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Abstract

We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (.500 Hz) of head-
fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset
consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers
with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these
images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a
640 px6352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the
analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice
learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at
the sensory follicle that most underlie haptic perception.
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Introduction

Rats and mice move their large whiskers (vibrissae), typically in

a rhythmic pattern, to locate object features [1,2], or to identify

textures and objects [3,4]. Whisker movements in turn are

influenced by touch [1,5]. The whisker system is a powerful

model for studying the principles underlying sensorimotor

integration and active somatosensation [6]. Critical to any

mechanistic study at the level of neurons is the quantitative

analysis of behavior. Whisker movements have been measured in a

variety of ways. Electromyograms, recorded from the facial

muscles, correlate with whisker movements [7]. This invasive

method does not report whisker position and shape per se and is

complimentary to whisker tracking. Imaging individual labeled

whiskers, for example by gluing a high-contrast particle on the

whisker [8], provides the position of the marked whisker, but does

not reveal whisker shape. In addition, the particle will change the

whisker mass and stiffness and thereby perturb whisker dynamics.

Monitoring a single point along the whisker using linescan imaging

[9], or a linear light sheet [10], can provide high-speed

information about whisker position, but only at a single line of

intersection.

High-speed (.500 Hz) videography is a non-invasive method

for measuring whisker movements and forces acting on whiskers

and yields nearly complete information about whiskers during

behavior [1,11–15]. The position of the whisker base with respect

to the face reveals the motor programs underlying behavior. The

deformation of whisker shape by touch can be used to extract the

forces felt by the mouse sensory follicles [16,17]. However, high-

speed videography brings its own technical challenges. The large

number of images required makes manual analysis impossible for

more than a few seconds of video. Comprehensive studies require

fully automated analysis. In addition, extraction of motions and

touch forces demands accurate measurement of whisker shape,

often with sub-pixel precision, and identification of rapidly moving

whiskers across time. Finally, the large volume of video data

potentially places severe demands even on advanced computa-

tional infrastructures, making efficient algorithms necessary.

Tracking whiskers is challenging. Whiskers can move at high

speeds [12] and in complex patterns [1,18]. Adjacent whiskers can

have distinct trajectories. Moreover, whiskers are thin hairs (e.g.

mouse whiskers taper to a thickness of a few micrometers) and thus

provide only limited contrast in imaging experiments.

To address these challenges, we have developed software for

tracking a single row of whiskers in a fully automated fashion.

Over a manually curated database of 400 video sequences of head

fixed mice (1.326106 cumulative images, 4.56106 traced whiskers,

8 mice), whiskers were correctly detected and identified with an

accuracy of 99.997% (1 error per 36104 traced whiskers). In other

whisker tracking systems, models constraining possible motions

and whisker shapes have been used to aid tracking. In contrast, our

approach uses statistics gleaned from the video itself to estimate

the most likely identity of each traced object that maintains the

expected order of whiskers along the face. As a result, the shapes of

highly strained whiskers (curvature.0.25/mm) can be traced with

sub-pixel accuracy, and tracking is faithful despite occasional fast

motion (deflections .10,000 degrees/s).
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Our method consists of two steps performed in succession:

tracing and linking. Tracing produces a set of piecewise linear

curves that represent whisker-like objects for each individual image

in a video. Each image is analyzed independently. The linking

algorithm is then applied to determine the identity of each traced

curve. The trajectory of a whisker is described by collecting curves

with the same identity throughout the video. Importantly, once a

faithful tracing is completed, the original voluminous image data

set is no longer required for downstream processing.

Once tracing is complete, a small set of features is tabulated for

each curve. Based on these features, a heuristic is used to make an

initial guess as to the identity of curves in a set of images where it

works well. These initial identifications are then used to get a

statistical description of the shapes and motions of whiskers. These

statistics are then used to compute a final optimal labeling for each

traced curve subject to the constraint that whiskers are ordered

along the face.

We validated this approach using manually curated video

acquired from a head-fixed, whisker-dependant object localization

task [1]. In these experiments the field of view contains a single

row of partially and wholly imaged whiskers as well as the stimulus

object (a thin pole, normal to the imaging plane) (Figure 1A). The

camera is positioned below the whiskers and illuminated from

above (Figure 1B) producing silhouetted views of the whiskers

(Figure 1C–D). Automated tracing is robust to occlusions

introduced by the stimulus and to whisker crossings. Tracing

yields curves for both whiskers and facial hairs (Figure 1C–D).

