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Abstract

One of the striking features of evolution is the appearance of novel structures in organisms. Recently, Kirschner and Gerhart
have integrated discoveries in evolution, genetics, and developmental biology to form a theory of facilitated variation (FV).
The key observation is that organisms are designed such that random genetic changes are channeled in phenotypic
directions that are potentially useful. An open question is how FV spontaneously emerges during evolution. Here, we
address this by means of computer simulations of two well-studied model systems, logic circuits and RNA secondary
structure. We find that evolution of FV is enhanced in environments that change from time to time in a systematic way: the
varying environments are made of the same set of subgoals but in different combinations. We find that organisms that
evolve under such varying goals not only remember their history but also generalize to future environments, exhibiting
high adaptability to novel goals. Rapid adaptation is seen to goals composed of the same subgoals in novel combinations,
and to goals where one of the subgoals was never seen in the history of the organism. The mechanisms for such enhanced
generation of novelty (generalization) are analyzed, as is the way that organisms store information in their genomes about
their past environments. Elements of facilitated variation theory, such as weak regulatory linkage, modularity, and reduced
pleiotropy of mutations, evolve spontaneously under these conditions. Thus, environments that change in a systematic,
modular fashion seem to promote facilitated variation and allow evolution to generalize to novel conditions.
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Introduction

The origin of the ability to generate novelty is one of the main

mysteries in evolution. Pioneers of evolutionary theory, including

Baldwin [1], Simpson [2], and Waddington [3,4], suggested how

useful novelty might be enhanced by physiological adaptations and

by the robustness of the developmental process. These early

theories were limited by a lack of knowledge of the molecular

mechanisms of development.

Recent decades saw breakthroughs in the depth of understand-

ing of molecular and developmental biology. Many of these

findings were unified in the theory of facilitated variation [5],

presented by Kirschner and Gerhart, that addresses the following

question: how can small, random genetic changes be converted

into complex useful innovations? In order to understand novelty in

evolution, Kirschner and Gerhart integrated observations on

molecular mechanisms to show how the current design of an

organism helps to determine the nature and the degree of future

variation. The key observation is that the organism, by its intrinsic

construction, biases both the type and the amount of its

phenotypic variation in response to random genetic mutation

[3,4,6–10]. In other words, the organism seems to be built in such

a way that small genetic mutations have a high chance of yielding

a large phenotypic payoff.

To understand FV, it is important to compare it to the related

concept of evolvability. A biological system is evolvable if it can

readily acquire novel functions through genetic changes that help

the organism survive and reproduce in future environments [11].

Evolvability is composed of two aspects: 1) variability: the capacity

to generate new phenotypes 2) fitness: the fitness of the new

phenotypes in future environments. Most studies of evolvability

focused on the first aspect, variability. Such studies measured the

range and diversity of the phenotypic variation that can be

generated by a given mutation, usually without discerning between

potentially useful phenotypes and non-useful ones [12–16] (for an

interesting exception see Ciliberti et al [17]). FV theory adds to

previous considerations by focusing on the nature of the generated

variation, and specifically on the organism’s ability to generate

novel phenotypes which are potentially useful.

Facilitated variation (FV) is made possible by certain features of

biological design. One of these is the existence of ‘weak regulatory

linkage’ [5,10,18], where general and non-instructive signals can

trigger large pre-prepared responses. For example, changes in

growth hormone concentration at a localized position (limb bud in

an embryo) can trigger large useful changes in the shape of the

limb, driven by the conserved mechanisms for growth of bones,

muscles, blood vessels, and nerves [19]. A good example is the ease

of changing beak shapes with any of many possible mutations that

affect the concentration of a single morphogenic factor [20]

(Figure 1A). In weak regulatory linkage, the information about the

output is pre-built into the regulated system without instruction

from the regulator, which only selects between states. Such
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regulatory organization reduces the constraints for evolving new

regulations and for generating complex potentially useful pheno-

types.

An additional feature that is important for FV is modular design

[21–24], seen for example, in the highly conserved body-plan of

the embryo [25,26] and in the compartmental organization of

gene regulation and signaling networks [27]. Modularity helps to

relieve the concern that a mutation might interfere with many

different parts of the organism. With properly designed modular-

ity, variation within each module can be generated without

harming other modules [28–31].

Facilitated variation can be in principle studied experimentally,

for example by generating mutants and scanning the types of

phenotypes generated. For example, a study on mutants of the lac

regulatory region indicated that the shape of the gene input

function is channeled in directions of AND-like and OR-like

functions, rather than other possibilities [32].

