed-selective processing of visual motion, with larger scales

responding selectively to faster speeds [65]; depth-selective

perceptual grouping wherein larger oriented filters can represent

nearer depths but smaller filters only represent farther depths

[66]; and length-selective processing of speech wherein longer

sequences of items stored in working memory can selectively

activate list chunks that represent these longer sequences, which

in turn suppress the activity of list chunks that respond to shorter

sequences [64,67,68].

Response rate gradient, but not habituation gradient,
explains all the data

Figure 14 shows the simulation results for Case 11 in which it is

only the habituation rate gmð Þ that is varied. Several measures of

the learned grid cell firing are shown, namely, (A) grid spacing, (B)

grid field width, (C) gridness score, (D) inter-trial stability, (E)

percent of grid cells, and (F) peak firing rate, as a function of

habituation rate. All measures except the peak firing rate are

consistent with those obtained from a response rate gradient

(Figures 4, 5, and 7). The peak firing rate increases as the

habituation rate decreases with distance from the dorsal end

(Figure 14F), in contrast with Figure 6B, where the peak firing rate

decreases with response rate. The increase in peak output activity

for map cells with habituation rate decrement can be understood

as follows: With the response rate fixed, slower habituation rates

result in slower collapses of transmitter, which are thus increas-

ingly unable to counter the amplifying effect on grid cell activity of

the self-excitatory feedback signal. These observations allow us to

single out, in our model, the response rate as the parameter that

most likely enables the learning of the dorsoventral gradient in grid

cell spatial scale. Experimental studies [62,69] have reached a

similar conclusion that relatively slower temporal summation by

ventral MEC cells most likely accounts for their increased spatial

scale.

MPO frequency gradient emerges from response rate
gradient

As noted in the Introduction section, in vitro studies have

showed that layer II MEC stellate cells exhibit subthreshold

MPOs, in response to steady current injection, whose temporal

period increases from the dorsal to the ventral end of MEC

(Figure 15A), thereby correlating with the observed gradient in

spacing and field width of grid cell spatial responses [13,14]. In our

model, when a steady current is injected into each category cell in

the absence of any intercellular interactions (Equation 1.8), an

MPO is generated with a frequency that tends to covary with both

the response rate (Figure 15B) and the habituation rate

(Figure 15C) for various current amplitudes Ið Þ. Our results

suggest that, although there is a correlation between the gradient

of MPO frequency and the gradient of grid cell spacing and field

width, there is no direct causal link between them. The MPO

frequency gradient is just an emergent property that results from

model dynamics that control grid cell learning and activation. In

particular, when a model category cell depolarizes in response to

current injection, the positive feedback signal amplifies cell

activity. This amplification increases the activity-dependent rate

of inactivation of the habituative gate (Equation 1.7), which

thereby gates off the amplification, causing the cell to become less

active. Since the habituative gate is activity-dependent, it then

recovers, and the cycle repeats leading to oscillations in the

membrane potential. A faster response rate leads to faster

amplification, habituation, and recovery; thus, to a faster

oscillation (Figure 15B). A faster habituation rate, even for fixed

response rate, has a similar effect (Figure 15C) because the

How Grid Cells May Learn Multiple Spatial Scales

PLOS Computational Biology | www.ploscompbiol.org 25 October 2012 | Volume 8 | Issue 10 | e1002648



habituative gate again collapses more quickly, thereby gating off

the amplification more quickly, which in turn enables the

transmitter to recover more quickly. Figures 16A, 16C, and 16E

summarize simulations of membrane potential and habituative

transmitter traces in response to current injections of different

amplitudes for a ventral MEC cell with a slow response rate

mm~0:1ð Þ, and Figures 16B, 16D, and 16F summarize simulations

for a dorsal MEC cell with a fast response rate mm~1ð Þ. Note the

faster MPO for the faster response rate.