Linking is used to uniquely identify each whisker so features such

as angle of deflection (Figure 1F) and curvature (Figure 1G) can be

extracted as time-series.

Design and Implementation

Tracing
The process of tracing the backbone of a whisker consists of

three phases: initiation, extension, and termination. Tracing starts

by using the angle and position estimated at the highest scoring

candidate initiation site. As a curve is extended, initiation sites that

fall under the traced curve are removed from consideration. When

none remain, potentially duplicate curves are resolved.

Before any analysis, images were preprocessed to remove

imaging artifacts specific to particular cameras (Text S1, Figure

S1). Tracing begins by searching the image for candidate initiation

sites. These are found by performing a pixel-level segmentation

isolating locally line-like features in the image. With each

segmented pixel, a score and an angle are computed. This is an

optimization step; it is possible to initiate tracing at any pixel in an

image. However, tracing is relatively expensive, and, by filtering

out unproductive initiation sites, computation can be focused on

the small number of relevant pixels. On the other hand, the

filtration threshold should be set conservatively so that every

whisker is sure to have at least one initiation site. Parameters were

set by examining results over a small set of 10 images but worked

well over the entire data set of over 1 million images. Typically,

50–100 candidate sites were found per whisker with 10–20 false

positives per image.

A variety of methods have been developed to detect interest

points in natural images [19], and the Hough transform is

conventionally used to find linear features. However, given the

high contrast and controlled imaging conditions used to acquire

data (Text S1), we developed a linear time algorithm, summarized

in Figure 2, that requires only local image information and yields

an estimate of salience and line orientation in a single pass.

First, a 767 square box is centered on a pixel of interest

(Figure 2A). The box is divided into two partitions and the position

of the intensity minima found in each subset of the two partitions is

found. These are designed to ensure that when a whisker passes

through the box, one partition will preferentially collect minima

along the whisker backbone, and, as a result, the position of those

minima will be linearly correlated. For each partition, principle

components are computed over the covariance of the collected

positions. The principle components describe the major and minor

axis of an ellipse. The partition with the highest eccentricity is

chosen, and the eccentricity is used to score how line-like the

image is at the queried point (Figure 2B). The orientation of the

major axis is used to estimate the direction of the line (Figure 2C,

Video S1).

One advantage of this approach is that the entire image need

not be queried for line-like objects. For example, in the data

analyzed here, whiskers span hundreds of pixels. A grid of lines

spaced appropriately (50 px; this is an adjustable parameter) will

cross each whisker at least once. Restricting the search for line-like

features to this grid greatly reduces the amount of time required

Figure 1. Tracking whiskers from high-speed (500 Hz) videos
during an object detection task. (A) A typical field of view. (B)
Typical imaging configuration. (C–G) Automated results of tracing and
linking. (C) Facial hairs and whiskers are traced in each video frame and
then identified by a separate tracking step. (D) A whisker (blue) touches
the pole. (E) Two whiskers (blue & green) are bent by the pole. The most
posterior whisker is strongly retracted so that only a small segment is
visible. (F) Tracking measures whisker orientation, such as the angle at
base. (G) Tracking measures whisker shape, such as mean curvature,
which can be observed over time. Changes in curvature allow the
calculation of forces acting on the whisker follicle [16].
doi:10.1371/journal.pcbi.1002591.g001

Whisker Tracking
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for this step. Additionally, since the algorithm relies on local

minima, demands on background subtraction and other prepro-

cessing is minimal. The structure of the partitions ensures that

lines in any orientation are detected. Greater than 80% of the

pixels that could be used to start tracing a whisker (typically 1000

per whisker over the full image) are detected using an eccentricity

threshold of 0.95; only 1 is required to fully trace a whisker. This

detector systematically avoids potential starting locations near the

face, near occlusions or where whiskers cross or nearly touch.

Curves are bidirectionally extended from candidate initiation

sites by performing a small step (1 px) along the measured direction,

and repeating until one of several criteria is met. The sub-pixel

position and tangent angle are estimated by optimizing the

correlation between an oriented line detector that is parameterized

as a function of sub-pixel position, angle and width (Figure 3).