An open question is how does FV spontaneously evolve? It is not

clear how selection in a present environment can lead to designs

that increase the probability of useful changes in future

environments. How does evolutionary theory account for the

emergence of special designs that make it easy to generate novel

and useful variation?

The key point in our study is the observation that

environments in nature do not vary randomly, but rather seem

to have common rules or regularities [33–35]. Specifically,

environmental goals faced by organisms or molecules may be

thought of as composed of a combination of subgoals [33]. When

environments change, the organisms encounter a new goal that

is still made of the same or similar subgoals. For example, on the

level of the organism, the same subgoals, such as digesting food,

avoiding predation, and reproducing, must be fulfilled in each

new environment but with different nuances and combinations.

On the level of cells, the same subgoals such as adhesion and

signaling must be fulfilled in each tissue type but with different

input and output signals. On the level of proteins, the same

subgoals, such as enzymatic activity, binding to other proteins,

regulatory input domains, etc., are shared by many proteins but

with different combinations in each case.

One may thus propose that in many cases, the different possible

environments share a language of modularity, in the sense that

they are all made of certain combinations of a set of subgoals. We

thus test the possibility that under such patterned varying

environments, the organism can learn over many generations

the language common to the environments encountered in its past.

We ask whether FV arises in such systematically varying

Figure 1. A small number of mutations evokes large useful phenotypic adaptation in systems showing facilitated variation. (A) Beaks
of Darwin’s finches. (B) RNA secondary structure evolved under modularly varying goals (MVG). (C) Logic circuit evolved under MVG of decomposable
Boolean functions.
doi:10.1371/journal.pcbi.1000206.g001

Author Summary

One of the striking features of evolution is the appearance
of novel structures in organisms. The origin of the ability to
generate novelty is one of the main mysteries in
evolutionary theory. The molecular mechanisms that
enhance the evolution of novelty were recently integrated
by Kirschner and Gerhart in their theory of facilitated
variation. This theory suggests that organisms have a
design that makes it more likely that random genetic
changes will result in organisms with novel shapes that
can survive. Here we demonstrate how facilitated variation
can arise in computer simulations of evolution. We
propose a quantitative approach for studying facilitated
variation in computational model systems. We find that
the evolution of facilitated variation is enhanced in
environments that change from time to time in a
systematic way: the varying environments are made of
the same set of subgoals, but in different combinations.
Under such varying conditions, the simulated organisms
store information about past environments in their
genome, and develop a special modular design that can
readily generate novel modules.

Evolution of Facilitated Phenotypic Variation
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environments, by measuring the ability of simple model systems to

adapt to new, previously unseen goals, which are in the same

language as past goals.

We employ two well-studied model systems: combinatorial logic

circuits [33,34] and RNA secondary structure [12]. We find that the

standard experiment of setting a goal which remains constant over

time leads to highly optimized systems that show little FV. In

contrast, FV is readily generated under modularly varying goals

(MVG), in which goals change over time but share the same subgoals

[33]. We find that MVG evolution enhances the ability to generate

novel phenotypes as long as novelty is modular: phenotypes with

novel modules or novel combinations of modules. We show that

organisms under MVG store information about past goals in their

genomes, and evolve weak linkage that allows small genetic changes

to unleash large phenotypic responses that do not ruin the modular

structure of the organism. Our study thus suggests that environments

that change in a systematic fashion promote the evolution of

facilitated variation, and leave an imprint on the evolvability

properties of the organisms, allowing them to generalize to new

conditions that are in the same language as past conditions.

Results

Description of the Model Systems
Combinatorial logic circuit model. The first model system

in this study is circuits made of logic gates, evolved toward a

desired Boolean function G. The circuits are composed of NAND

gates (NOT-AND function), have several input ports and a single

output port. The fitness of the circuit is the fraction of times it

computes the desired output, G, when evaluated over all possible

combinations of the Boolean values of the inputs. The wiring of

the gates is coded in a genome (string of bits). Starting with a

population of random genomes, mutations are made and high

fitness individuals are selected by means of a standard genetic

algorithm (see Methods). The present results hold both in the

presence and absence of recombination.