Yoshida and coworkers [14] studied the effect of depolarization

on the frequency of subthreshold MPOs within single MEC layer

II stellate cells at different locations on the dorsoventral axis

(Figure 15A). They reported that the MPO frequency of dorsal

cells tends to increase with depolarization, and that of ventral cells

tends to decrease. However, these positive and negative effects at

ventral and dorsal locations are statistically significant only if the

low-power broadband MPOs at the most hyperpolarized levels are

included in the analysis. These data are consistent with our

simulations of the effect of current amplitude on MPO frequency,

presented in Figures 15B and 15C. In the Spectral Spacing model,

increased current amplitude tends to cause a faster recovery of the

cell potential in each MPO cycle after the phases of amplification

and habituation. However, larger current amplitudes, with their

resultant higher mean membrane potentials and lower mean

habituative transmitters, cause relatively lower amplitude oscilla-

tions about the mean levels (Figure 16). This happens because the

habituatively gated self-excitatory feedback term Vm
j

h iz� �2

zm
j ,

which controls the oscillatory dynamics, decreases with increasing

current amplitude I ; see Equation 1.8. Cellular noise begins to

obscure the general positive effect of current amplitude on the

frequencies of such oscillations, especially for slower response rates

and habituation rates. This explains the saturation effect of

depolarization on MPO frequency at all locations along the

dorsoventral extent of MEC, and the apparent negative trend of

MPO frequency with depolarization for ventral cells.

The simulation results in Figures 4–16 together clarify how all

the observed gradient properties of grid cells can be explained as

emergent properties of a gradient of response rates in a suitably

defined SOM.

Discussion

Stripe cells
Our model, and [23] before us, propose that stripe cells and

head direction cells use 1-D ring attractor networks to perform

path integration in response to linear and angular velocity inputs,

respectively. This proposal suggests that the brain parsimoniously

uses a similar design to integrate both types of velocity inputs.

Different stripe scales may, for example, result from different gains

of linear velocity in controlling the speed of revolution of the

activity bump along the ring of cells.

It remains an open experimental question as to how many

spatial scales of stripe cells may exist. The current simulations

show how the dorsoventral gradient of grid cell spatial scales may

self-organize in response to either two or three stripe cell scales. In

principle, it is possible that there are as many scales of stripe cells

as there are scales of grid cells. In particular, are the stripe cells, in

parasubiculum [24] or another parahippocampal subregion,

arranged with respect to spatial scale in a manner similar to the

grid scale gradient in layer II of MEC? It is also an open question

as to whether the seemingly constant ratio (1:1.7:2.5) of the three

smallest grid spacings across rats [63] is mirrored in the stripe cell

layer, or emerges through learning from the response rate gradient

across grid cells. Even if there are as many stripe cell scales in vivo

as grid cell scales, the problem of how entorhinal cells learn to

select their spacing from various scales of input stripe cells needs to

be addressed, since they would likely receive inputs from a

significant portion of the stripe cell gradient, comprising at least a

few scales if not all, similar to how principal cells at an arbitrary

dorsoventral location in the hippocampal formation receive

projections from about a quarter of the dorsoventral extent of

superficial MEC [70].

Why are grid cells needed?
Our model proposes how path integration information is

hierarchically processed in the medial entorhinal-hippocampal

system (stripe cells to grid cells to place cells) to convert a stripe cell

population code that implicitly represents an animal’s position

using multiple small spatial scales into a place cell code in which a

single place cell can explicitly represent spatial position in large

environments. The intermediate stage of grid cells converts input

stripe cell signals into a form conducive to the learning of such

unimodal place cell spatial fields, which thereby significantly

increase the scale of spatial representation compared to the

inducing grid cells. Simulations in [11] illustrate the possibility that

the hippocampal spatial scale may be as large as the least common

multiple of the inducing grid cell scales. The Spectral Spacing

model shows, in turn, how the gradient of inducing grid cell spatial

scales can be learned as a result of a response rate-based selection

process.