The line detector is designed based on modeling the intensity

profile of a whisker as a rectangular valley in the image with

variable position, width and angle. The center of the whisker is

estimated with sub-pixel precision by finding a position that

minimizes the Laplacian of the correlation between the model and

the image [20]. The line detector approximates the Laplacian of

the model. It consists of two rectangular parallel step-edge

detectors (2061 px) spaced by the detector width (Figure 3A).

The length was chosen to match the distance over which highly

curved whiskers remain approximately linear. The correlation at a

given point is evaluated using a pixel representation of the detector

that is computed by evaluating the area integral of the detector

over the square domain of each pixel (Figure 3B). The value of the

correlation at that position is then the dot product between pixels

in the image and pixels in the evaluated detector. For efficiency,

pixel representations of the detector are pre-tabulated for discrete

values of the sub-pixel position (0.1 px), width (0.2 px), and angle

(2.5 degree precision). Optimizing the width of the detector was

important for reliable tracing of whiskers of different width and for

reliable tracing of the very tips of whiskers.

Tracing is stopped if any one of several criteria indicates that the

optimization procedure cannot be trusted to yield accurate results.

This is necessary to handle cases where whiskers were partially

occluded, such as when whiskers crossed or contacted an

obstructing object, such as the stimulus pole in an object

localization experiment (Figure 4). The tests were for low

correlation with the line detector, large left-right asymmetry in

the image intensity about the detector, low mean intensity about

the detector, and large angular change between steps. A

corresponding user-adjustable threshold parameterizes each test.

The tests are applied at each step as the curve is traced from the

initiation point (Figure 4A,B). If one of these fails (Figure 4C,D), a

number of single pixel steps are taken along the last trusted

direction up to a user-settable maximum distance in an attempt to

jump past the distrusted region (Figure 4E,F). Linear extrapolation

is usually a good guess. If all tests are satisfied at one of the points,

normal tracing is resumed (Figure 4G,H). Otherwise, the trace is

terminated at the last trusted point (Figure 4G).

Occasionally, overlapping curves are generated during the

tracing step. These need to be resolved before tracking so that

individual whiskers have exactly one associated curve per frame.

Searching for curves that cross the same pixel identifies pairs of

potentially redundant curves. If all the points within an interval of

one of the curves is within a small distance (typically 2 px) of the

other curve and that interval consists of over 50% of the total

length, then it is considered redundant. The shorter of the two

curves is discarded; the shapes of shorter curves were not reliable

enough to average. This procedure is repeated until there are no

redundant curves left.

Linking
Identifying individual whiskers is challenging. First, the tracing

algorithm generates curves (false positives) for facial hairs, trimmed

Figure 2. Detecting whiskers. (A) Lines passing through a 767 pixel
box are detected by finding the location of intensity minima (black
dots) in regions from two partitions. The eccentricity of the best
Gaussian fit (indicated by ellipses) to these points is used to score
salience. (B) The score computed at each point in an image. (C) For high
scoring seeds (eccentricity.0.95), the orientation of the line is indicated
by the major axis of the ellipse. Whisker tracing is initiated at these sites
using the measured angle.
doi:10.1371/journal.pcbi.1002591.g002

Figure 3. Parameterized line detector. (A) Two parallel step edge
detectors are separated by a distance, w, and oriented by an angle, h
about a center point. The center point (black dot) is determined by a
sub-pixel displacement from a pixel anchor (red dot). (B) The line
detector is computed for discrete values of w, h, and offset.
doi:10.1371/journal.pcbi.1002591.g003

Whisker Tracking
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whiskers, or other artifacts in the scene (Figure 1C). The linking

algorithm must correctly identify true whiskers against this noise.

Second, the motion of whiskers can be difficult to reliably model

[8,12]. A typical trial may consist of slow, predictable motions

interrupted by rapid transient motions that are occasionally too

fast even for high speed (1000 fps) cameras to adequately sample

[1]. Although difficult to track, these unpredictable motions may

correspond to some of the most interesting data.

Our approach is based on the observation that whiskers are

relatively long and maintain a consistent ordering along the face.

We use a statistical model to describe the shapes and motions that

are characteristic of whiskers. The model is then used to assign

each traced whisker the most probable identity subject to the

constraint that whiskers are ordered along the face.