We compared evolution of circuits under a goal that is constant

over time (called here fixed-goal or FG) to circuits evolved under

goals which change from time to time in modular fashion (called

modularly varying goals, denoted MVG). In FG evolution, the

goal is a Boolean function such as

G1~ x XOR yð Þ OR w XOR zð Þ ð1Þ

where XOR is the exclusive-or function. The resulting circuits

have a non-modular design, as previously found [33]. The

structure is non-modular despite the fact that the goals, such as

G1, can be decomposed into subgoals (two XORs and one OR

operations) (Figure 2A).

In contrast, under MVG, instead of keeping the goal fixed, we

switched the goal every E = 20 generations. These are rapid

changes in comparison to the length of the simulations, 105

generations. A wide range of switching times E gives similar

results.

Importantly, all goals presented along MVG evolution shared

the same subgoals but in different combinations (Figure 2B). For

example, we evolved the circuits toward G1 for 20 generations and

then switched the goal to a similar function G2, in which one of

the XORs is replaced by an EQ (the EQUAL function).

G2~ x EQ yð Þ OR w XOR zð Þ ð2Þ

and then back to G1 and so on. Similar findings were obtained

with three goals, with probabilistic transitions between G1, G2 and

a third modularly related goal:

G3~ x XOR yð Þ OR w EQ zð Þ ð3Þ

Similar findings are also found when OR is changed to AND, for

example G2 = (x XOR y) AND (w XOR z). The specific examples

were chosen because XOR and EQ are the most difficult two-

input Boolean functions to implement with NAND-gate circuits.

Contrary to FG evolution, the circuits evolved under MVG are

found to have a modular structure: they display a structural

module for each of the computational subgoals [33] (e.g. two

modules that rapidly rewire by mutations to serve as a XOR or

EQ according to the present goal, and a third module that

performs an OR operation) (Figure 2B).

RNA secondary structure model. In addition to logic

circuits, we studied RNA secondary structures. Here, genomes

are RNA nucleotide sequences, and the goal is given by a desired

secondary structure. A standard RNA folding algorithm was used

to determine the secondary structure of each genome sequence

[36]. Fitness was based on the most stable shape (minimum free

energy, denoted MFE) corresponding to the genome sequence

[12]. The fitness of the sequence is then defined as 1-d/B, where d

is the structural distance to the goal and B is the length of the

sequence [34].

We evolved an initially random population of RNA sequences

toward predefined secondary structure using a standard genetic

algorithm. We present in detail the example of a ‘clover leaf’

tRNA structure [12], but other structures gave similar

conclusions, see Text S1 section 1.2. This clover leaf has three

structural modules, two hairpin loops and one hairpin loop with

a bulge. In FG simulations, the goal remained constant along

evolution. In the MVG scenario, we switched between goals in a

modular way in the sense that the different goal structures

shared the same library of structural modules (such as hairpin

loops and open loops) but in different combinations (Figure 2C)

[34].

MVG Genotypes Adapt Rapidly When Goals Change
In the following, we mainly focus on two representative

problems, logic circuits evolved towards combinations of XOR

and EQ goals, and RNA molecules evolved towards cloverleaf-like

RNA structure. Similar conclusions were found for all six Boolean

goals studied and five other RNA structures tested, as detailed in

Text S1 sections 1.1 and 1.2.

Under MVG evolution, the evolving circuits or RNA molecules

were exposed to a series of goals that are related to each other by

their shared set of subgoals. We find that within a few thousand

generations, genomes evolve that are able to adapt rapidly, often

within a single generation, to each new goal (Figure 1B and 1C).

Despite the fact that the phenotypic adaptation is large (e.g. an

entire hairpin changes to an unstructured open loop, or a change

in about half the bits in the truth table of a circuit goal, see

Methods), the adaptation is associated with a very small genetic

change, usually only 1–2 mutations.

In contrast, adaptation of organisms evolved under FG is slow

when the goal is suddenly switched, even if the switch is to a goal

with the same subgoals as the previous goal. FG-organisms take a

dozen times more generations to satisfy the new goal (Figure 3A),

and require about five times more mutations on average, than

organisms evolved under MVG. The same is true for the other

goals tested in Text S1. Thus, the response to changing goals is

significantly slower than the response of MVG-evolved organisms

to previously seen goals (Figure 3A).

Evolution of Facilitated Phenotypic Variation
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High-Fitness Phenotypes for Past Goals Are Found within
MVG Phenotypic Neighborhood

We next asked what is special about the design of MVG-evolved

organisms that facilitates their response to changing goals? For this

purpose, we considered the phenotypic neighborhood [37–39],

defined as the set of phenotypes that are accessible from a given

genotype by a single point mutation.