Can place cells be learned directly from stripe cells, without the

intervention of hexagonal grid fields? The presence of the animal

at a given spatial position strongly activates just one or few stripe

cells in each directional ring attractor. So, a unimodal spatial field

at that position could be learned, in principle, if a map cell could

become tuned to the combination of all these coactive stripe cells

across directions and scales. However, such input combinations

are not favored by the self-organization process because they occur

only at single positions in the environment, as opposed to the

multiple positions at which the stripe cell combinations suitable for

hexagonal grid fields are activated. As we mentioned above, map

cell learning at both the grid cell and place cell levels is naturally

sensitive to both the energy and frequency of input coactivations.

How, then, are place cells learned, given they are activated only at

single positions in the environment? If inputs to a SOM come from

comprise grid cells of multiple spatial scales, then sets of co-active

grid cells involving a greater number of scales are more likely to

gain control of hippocampal map cells [20]. However, grid cell

coactivations from two or more scales do not occur more than

once in typical-sized environments [11], especially because grid

scales differ by non-integer ratios [63].

Response to wide variations in average running speed
The spacings of grid fields in our model are adaptively selected

based on cell response rate, which is inversely correlated with the

minimum temporal duration between two episodes of intense

activity. Therefore, it is important to discuss how the learned grid

cells may respond if an adult animal were to run around an

environment with a mean speed that is higher or lower than when

the grid cells are learned during development. However, these

extreme speed cases may be relevant only for theoretical purposes

because of two reasons; namely, the distribution of running speeds

in the realistic trajectory, used for our simulations, is relatively

broadly tuned with a standard deviation of 9.8 cm/s, and existing

relevant data indicates that the average running speed of rats

increases by just ,2 cm/s from P16 to adulthood (see Supple-

mentary Figure 1F in [37]). In both data and model (Figures 4C
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and 4D), neighboring grid cells exhibit a spectrum of spacings in

their spatial responses, especially with more distance along the

dorsoventral axis, and our simulations show that only a subset of

them can be classified as grid cells (Figure 4D). It may thereby be

that high mean speeds favor learned map cells with larger spacings

at a given dorsoventral location in order to express an appreciable

hexagonal grid spatial activity pattern, whereas low mean speeds

may favor those with smaller spacings. This possibility in the

model is related to how the excitability of a map cell is dependent

on the level of the habituative transmitter, whose depletion and

recovery dynamics are in turn controlled by the response rate

variable. The firing rate [4] and inter-burst frequency [71] of grid

cells are known to vary in proportion to running speed. These data

suggest that the response rates of MEC layer II cells in vivo may be

modulated by running speed, because of which the slope and

intercept of the dorsal-ventral gradient in grid spacing may not be

significantly altered in response to very fast or slow running speeds.

It would be instructive to explicitly test this prediction.

Learning a stable gradient of grid cell scales: Top-down
attentional matching

Our model simulations illustrate how gradients in intrinsic

properties such as membrane potential oscillation frequencies of

stellate cells along the dorsoventral axis of MEC layer II may arise

from the same response rate mechanism that constrains the

learning of the gradient of grid cell spatial scales. This prediction is

consistent with data of [72], which showed that the anatomical

gradient in intrinsic properties of MEC layer II stellate cells exists

before the rats begin to explore their spatial environments for the

first time.

Boehlen and colleagues [72] also reported, using sharp

microelectrode recordings, that the peak frequency of sub-

threshold MPOs in the MEC increases as juvenile rats age into

adults (see their Figure 3B), though such an age-dependent

change was not seen in patch clamp recordings (see their

Figure 3D). In contrast, studies that investigated the develop-

ment of grid fields from postnatal (P16) to adult stage [37,38]

did not report any age-dependent variation in spatial periods of

grid cells. This lack of change in spatial scale could be due to

mechanisms that dynamically stabilize grid fields after they

form. In particular, the spatial stability of grid cell receptive

fields may require top-down feedback from place cells [73].

Such top-down interactions, among other memory-stabilizing

processes, may dynamically buffer previously learned connec-

tions in the entorhinal-hippocampal hierarchy against the effects

of a response rate change.