For the majority of images, a simple length threshold can be

used to remove false positives and leave exactly one traced curve

per whisker. The linking algorithm is either supplied the number,

N, of whiskers on the subject mouse, or estimates it as follows: For

a given length threshold t, let Ft nð Þ be the set of frames that have n

curves longer than t. If N is not supplied, then we find t� and n�
such that DFt� n�ð ÞD is maximal over all possible choices. In most of

the data sets we have tested, N~n�, i.e. this heuristic is spot on.

But when one or more whiskers frequently leave the field of view it

may fail. If N is supplied, then we let t� be the value for which

DFt� Nð ÞD is maximal because the set of long curves in each frame in

Ft� Nð Þ are always true whiskers. For the data sets tested here,

Ft� Nð Þ represented 99.8% of a video on average (min: 90.1%,

max: 100%).

The curves in the frames Ft� Nð Þ and their heuristic classifica-

tion into whisker and non-whisker based on t� supplies a training

data set for the specific video. From these, we can learn various

characteristics to estimate the probability of a curve being one or

the other. Specifically, we build normalized histograms, nf,W and

nf,FP (Figure 5C), one for whiskers (W) and one for false positives

(FP), for each of six features, f, using the training set. The features

used are the angle near the face, average curvature, average

tracing score, length, and endpoints of a curve. The angle and

curvature are computed from a parametric third degree polyno-

mial fit to each curve. These histograms are then used to estimate,

P cDkð Þ, the probability that a curve c is of kind k, either W or FP, as

the product,

P cDkð Þ~P
f

nf ,k f cð Þð Þ ð1Þ

To ensure no feature has zero likelihood, a count of one is added

to each bin in a histogram before normalizing.

In (1) above, the features are assumed to be conditionally

independent in order to simplify estimating feature distributions,

even though this not strictly true in practice. Moreover, errors in

the heuristic may introduce a systematic sampling bias. For

example, at high deflection angles near the edge of the field of

view, only a small segment of a whisker is imaged (Figure 1E,

purple whisker). The traced curves from such segments might

systematically fall below t� and be excluded from whisker feature

distributions. As a result, estimated probabilities will be biased

Figure 4. Tracing illustrated for cases with whisker crossing
and pole contact. (A,B) As a curve is extended from an initiation
point, a local test region within the image is queried at each step to
detect cases where the line detector may be unreliable. This happens
near (C) crossing whiskers and (D) whisker-pole contacts. (E,F) When
such a cases are encountered, the curve is linearly extended from the
last trusted point, up to a threshold distance. (G,H) If all tests are
satisfied at one of the points, a line segment is used to jump the gap
and normal tracing is resumed. Otherwise, the trace is terminated at the
last trusted point.
doi:10.1371/journal.pcbi.1002591.g004

Figure 5. When linking N whiskers, each curve in a frame is
assigned a label W1 to WN, or F0 to FN. Rules constrain the labeling
to enforce consistent anterior-posterior ordering of whiskers. The most
proximal point of curves labeled Wi or Fi must be posterior to that of
curves labeled Wj or Fj when i,j, and at most one curve may be labeled
Wi for a given i. (A) A correct labeling is schematically illustrated. (B)
These rules are encoded as transitions in a hidden Markov model. (C)
Normalized feature histograms are used to compute the likelihood a
curve is, or is not, a whisker.
doi:10.1371/journal.pcbi.1002591.g005

Whisker Tracking
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towards longer whiskers at milder deflection angles. Despite these

caveats, the use of these feature distributions leads to a highly

accurate result.

Appearance alone is not sufficient to uniquely identify

individual whiskers in some cases. To address this, we designed

a naive Bayes’ classifier to determine the most probable identity of

each traced curve subject to ordering constraints. The traced

curves are ordered into a sequence, C, according to their time and

relative anterior-posterior position. Identifying a curve, c, involves

assigning a particular label, l, from the following set of 2N+1 labels.

There is a label for each whisker, W1 to WN, and labels, F0 to FN,

where Fi identifies all false positives between whisker Wi and Wi+1

(Figure 5A). The kind of a label, K(l), is W if l is a whisker label,

and FP if l is a false positive label. A curve labeled Wi or Fi must be

posterior to curves labeled Wj or Fj for all i,j. For a given i, only

one curve per frame may be labeled Wi, but several curves may be

labeled Fi.