We find that the phenotypic neighborhood of MVG-evolved

genomes includes phenotypes that have high fitness to the past

goals seen in their history (Figure 3B). This indicates that the

evolved organism effectively remembers its past goals by storing

information about it in its genome. In contrast, in genomes

evolved under constant conditions (FG), the fitness of the

neighborhood for new goals is significantly lower.

FG populations are known to evolve toward the center of the

neutral network, defined as the set of all genotypes with the

same phenotype that are connected by neutral mutations [40–

42]. Thus the FG organisms are more robust to genetic

mutations and their phenotypic neighborhood exhibits a lower

degree of variation than the MVG organisms. These features

are also found in the present study (Text S1, section 4.1). In

contrast, MVG organisms seem to be located at the edge of the

neutral network that is closest to the neutral networks of the

previously seen goals. This implies that temporally varying

environments push populations towards special regions of the

neutral network.

In addition to genetic mutations, one can also study thermal

fluctuations that give rise to alternative structures encoded by a

single genotype [12]. Thus, in the RNA model, we considered in

addition to the genetic neighborhood also the thermodynamic

neighborhood: the set of structures for a given genome that have

a free energy that is within 5kT of the minimal free energy (MFE

state) and are therefore accessible with a non-negligible

probability by thermal fluctuations [43]. We find that the

thermodynamic neighborhoods of MVG-evolved genomes in-

clude structures that have high fitness for previously seen goals.

The FG-evolved genomes we have tested have a thermal

neighborhood whose fitness for new goals is significantly lower.

In this respect, the thermodynamic neighborhood is similar to

the genetic neighborhood (Figure 3C, and Text S1 section 5.2), a

phenomenon called ‘plastogenetic congruence’ [12] (Text S1

section 4.1).

Figure 2. Schematic view of evolutionary goals and phenotypes in the two model systems. (A–B) Logic circuit model. (A) A typical circuit
evolved by fixed-goal evolution toward goal G1. Each gate in the circuit represents a NAND gate. (B) Modular circuit evolved under modularly varying
goal evolution with goals G1-G3. The circuit is composed of two XOR modules that input into a third module which implements the OR function.
Each goal has four inputs and one output of the form G(x,y,w,z) = f(g(x,y),h(w,z)). During evolution, goal switches over time in probabilistic manner as
a random walk on the graph in this figure; Note that in every switch, a single XOR module is changed to EQ, and vice versa. (C) RNA model, goal G1 is
the secondary structure of a natural tRNA, goals G2, G3 and G4 are modular variants of G1, in which one hairpin loop is replaced by an open loop. The
goal switches during evolution in a probabilistic manner as a random walk on the graph in the figure. Note that in every switch, a single hairpin is
changed to an open loop and vice-versa.
doi:10.1371/journal.pcbi.1000206.g002

Evolution of Facilitated Phenotypic Variation
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The Adaptation to Previously Seen Goals Is Facilitated by
Genetic Triggers

We find that the rapid adaptation to previously seen goals in

MVG organisms is facilitated by key positions in the genome that

can stabilize a desired sub-structure or module among other

potential outcomes. We term these positions ‘genetic triggers’,

since they can trigger a large and prepared phenotypic response.

To detect genetic triggers one must search for genomic positions

that vary in a way that is highly correlated to the change in the

goals. This means that triggers carry high information content

about the current goal. The genetic triggers can thus be detected

by evaluating the mutual information between the environment

(goal) and the genomic content at each position (see Methods).

Since mutual information measures how much the knowledge of

one variable reduces the uncertainty regarding the other, the

trigger positions are characterized by high mutual information

with the environment (Figure 4A). Trigger positions were readily

detected for all MVG cases tested. In the RNA model, we find that

mutual information is spread amongst more genomic positions

than in the logic circuit model. Triggers can still be clearly

detected at sites with much higher mutual information than the

background. We find that these trigger nucleotides are positioned

within the module that they affect, usually in the stem of a hairpin

(Figure 4C and 4D). In this respect, the hairpins evolved in MVG

differ from hairpins evolved in FG in that a single change in the

trigger can cause a flip between an open loop and a closed hairpin.

Over time, under MVG conditions, it is evident that the mutual

information between genomes and goals (i.e. environments)

gradually becomes focused to a few trigger positions, allowing

rapid adaptation when environment changes (Figure 4B). Since

trigger positions are small variations that lead to a sizable switch

between pre-designed states, they may be considered as a simple

example of weak regulatory linkage.