Indeed, place cell selectivity can develop within seconds to

minutes, and can remain stable for months [74–77]. Such a

combination of fast learning and stable memory is often called the

stability-plasticity dilemma [44,78]. Grossberg [40] showed that

SOMs, by themselves, cannot solve the stability-plasticity dilemma

in environments whose input patterns are dense and non-

stationary through time, as occurs regularly during real-world

navigation. In response to such inputs, learned categories can be

persistently recoded by new inputs. However, SOMs augmented

by learned top-down expectations that focus attention upon

expected combinations of features can do so.

Adaptive Resonance Theory, or ART, was introduced in [79]

to show how to dynamically stabilize the learned memories of

SOMs. In ART, learned top-down expectations match bottom-up

input patterns to focus attention upon expected combinations of

critical features, drive fast learning of new, or refined, recognition

categories that incorporate these critical feature patterns into their

learned prototypes, and dynamically stabilize established memo-

ries. Grossberg [80] proposed how such attentive matching

mechanisms from hippocampal cortex to MEC may stabilize

both learned grid and place cell receptive fields. Besides helping to

account for why the spatial scales of grid cells are maintained

despite changes in intrinsic cellular properties as development

proceeds [72], the incorporation of top-down connections from

place cells to grid cells may also help to improve the spatial

stability of learned grid fields (Figures 7B and 11D).

Experimental data about the entorhinal-hippocampal system

illustrate how the predicted properties of top-down expectations

and attentional matching may play a role in spatial learning and

memory stability. Kentros and colleagues [81] reported that

‘‘conditions that maximize place field stability greatly increase

orientation to novel cues. This suggests that storage and retrieval

of place cells is modulated by a top-down cognitive process

resembling attention and that place cells are neural correlates of

spatial memory’’, and that NMDA receptors mediate long-lasting

hippocampal place field memory in novel environments [82].

Morris and Frey [83] proposed that hippocampal plasticity reflects

an ‘‘automatic recording of attended experience.’’ Bonnevie and

colleagues [73] showed that hippocampal inactivation causes grid

cells to lose their spatial firing patterns.

In summary, our model here and in [20] of grid and place cell

learning uses self-organizing maps (SOMs). Every SOM can

exhibit catastrophic forgetting in response to a dense non-

stationary input environment. ART top-down matching and

attentional focusing mechanisms can dynamically stabilize

learning in any SOM; that is, they solve the stability-plasticity

dilemma. It is known that grid and place cells solve the stability-

plasticity dilemma. Thus, our SOM model is incomplete, but

because the model uses SOMs, there is a clear path for completing

it, unlike other kinds of grid cell models, such as oscillatory

interference and 2-D attractor models, which have not yet shown

how the learning of their grid cells happens, and further how this

learning may be dynamically stabilized (see subsection below on

Other grid cell models). The nature of our model’s

incompleteness clarifies data about how and when deformations

in grid cell receptive fields do occur [73]. Finally, there are

important data from several labs (e.g., Berke, Kandel, and

Morris) showing the kinds of attentional, learning, and oscillatory

dynamics that ART predicts for the stabilization of place cell

learning. Our model hereby clarifies an important conceptual

link between these data about place cells and data about

attention, learning, memory, and oscillations in grid cells.

Membrane potential oscillations in MEC layer II stellate
cells to steady input current

More work needs to be done to study how the response rate

gradient and the habituative gating mechanism in our model

relate to the HCN and leak potassium channels, which control the

varied temporal integrative properties of MEC layer II stellate cells

[19,84,85]. However, the manner in which MPOs arise in our

model category cells is similar to how subthreshold MPOs in these

stellate cells are known to occur based on the concerted action of a

positive and a negative current [86]; in particular, persistent

sodium (NaP) current and hyperpolarization-activated cation

current Ihð Þ, respectively [60]. The habituative gating mechanism

is similar to how AHP currents control adaptation and refraction

in proportion to recent cell activity. Indeed, the proposed gradient

in cell response rates, which modulates habituative gate dynamics,

is consistent with data showing an increase in the recovery time

constant of mAHP currents along the dorsoventral axis of MEC

[87].
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Predictions
The model suggests several predictions regarding the develop-