Applying Bayes’ theorem, the most probable sequence of labels,

L̂L, is given by

L̂L~ arg max
L

P Lð ÞP CDLð Þ ð2Þ

where P Lð Þ is the a priori probability of a labeling sequence, and

P CDLð Þ is the likelihood that the curves in C are generated from

the sequence of items labeled by L. By design, certain labeling

sequences are ruled out a priori. Conceptually drawing a directed

edge between one identity and the possible identities of the next

curve yields a directed graph (Figure 5B). For a video with T

frames,

P Lð Þ~ P
T

t~1
P lt

1

� �
P
Nt

i~2
P lt

i Dl
t
i{1

� � !
ð3Þ

where N t is the number of curves traced in frame t, and lt
i is the

label of the i’th curve found in frame t. Values for P lt
1

� �
and

P lt
i Dl

t
i{1

� �
are estimated by computing the frequency of observed

label pairs that occur in the a training set, Ft� Nð Þ. This describes a

hidden Markov model for labeling curves in a single video frame.

The optimal labeling can be computed efficiently with well-known

dynamic programming techniques [21].

The likelihood, P CDLð Þ, is computed under the simplifying

assumption that the likelihood of a single curve depends only on

the curves in the previous or following frame. Using this and

applying Bayes’ theorem,

P CDLð Þ! P
T

t~1
P

c[Ct
P cDK lcð Þð ÞP cDCt+1,Lt+1,lc

� �
ð4Þ

where lc is the label L assigns to the curve c, C t is the (possibly

empty) set of curves found in frame t, and Lt are the labels

assigned to the curves in Ct. The first component, P cDK lcð Þð Þ, is

the likelihood that c is an object of the kind denoted by label l

which we estimate with formula (1).

The second component of (4), P cDCt+1,Lt+1,l
� �

, is interpreted

as the likelihood that a curve is part of the same trajectory as

corresponding curves in the previous (or following) frame. Similar

to the approach used in equation (1) for estimating P cDkð Þ, we

need normalized histograms nDf ,W and nDf ,FP of the changes of

whiskers and false positives between successive frames for each

feature f over a ‘‘training’’ data set in which the corresponding

curves in successive frames is known. While we could use the

implied assignment over Ft� Nð Þ, we first estimate a hopefully

better assignment by restricting the model in (4) to use shape

features alone. That is, P cDCt+1,Lt+1,l
� �

is treated as a constant

and thus the assignment to labels in a frame can be computed

independently of other frames. We then use this preliminary

labeling over the frames of Ft� Nð Þ as the training set over which to

build nDf ,W and nDf ,FP.

Given these change histograms, one can estimate the corre-

spondence likelihood according to the formula,

P c Ct+1,Lt+1,l
��� �

~

P
f

nDf ,K(l) f cð Þ{f bð Þð Þ K(l)~W and Ab[Ct+1 s:t: lb~l

max
b[Ct{1

P
f

nDf ,K(l) f cð Þ{f bð Þð Þ otherwise

8><
>:

ð5Þ

Note that when evaluating this likelihood, a unique corresponding

curve is not always present in the previous (or following) frame.

There may be zero or many false positive curves in the previous

frame with the same label. Similarly a whisker may be missing

because it exited the field of view.

Directly solving for the most probable labeling (2) is complicated

by the fact that the likelihood of a labeling in one frame depends

on the labeling in neighboring frames. Our approach is to initially

score each frame by computing P L̂LtDCt
� �

~P L̂Lt
� �

P CtDL̂Lt
� �

,

where L̂L is obtained using shape features alone. In decreasing

order of this score, we ‘visit’ the next best frame, say t, and update

the label assignment for each of the two adjacent frames that

maximizes the full version of (4), provided the adjacent frame has

not already been visited. The new assignment replaces the current

assignment and the frame’s visitation order is updated according

to the score of this new assignment (under the full model of (4)). In

this way, we let the most confident frames influence their

neighbors in a transitive fashion until every frame has been

visited. This was critical for achieving high accuracy. Previous

whisker tracking algorithms have relied on propagating the

identity of a whisker frame-wise from the beginning of the video

to the end, and as a result, an error in one frame is propagated

throughout the rest of the video [11–13].

Results/Discussion

Average processing time was 8 Mpx/s/cpu (35 fps for 6406352

pixel video) measured on a 2.6 GHz Intel Core2 Duo Macbook

Pro with 2 GB of RAM, and was dominated by the CPU time

required to trace curves; linking time was 0.5 ms per frame. This is

faster than published speeds of similar whisker analysis packages

(typically, 1–5 fps.) [11,13,15]. However, performance can be

difficult to compare as implementations may improve over time.