Evolution of Novelty within the MVG ‘Modularity
Language’

So far, we analyzed the adaptation to previously seen goals

introduced along MVG evolution history, which highlighted the

Figure 3. MVG-evolved organisms adapt faster than fixed-goal organisms when goals change. (A) Adaptation following a goal switch
(logic circuit model). The x-axis denotes generations, where zero is the point where the goal changes to a new goal (a previously seen goal in the case
of MVG). Maximal normalized fitness in the population at each time point (mean6SE) is shown. Initial populations are FG-populations evolved toward
G1 and MVG-populations taken from the end of the last G1-epoch. The new goals were G2 = (x EQ y) OR (w XOR z) and G3 = (x XOR y) OR (w EQ z).
Data are from 30 simulations for each scenario. (B) Maximal normalized fitness (mean6SE) for past goal G?G1 in the genetic neighborhood of
evolved logic circuits. (C) Same as in (B) but for evolved RNA genomes. The genetic neighborhood is defined as the set of all genomes different in one
position from the wild type genomes.
doi:10.1371/journal.pcbi.1000206.g003

Evolution of Facilitated Phenotypic Variation
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ability of MVG organism to remember its past. We now turn to

novel, previously unseen goals, where we test the ability to

generalize based on the past.

The main problem is to define what kind of novel goals might

be encountered in future environments that are in the same

context as the previous environments. Indeed, adaptation of

MVG-organisms toward a randomly picked goal results in

evolution that is as slow, or even slower, than FG-organisms

(Text S1 section 6.5). But a randomly picked goal has no

correlation with the past. To address this, MVG evolution offers

the possibility of presenting a previously unseen goal which is in

the same ‘language’ as previous history.

This language, in the present case of logic circuits, is defined as

the set of all goals that can be decomposed in the following way

u(x,y,w,z) = f(g(x,y),h(w,z)), Figure 5A. In other words, the goals in

the language are made of a hierarchy of three functions f,g and h,

such that g responds to x and y, and h responds to the other two

inputs w and z, and f responds to g and h. In the case of the RNA

model, the language can be defined as the set of all secondary

structures with independent structural modules (e.g., hairpin loops,

open loops etc.) that correspond in their genomic positions to the

modules of the MVG goals (see Methods and Figure 5B).

Within this language, we defined two classes of possible future

goals which are novel: (a) New-comb is a goal that presents

previously seen subgoals but in a new combination (Figure 6A) (b)

Novel-module refers to goals where one of the subgoals is a previously

unseen one, while the other subgoals are kept unchanged

(Figure 6C). This represents a novelty that is restricted to one of

the modules of the goal.

We tested evolution under these two classes of novelty. We find

that for both logic circuit and RNA models, MVG populations

adapted faster than FG populations when introduced to new-comb

goals (Figure 6B). We also performed competition experiments in

which initial populations were composed of 50% FG-evolved and

Figure 4. Evolution of genetic triggers. (A) Mutual information (y-axis) between the environment (goal) and the genomic content at each
position of an evolved MVG circuit (x-axis). Two positions (positions 28 and 31) have high mutual information and are defined as genetic triggers
which facilitate circuit’s adaptation for goals G3 and G2 respectively. (B) Same as in (A), but at three time points along evolution: beginning, middle
and end of evolution. (C) as in (A), but for the RNA model. The x-axis is labeled with the parenthesis notation for RNA secondary structure. (D) Genetic
triggers of (C) placed on the structure of the evolved MVG RNA molecule.
doi:10.1371/journal.pcbi.1000206.g004

Evolution of Facilitated Phenotypic Variation
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50% MVG-evolved genomes. When new-comb goals were present-

ed, the descendants of MVG-evolved genomes took over the

population in about 68% of the RNA model runs (Figure 6B inset).

Logic circuits showed similar behavior, where MVG-genomes

took over the population in about 75% of the runs (Text S1 section

6.3).

We also tested novel-module goals. Here, the RNA model did not

show a significant difference between FG and MVG genomes.

However, in the logic circuit model, MVG-populations adapted

significantly faster also to novel-module goals (Figure 6D). We tested

20 different novel-module goals. For example, a novel goal is

generated by replacing a XOR module by a previously unseen 2-

input Boolean function, such as AND or NOR defined by its truth

table (Figure 6C). We find that MVG’s outperformance occurred

only toward goals within the modularity language. MVG

adaptation toward non-modular goals was not significantly

different from FG’s (Figure 6E).