ment of grid cells at different anatomical locations along the

dorsoventral axis of MEC as young animals begin to navigate for

the first time. These predictions are tempered by the awareness

that the model does not yet incorporate various known mecha-

nisms, such as top-down matching and attentional mechanisms

from hippocampus, that may influence model properties, notably

their malleability after the predicted dynamical stabilization of grid

field structures sets in due to attentive matching.

Existing empirical studies on the development of grid cells

[37,38] have not looked for differences in the learning dynamics of

grid cells across spatial scales. Model simulations suggest that

lower proportions of grid cells, lower gridness scores, lower spatial

stability, and higher variability in grid spacing through time may

be found at more ventral locations of MEC.

Neural relativity by Spectral Spacing and timing:
Homologous space and time representation in
entorhinal-hippocampal circuits and episodic memory

The Spectral Spacing model illustrates how control by a single

rate parameter can determine a gradient of grid cell spatial scales in

response to inputs from multiple stripe cell spatial scales. Multiple

small grid cell scales can then be adaptively combined in the

hippocampus to generate place cell scales that are large enough to

support spatial navigation [11,20]. A similar strategy for temporal

coding seems also to occur in the brain: Previous modeling [50–52]

has shown how control by a single rate parameter can determine a

gradient of small temporal scales that can be adaptively combined in

the hippocampus to generate temporal scales that are large enough

to bridge temporal gaps between stimulus and response, such as

those that occur during trace conditioning and delayed non-match

to sample experiments. As we noted earlier, this latter type of model

is called a Spectral Timing model.

In support of this prediction, MacDonald and coworkers [88]

have reported hippocampal ‘‘time cells’’ that have all the

properties required to achieve spectral timing; in particular,

‘‘… the mean peak firing rate for each time cell occurred at

sequential moments, and the overlap among firing periods from

even these small ensembles of time cells bridges the entire delay.

Notably, the spread of the firing period for each neuron increased

with the peak firing time …’’ The correlation of the peak firing

time with the spreading of the firing period is called a Weber law,

and is one of the dynamical signatures of spectral timing. It

remains to be shown whether the spectrum of time cells arises

from a gradient in a single rate parameter. A biophysical

interpretation of this rate parameter in terms of calcium dynamics

in the metabotropic glutamate receptor system has been given for

the case of spectral timing in the cerebellum [89]. The most

parsimonious prediction is that a similar mechanism holds in all

cases of spectral timing throughout the brain. To the present,

spectral timing has been modeled in the hippocampus, cerebel-

lum, and basal ganglia [90].

Thus, dorsoventral gradients in single rate parameters within

the entorhinal-hippocampal system may create multiple small

spatial and temporal scales that can be fused into larger spatial and

temporal scales in the hippocampal cortex that are large enough to

control adaptive behaviors. The mechanistic homology between

these spatial and temporal mechanisms suggests why they may

occur side-by-side in the medial and lateral streams through

entorhinal cortex into the hippocampus. In particular, spatial

representations in the Where cortical stream go through postrhinal

cortex and medial entorhinal cortex on their way to hippocampal

cortex, and object representations in the What cortical stream go

through perirhinal cortex and lateral entorhinal cortex on their

way to hippocampal cortex [2,91–94], where they are merged.

This unity of mechanistically homologous space and time

representations may be summarized by the term ‘‘neural

relativity’’. The existence of such computationally homologous

spatial and temporal representations in the hippocampus may help

to clarify its role in mediating episodic learning and memory.

Indeed, investigators since Tulving [94–98] have suggested that

each episode in memory consists of a specific spatio-temporal

combination of stimuli and behavior, and discussed evidence

supporting this claim.

Differences with GRIDSmap model
This subsection highlights and justifies differences between the

GRIDSmap model [23] and the current Spectral Spacing model.