For example, our software is equally fast as the current version of

the only other publically available whisker tracker[13]. More

importantly, our software can readily be run on inexpensive cluster

nodes to process videos in parallel. This is not the case for whisker

trackers that require supervision [13] or that depend on software

with expensive licensing requirements (such as Matlab) [11–15].

Tracing was accurate to within 0.2 px as estimated by analyzing

39 hand-traced whiskers. Individual hand-tracings had an

accuracy of 0.2360.2 pixels when compared against consensus

curves. Mouse whiskers (row C) were automatically traced in

images with resolutions from 5 mm/px to 320 mm/px using default

settings and in noisy, low-contrast images (Text S1). For the best

results, it is important to minimize motion blur and uniformly

illuminate the scene, although illumination inhomogeneities can

Whisker Tracking
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be partially corrected with background subtraction. In contrast

with methods that use Kalman filtering [13], traced curves are not

biased by whisker dynamics. Additionally, tracing is faithful even

when curves are not well approximated by low order polynomials,

in contrast to published tracing methods [13–15]. Whiskers could

be detected and traced in videos of freely behaving rats (Video S2)

and mice (Video S3) with all whiskers intact.

Linking accuracy was measured against a hand-annotated set of

videos selected by choosing 100 random trials from behavioral

sessions of 4 mice (1.32 million frames) [1,17]. The curated videos

captured a range of behavior including protracted bouts (.1 s) of

whisking (Video S4), multiple whiskers simultaneously contacting

an object (a thin metal pole) (Video S4), and extremely fast motion

(.10,000u/second) (Video S5). Of the 4.5 million traced whiskers,

130 were incorrectly identified or not detected, less than one

mistake per behavioral trial on average. Linking is robust to

whiskers that occasionally leave the field of view (Video S6), and

works well even at relatively low frame rates (100 fps; see Text S1).

Lesser image quality will ultimately degrade results.

There are two principle sources of error in the linking. First,

covariance between different features is ignored. For example,

when the field of view is small, whiskers at high deflection angles

might not be fully contained within the image. Any curve tracing

one of these whiskers would appear shorter than the full whisker

length. Under these conditions there is a strong correlation

between angle and whisker length. The current model penalizes

the shorter length because it is rarely observed; accounting for the

covariance should eliminate this problem. Second, the estimated

feature distributions are affected by systematic biases introduced

from the heuristic used to initially guess whisker identity. A

heuristic relying on a length threshold, like the one used here, may

systematically reject these short curves at high deflection angle.

This will result in a bias against strongly deflected whiskers.

Fundamentally, our linking method is applicable only to single

rows of whiskers. The whiskers in videos imaging multiple rows of

whiskers will be traced, but, because whisker images no longer

maintain a strict anterior-posterior ordering, the linking will likely

fail. Although this software was validated with images of one side

of the mouse’s whiskers, we have successfully tracked whiskers in

images containing both whisker fields (Video S7). Also, the

whiskers of freely moving rats and mice can be traced (Videos

S2,S3). This suggests that it will be possible to use this software for

two-dimensional tracking of single rows of whiskers in freely

moving animals by incorporating head tracking [2,11,15], though

we have not explicitly tested this.

We analyzed data acquired during learning of an object

detection task (see Text S1) [17]. We tracked whiskers from four

mice during the first 6 days of training (8148 trials, 3122 frames

each). This allowed us to observe the changes in whisking

behavior that emerge during learning of the task. We looked

specifically at correct rejection trials (2485 trials), which were not

perturbed by contact between object and whisker, to analyze the

distribution of whisking patterns during learning. We character-

ized whisking by computing normalized histograms of whisker

angle (1u resolution) over time (100 ms bins) for a single

representative whisker (C1). The angle and position of other

whiskers were strongly correlated throughout (r2.0.95) in these

trials. Two patterns emerged. After learning, two mice (JF25607

and JF25609) showed changes in whisking amplitude and mean

angular position when the stimulus was present (Figure 6A). The

other two mice (JF27332 and JF26706) did not show nearly as

much stereotypy and appeared to rely on lower amplitude

whisking (Figure 6B). All mice held their whiskers in a non-resting

anterior position during most of the trial [1]. For JF25607 and

JF25609, reduction in task error rate was correlated with an

increase in mean deflection angle during stimulus presentation

(r2 = 0.97,0.84 respectively) (Figure 6C). This correlation was

smaller for the other two mice, which also learned the task but

appeared to rely on a different whisking strategy.