In competition experiments [44] between FG and MVG

genomes toward novel-module goals, populations were taken

over by MVG-genomes in about 70% of the runs (Figure 6D

inset). In experiments toward randomly chosen goals, popula-

tions had equal chance to be taken over by either FG or MVG

genomes (Figure 6E inset). We further find that the harder the

novel-module goal (the more generations needed to solve it ‘from

scratch’), the more MVG organisms out-perform FG organisms

(see Text S1 section 6.4). These results imply that temporally

patterned environments not only lead to a memory of the past

goals, but also to generalization: the population learned a

language of its history of environments (conditions) that share the

same common rules.

Figure 5. Schematic representation of MVG ‘modularity language’. (A) Logic circuit model, goals within MVG language are of the form
u(x,y,w,z) = f(g(x,y), h(w,z)). (B) RNA model, goals within MVG language are structures with independent structural modules that correspond in their
genomic positions to MVG module.
doi:10.1371/journal.pcbi.1000206.g005

Evolution of Facilitated Phenotypic Variation
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Figure 6. Adaptation towards novel modular goals is more rapid in MVG organisms. (A) An example of new-comb goal in the RNA model,
where the new goal structure is composed of previously seen sub-structures but in new combinations. (B) Maximal normalized fitness in RNA
populations (mean6SE) as a function of generations for new-comb structures. The x-axis is generations, where zero is the point where the goal
changes to a new-comb structure. Initial populations are FG-populations evolved toward G1 and MVG populations taken from the end of the last G1-
epoch. Data are from 15 simulations for the four new-comb goals of (A). Inset: competition of FG and MVG populations under a new-comb goal
(following the method of [44]). Initial populations were composed of equal fractions of FG-populations and MVG populations. Data are from 30
competition runs for each of the four new-comb goals. (C) Novel-module goal in the logic circuit model. In the novel-module goal, one of the 2 XORs or
the OR operation was changed into a different 2-inputs Boolean function such as AND, NOR or XOR, not seen in the history of the evolution. (D)
Maximal normalized fitness (mean6SE) as a function of generations for novel-module goals in the logic circuit model. At time zero the goal changes
to a novel-module goal. Initial populations are as in (B). Data are from 30 simulations in each scenario, for 20 different novel-module goals (listed in
Text S1 section 6.4.2). Inset: Competition of FG and MVG organisms in a novel-module environment. Starting populations were composed of equal
fractions of FG and MVG populations. Data are from 30 simulations for 20 novel-module goals. (E) Same as in (D) but for non-MVG language goals.
Here, the goal is a randomly chosen Boolean function, generated by randomly generating a 4-input 1-output truth table. Goals with a difficulty level
similar to that of (D) were chosen, as evaluated (Text S1 section 6.2). Data are for 35 non-MVG language goals. Inset: Competition results as in the
inset of (D).
doi:10.1371/journal.pcbi.1000206.g006

Evolution of Facilitated Phenotypic Variation
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Mechanisms for Enhanced Evolution of Novelty
To examine the mechanisms for enhanced evolution of novelty

within the MVG language, we tested three suggested mechanisms

proposed in the theory of FV [5] (a) mutations have large effect on

their own module. This reduces the number of steps to novelty; (b)

mutations have small effect on other modules, a property also

called reduced pleiotropy [45,46]; and (c) mutations have reduced

lethality, increasing viable genetic variance in the population and

allowing access to higher diversity of potential phenotypes. We

quantified the effects of mutations according to these suggestions.

The results demonstrate that MVG organisms in the present study

follow the first two mechanisms, but not the third.

We begin with the first two mechanisms, and treat the third in

the next section. To quantify the effect of mutations on their own

module and on other modules, we mutated each of the genome

positions that correspond to a given module in the phenotype, and

tested its phenotypic effect on its own module and on the other

modules. The effect of the mutation was quantified as phenotypic

distance: Hamming distance between the structures of subse-

quences in the case of RNA, and between the series of outputs of

the gates (over all input combinations) within each module in the

case of logic circuits (see Methods).

The results are summarized in Table 1. Significantly enhanced

intra-module change and reduced pleiotropy were found in most

cases. The two models differed in the extent of these

mechanisms: logic circuits showed more reduced pleiotropy,

and RNA structures primarily showed more enhanced intra-

module change.