First, we introduced a threshold in the signal function that

transforms membrane potentials of map cells into their output

activities, which both govern the recurrent inhibitory interactions

and gate the competitive adaptation of corresponding bottom-up

weights (see parameter C in Equations 1.5 and 1.6). This helps to

ensure the following properties [20]:

(a) Non-zero inhibitory signals do not arise from noisy or non-

optimally activated map cells. Computationally, this prevents

low levels of activity-dependent plasticity due to cumulative

inhibition from several noise-activated map cells. A thresh-

old of 0.1 is sufficient to prevent this problem even as the

number of map cells is scaled up over a wide range (5–200).

(b) Increased stability of learned spatial fields as the bottom-up

weights do not adapt in response to noisy or non-optimally

activated map cells.

Second, we initialized the pre-development synaptic weights of

the connections from stripe cells to grid cells (wm
dpsj t~0ð Þ in

Equation 1.6) using a uniform distribution between 0 and 0.1. The

mean of these initial weights (0.05) is higher than that (0.0075)

used in [23]. This helps to ensure that each entorhinal map cell in

a larger population (..5 in [23]) is activated at least somewhere

in the environment, and thereby participates in activity-dependent

learning to likely emerge as a grid cell [20]. Map cells with initial

weights from stripe cells that are low, or with those that do not

closely match any input pattern during spatial navigation, cannot

adapt enough to contribute towards spatial representation.

Third, the inactivation and recovery dynamics of the habitua-

tive transmitter depend only on the self-excitatory feedback signal

(see Equation 1.7) in the equation governing membrane potential

dynamics (Equation 1.5), and not also on bottom-up excitatory

inputs (see Equation 2.3). This gating is sufficient to prevent

persistent firing of map cells that become intensely active and

thereby allow other cells to participate in activity-dependent

plasticity. Case 6 simulation results presented in Figures 13A and

13B (green curves) show that grid cell spatial scale gradient can be

learned even when the habituative gating operates on both the

weighted stripe cell inputs and the recurrent on-center feedback

(see Equation 2.1). This is in part due to model robustness, and in

part due to the relatively weaker driving force of bottom-up inputs

compared to the self-excitatory feedback signal (see Figures 3B and

3C).

Fourth, the adaptive weights from stripe cells to category cells

use a different version of the instar learning law (Equation 1.6) that

more robustly enabled category cells to become tuned to

coactivations of stripe cells [20]. The instar learning law used in

GRIDSmap (Equation 2.2) could sometimes allow a category cell

How Grid Cells May Learn Multiple Spatial Scales

PLOS Computational Biology | www.ploscompbiol.org 28 October 2012 | Volume 8 | Issue 10 | e1002648



to get tuned to just one strong or sustained input neuron when its

adaptive weight exhausts the weights available for learning in the

other stripe cell pathways via term 2{
P
pqr

wm
pqrj

 !
in Equation

2.2. As a result, stripe-like, rather than hexagonal, firing fields of

grid cells could arise in two situations: more correlated activations

of stripe cells when stripe cells exist with smaller separations

between stripe directions, or more sustained activations of stripe

cells with larger stripe fields (see Figures 8 and 9 in [23]). Instead,

the current learning law allows each weight to track the ratio of

stripe cell activities, time-averaged during intervals when the

learning gate is open.

In the GRIDSmap model, the stripe cells of different spacings

were assumed to have the same maximal firing rate but different

field widths (i.e., r1~r2 and s1=s2 in Equation 1.4). In other

words, the total firing in a stripe field was different across scales, so

that the stripe cell receptive fields are not normalized. In contrast

[6], reported that the peak firing rates of grid cells decrease from

the dorsal to the ventral end of MEC while grid field widths

increase, and Spectral Spacing model simulations show that

normalized stripe cell receptive fields are needed to simulate all the

data about how spatial and temporal properties of grid cell firing

changes along the dorsoventral axis.