The forces at the base of the whisker constitute the information

available to an animal for somatosensory perception. These forces

are proportional to changes in whisker curvature [16]. The

instantaneous moment acting at a point on the whisker is

proportional to the curvature change at that point. In contrast

to whisker tracing software that represents whiskers as line

segments[14,15] or non-parametric cubic polynomials[13], the

curves produced by our tracing algorithm provide a high-

resolution representation of whisker shape, allowing measurement

of varying curvature along the length of the whisker.

Figure 6. Changes in whisker behavior as mice successfully
learn the object detection task. (A–B) Normalized histograms of
whisker angle (1u resolution, whisker C1, log scale, 0u lies on the lateral
axis) were computed over 100 ms time bins during the first 6 training
sessions over correct rejection trials. Each histogram shows data from
21–150 trials. (A) Some mice, such as JF25607, increase the frequency of
large deflections during stimulus presentation (trial counts: 99, 150, 135,
109, 102, and 90 respectively). (B) Others, such as JF27332, do not (trial
counts: 21, 96, 90, 109, 107 and 86 respectively). (C) During stimulus
presentation, an increase in mean deflection angle was correlated with
a decrease in the false alarm (FA) rate, a measure of behavioral
performance, for two mice (JF25609, JF25607). Two mice did not exhibit
this correlation (R2: 0.14, 0.61, 0.97, 0.84 for JF27332, JF26706, JF25609,
and JF25607 respectively).
doi:10.1371/journal.pcbi.1002591.g006
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To illustrate this feature we measured curvature in the following

manner: For each video frame (Figure 7A), the traced whisker

midline (Figure 7B) was fit via least-squares to a parametric 5th

degree polynomial of the form:
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where [x(t),y(t)] are points that span the curve over the interval

0ƒtƒ1, and ai,bi are the fit parameters (Figure 7C). Curvature

was measured at a specified distance along the curve from the

follicle chosen for best signal to noise. The follicle was not imaged,

and so the intersection between the curve and an arc

circumscribing the face was used as a reference point instead.

The curvature was then measured as the mean curvature inside a

1–2.5 mm long region about the point of interest where it was

approximately constant. To ensure the measurement was not

biased by shape outside the interval, another parametric polyno-

mial fit (degree 2) was performed, but over the region of interest

rather than the entire curve (Figure 7D). The follicle position was

set by linearly extrapolating a set distance into the face. The point

of whisker-pole contact was determined as the closest point to the

center of the pole on the curve or on a line extrapolated from the

nearest end of the curve (Figure 7E).

Time series of curvature measurement (Figure 7F, measurements

at 5 mm from follicle) can be used to identify most contact events. For

whisker-pole contacts first made during a protraction, the first touch

tends to be followed by a series of more forceful contacts. Contacts are

correlated with relatively constant angular position of the whisker

(Figure 7G). This indicates the mouse may press the whisker against

the pole by translating the whisker pad rather than by rotating the

whisker. The distribution of peak curvature-change during a whisker-

pole contact indicates more the bulk of contacts were made during

protraction and that these were more forceful (Figure 7H).

Availability
The software and documentation are freely available online

(http://whiskertracking.janelia.org) as cross-platform (Windows,

OS X, Linux) source code written in C with Python and Matlab

interfaces included. Pre-built binaries are also available. A

graphical user interface is provided to aid semi-automated tracing

as well as the viewing and editing of results. The software is

capable of analyzing 8-bit grayscale StreamPix (Norpix Sequence

Format: SEQ), TIFF, MPEG, MOV, and AVI formatted video.

Supporting Information

Dataset S1 Sample data and tutorial.

(ZIP)

Figure S1 Line bias correction. (A) Raw data exhibits a fixed-

pattern artifact where odd-numbered lines are systematically

darker than bright lines. (B) This artifact is corrected by

multiplying odd-lines by a factor estimated from the raw data

itself. This removes the stripes without blurring or reducing the

contrast of whiskers. Scale bar, 0.5 mm.