MVG Evolution Reduces the Genetic Variance of the
Population

We now turn to the third mechanism for novel adaptation

proposed by FV theory, associated with an increase in the genetic

variance of the populations. We evaluated the genetic variance in

a population given its current goal by measuring the conditional

genomic entropy (Methods, Text S1 section 11, [47]). In contrast

to the suggested mechanism of FV theory, we find that MVG

populations display lower genetic variance than FG populations

(Figure 7A). The reduction in genetic variance indicates that the

rapid adaptation of MVG populations in this study is not due to

population diversity but rather in useful potential variation within

each individual.

Why do MVG-populations show a lower genetic variance? One

possibility is that they evolve to store information about past

environments in their genome, placing constraints on the sequence

(strong stabilizing selection). To test this, we studied the effect of

increasing the number of goals introduced over time in MVG. We

find that the more goals (or more precisely the higher the

information content in the environment), the lower the genetic

variance in the population (Figure 7B). Organisms evolved in

constant environment seem to store less information and have

higher genomic entropy (Figure 7A).

An additional way to understand the low variance in MVG

genomes compared to FG genomes is to consider that the latter

are more robust to genomic mutations (see Text S1 section 4.1).

Hence, they display more positions in the genome that can be

varied without affecting the phenotype. Robustness to mutations

thus allows higher genetic variance in the population [48], and

conversely, strong constraints on the genome lead to lower genetic

variance and sensitivity to mutations in MVG organisms.

As an example for storage of information in the genome and its

effect on genetic variance, consider the example of Figure 7C and

7D. Populations of RNA molecules that evolve toward a fixed

secondary structure G1 that contains an open loop are found to

show high variance in the genomic positions that form the open

loop. This is because forming a loop is relativity easy as there are

few constraints for base-pairing. On the contrary, populations

evolved under MVG environments in which the goal repeatedly

switched between G1 and G2 (Figure 7C), show lower variance in

the corresponding ‘‘loop region’’. The evolved MVG loop carries

information about its past, and is ready to become a stem by a

single ‘trigger’ mutation. The information acquired by the loop is

reflected in the pronounced decrease in the variance of that

genomic region in MVG populations (Figure 7D).

We note that increase in variance might be expected in more

complex models, especially when spatial heterogeneity can allow

several metapopulations to exist by using recombination as an

efficient adaptation mechanism. High variance may also occur if

the genomes can not store the required information (see Text S1

section 10.2 for an example).

The Phenotypic Neighborhood of MVG Genotype Is
Enriched with Novel ‘Useful’ Phenotypes

We find an additional property of MVG-evolved genomes

which helps to overcome barriers to novelty and further reflects

the ability to generalize, in the case of logic circuits. In a preceding

section, we showed that the MVG phenotypic neighborhood is

enriched with phenotypes that are close to previously seen goals.

We now turn to possible future goals. We scanned the phenotypic

neighborhoods for goals within the same modularity language as

previous goals. We find, in the case of logic circuits, that the

phenotypic neighborhood of a MVG-circuit is enriched with

modular circuits that compute decomposable (modular) functions

that are of the form u(x,y,w,z) = f(g(x,y),h(w,z)), (Figure 8). In

contrast, the neighborhood of a FG-circuit includes more functions

that are not decomposable and thus are not within this

Table 1. Intra- and inter-modular effects of mutations.

Logic circuit model RNA model

Median6SE p-value Observed range Median6SE p-value Observed Range

FG MVG FG MVG

Intra Module Effect 0.1260.002 0.1460.001 ,1024 0–0.2 0.2860.007 0.3660.005 ,1029 0.18–0.64

Inter Module Effect (Pleiotropy) 0.0460.005 0.0160.001 ,1024 0–0.1 0.05760.005 0.05360.005 NS 0.01–0.19

The first row corresponds to the normalized phenotypic effect of a genetic mutation on its own module; the second row corresponds to the normalized phenotypic
effect of a genetic mutation within a module on the other modules (pleiotropy). The median6SE are presented for FG and MVG, p-value is as obtained from Wilcoxon
rank sum test for equal medians. The range of effects in solution space was obtained by measuring the effects over a large random sample of genomes that solve G1
(see Text S1 section 3).
doi:10.1371/journal.pcbi.1000206.t001
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‘‘modularity language’’ (see Text S1 section 7). This property was

not found for the RNA model.