Other grid cell models
Several models exist to explain the generation of grid cells, but

the Spectral Spacing model differentiates itself by providing for the

first time a principled explanation of how grid cells learn not only

their characteristic hexagonal grid firing patterns [5,37,38] but

also their spatial scale gradient along the dorsoventral axis of MEC

[4,6], and how this self-organization process relates to intrinsic

cellular properties along the same axis [19]. These contributions

represent significant breakthroughs, especially considering that few

prior works address aspects of how grid cells may be learned in a

self-organized manner [20,23,99].

Prior grid cell models can be generally classified into two

categories based on whether the linear velocity path integration

happens before or at the level of grid cells. In addition to the SOM

type of model, the former possibility has been modeled using

mechanisms of oscillatory interference [21,22,100] and ring (1-D

periodic) attractors [36,99]. In the family of models based on

oscillatory interference, the inputs to grid cells at which path

integration occurs have been called band cells [21]. Although band

cells use different mechanisms than the stripe cells of SOM models

[23], they also generate 1-D periodic spatial firing patterns (see

Figure 1A). Models which implement path integration at the level

of grid cells include toroidal (2-D periodic) attractor networks

[8,9,101].

Oscillatory interference models [21,22,100] propose that the

grid cell firing pattern forms from interference between membrane

potential oscillations in different compartments within a single cell.

These compartments include the cell soma, whose oscillation has a

baseline theta frequency, and various dendritic compartments,

whose oscillation frequencies are sensitive to linear velocity and

head direction. In this way, displacement information can be

implicitly encoded in the phase differences between the baseline

oscillation and the different active oscillations. The dendritic

oscillations are controlled by input band cells, which exhibit

periodic firing with frequencies proportional to the linear velocity

component along their preferred directions. The interference

models assume each grid cell receives inputs from exactly three

band cells whose preferred directions are 60u apart from each

other in order to generate hexagonal grid spatial firing fields. Grid

firing patterns different from hexagonal patterns, and which are

not observed in vivo, result if this constraint is not met [22]. The

interference models assume that the right input combination of

band cells is selected through some self-organization process [21],

but this has not yet been demonstrated. The existence of

subthreshold oscillations in dMEC layer II stellate cells [12,53]

and their dorsoventral gradient [13,14] are interpreted as strong

evidence for an oscillatory interference-based mechanism for grid

cells [13,21,22]. However, the Spectral Spacing model not only

learns grid cells of multiple spatial scales without invoking

oscillatory interference, but also accounts for their MPOs and,

in particular, the gradient in oscillation frequencies along the

dorsoventral axis of MEC as an epiphenomenon.

The 2-D attractor models [8,9,101] propose that grid cell

properties result from network-level dynamics in a two-dimen-

sional sheet of neurons. In the absence of any translational

movement, persistent localized firing of grid cells is ensured by a

recurrent on-center off-surround connectivity with symmetric

weights between the cells. However in response to non-zero linear

velocity signals, the connections among cells are activated in a

directionally asymmetric manner to cause the activity pattern, or

bump, to shift accordingly for the direct encoding of displacement

information. 2-D spatially periodic firing fields arise from toroidal

boundary conditions. While these models do not require an

additional stage for the purpose of linear velocity path

integration, it has not been demonstrated how a non-topographic

periodic 2-D attractor network can be self-organized in the brain.

A previous proposal for entraining such a network by a

topographic aperiodic 2-D attractor network [9] has been

suggested to be not feasible [101]. Moreover, 2-D attractor

models have not yet provided a functional role for the gradient in

the rate of temporal integration along the dorsoventral axis of

MEC layer II [19]. They also do not yet account for the gradient

in the frequency of subthreshold MPOs that are elicited in

response to steady current injections [13,14], and in the peak and

mean firing rates [6]. While how a stripe cell ring attractor

network self-organizes has also not yet been shown, it should be

noted that [35] have shown how learning can adaptively calibrate

vestibular, visual, and motor inputs to ring attractors that code

head direction.
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