(TIF)

Text S1 Methodological details.

(DOC)

Video S1 Video overlaid with high scoring seeds (eccentrici-

ty.0.99) for each frame. Pixels are colored according to the

orientation indicated by the seed.

(MP4)

Video S2 Results of automatic tracing applied to video 500 Hz

video (1.7 s duration) of a freely behaving rat exploring a corner

with its full whisker field. The video was obtained with permission

from the BIOTACT Whisker Tracking Benchmark [22] (Clip

ID:behavingFullContact, courtesy of Igor Perkon and Goren

Gordon). It has been cropped, and the frame rate has been

changed for presentation.

(MP4)

Figure 7. Analysis of curvature change on contact. (A–E) The
sequence of steps used to extract detailed curvature measurements. (A)
Whiskers in raw video frames are automatically traced and linked,
yielding (B) an identified set of curves for each frame. (C) The raw curve
is fit with a 5th-degree parametric polynomial. (D) A mask is specified to
determine where the curve intersects the face. Within a small interval
(1–2.5 mm path length) about an interest point chosen for high signal
to noise, the raw curve is re-fit to ensure measurements are not biased
by whisker shape outside the interval. This new fit is to a 2nd-degree
polynomial. The curvature at the interest point is then measured as the
curvature of this 2nd fitted curve. (E) Follicle position is estimated by
extrapolating a fixed distance into the face from the mask. Similarly,
curves are extrapolated, when necessary, to contact points on the pole.
Trajectories for curvature (F) and the angle of the whisker at its base (G)
are shown for the first contacting whisker in 10 trials grouped by
whether the first contact was during a retraction (top 5) or protraction
(bottom 5). Trajectories are aligned to first contact. The intervals when
the whisker is in whisker-pole contact are highlighted in red. (H)
Histograms of peak contact curvature change (from resting) for the first
whisker-pole contact in each trial (green) and all whisker-pole contacts
prior to an answer-lick (red).
doi:10.1371/journal.pcbi.1002591.g007
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Video S3 Results of automatic tracing applied to a video

acquired at 100 Hz video (8 s duration) of a freely behaving mouse

with its full whisker field. Background subtraction was performed

before tracing to reduce the effects of non-uniform illumination.

Because no image of the scene without the animal present was

available, the background was estimated for each pixel as the

maximum intensity observed at that point throughout the video.

The video was obtained with permission from the BIOTACT

Whisker Tracking Benchmark [22] (Clip ID: behavingMouse100,

courtesy of Ehud Fonio and Ehud Ahissar). It has been cropped,

and the frame rate has been changed for presentation.

(MP4)

Video S4 Results from a full trial. The results of automated

tracing and linking applied to a video (500 Hz, 9.2 s duration) of a

head fixed mouse trimmed to a single row of 4 whiskers interacting

with a pole. Curves that were classified as whiskers are colored

according to their identity, and otherwise they are not shown.

Multiple whiskers simultaneously interact with the pole at 1.2–

1.4 sec into the trial. Protracted bouts of whisking can be observed

throughout the video.

(MP4)

Video S5 Tracing and linking is robust to rapid changes in

whisker angle. The results of automated tracing and linking

applied to a video (500 Hz, 150 ms) of a head fixed mouse

trimmed to a single row of 3 whiskers interacting with a pole.

Curves that were classified as whiskers are colored according to

their identity, and otherwise they are not shown. One whisker (red)

has been trimmed so it cannot contact the pole. The green whisker

presses against the pole, and quickly flicks past it as it is removed

from the field. This is the fastest angular motion (16u/ms) observed

in the data set used to measure tracking accuracy.

(MP4)

Video S6 Linking is robust to whiskers that leave the field of

view. The results of automated tracing and linking applied to a

video (500 Hz, 190 ms) of a head fixed mouse trimmed to a single

row of 3 whiskers interacting with a pole. Curves that were

classified as whiskers are colored according to their identity, and

otherwise they are not shown. Two whiskers (green and blue) are

frequently occluded by the lick-port (black bar, lower right), but

they are properly identified before and after such events.

(MP4)

Video S7 Tracing and linking of whiskers bilaterally. The results

of automated tracing and linking applied to a video (500 Hz, 1 s

duration) of a bilateral view to a head fixed mouse trimmed to a

single row of whiskers (2 on each side).

(MP4)
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