Quantitative Measure of Facilitated Variation Shows That
It Is Enhanced during MVG Evolution

Finally, we aimed to define a quantitative measure for facilitated

variation. A desired measure should capture the two main

components of biased variation: (a) the quantity component

[41], namely enriching of the phenotypic neighborhood with

potentially useful phenotypes which are novel. (b) The quality

component: accessing as many as possible different potentially

useful novel phenotypes, which are as far as possible in phenotypic

distance from the wild-type [49].

We chose a simple FV measure, among other possible choices,

which is the product of these two components (see Text S1 section

8.1). The ‘quantity’ component is the probability of forming a

potentially useful phenotype which is novel by a single point

mutation; the ‘quality’ component is the average phenotypic

distance between the wild-type and the potentially useful

phenotypes within its phenotypic neighborhood. This measure is

then normalized for its corresponding value with respect to non-

useful neighboring phenotypes.

FV~
Nuseful

Nnon{useful|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Quantity

|
Sd Puseful ,P0

� �
T

Sd Pnon{useful ,P0

� �
T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Quality

Here, useful phenotypes correspond to phenotypes with the same

modular structure as the goals in which the organism has

previously evolved. Nuseful is the number of neighbors which have

a modular phenotype (useful) and are different from the wildtype

phenotype (novel), and ,d(Puseful, P0). is the mean distance

between novel and useful phenotypes and the wildtype. Similar

definitions apply for the denominator, where non-useful means

phenotypes that do not have the modular structure of previous

goals (in the logic circuit model this includes either trivial functions

such as an output of all ones or all zeros, or non-decomposable

Boolean functions).

According to the formula, an organism with high FV has a high

likelihood of forming potentially useful variation and a relatively

low probability of varying towards non-useful phenotypic

directions (see Methods and Figure 9A).

We find that the FV measure increases with generations under

both FG and MVG evolution (Figure 9B and 9C, Text S1 section

Figure 7. Reduction in genetic variance in MVG evolution. (A) Genomes of evolved RNA populations under FG and MVG scenarios. Each row
corresponds to a 76-nucleotide genome of an individual in the population. Color stands for the genomic position content (A,U,G,C). For MVG, the end
of the last G1-epoch population is presented. (B) Conditional genomic entropy (mean6SE) as a function of number of goals presented along MVG
evolution (x-axis). (C) FG scenario was toward G1. In MVG the goal switched repeatedly between G1 and G2. G2 is a modular variation of G1 with
hairpin instead of an open loop in a module corresponding to genomic positions 7 to 26. (D) Genomes of evolved RNA populations with FG and MVG
scenarios as described in (C). Note the low variance in MVG populations within the marked region, which corresponds to the genomic positions of the
loop region that varies between goals.
doi:10.1371/journal.pcbi.1000206.g007
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8.2). However, it increases significantly more under MVG. The

increase under FG evolution seems to result from the increase in

robustness (increased probability of generating wild-type pheno-

type or close to wild-type phenotypes). Finally, we performed

experiments in which the initial population consisted of genomes

with high FV that were evolved by MVG. We then placed this

population under a fixed goal, corresponding to their last seen

goal, but presented constantly over time. We find that FV

decreased rapidly within a few tens of generations provided there

is even a slight selection pressure for small circuit size (Figure 9D,

following [33]). This result demonstrates the role of modularly

varying goals in preserving facilitated phenotypic variation in the

face of more optimal, low FV circuits.

Discussion

This study quantitatively examined facilitated variation in

model systems and demonstrated that it is enhanced in modularly

varying environments as compared to constant environments.

When the environment varies in a modular fashion (or, more

generally, in a systematic manner), it is possible to define feasible

future environments that belong to the same ‘language’ as past

environment. Hence, one can define a context specific evolvability:

the extent to which organisms can generalize and generate novelty

that is useful in the context of feasible future environments.

The present results suggest that adaptation to new goals in

MVG relies on the evolvability properties of each individual [50].

The evolved organisms are intrinsically designed for a certain class

of changes. Organisms that evolve under MVG develop weak

linkage implemented by ‘trigger’ genomic positions that elicit a

large phenotypic payoff upon minimal genetic investment. The

triggers elicit substantial changes in one module and have low

effect on other modules (low pleiotropy). The genomes are such

that their genomic neighborhood is enriched with a wide range of

potentially useful phenotypes – useful in the context of the

previous goals ‘learned’ by the organism. Thus, the evolved

genomes carry information about past goals. This information

effectively prepares the organism for the future, provided that

future goals are related to past goals.

The evolution of facilitated variation is time-scale dependant: if

goals switched very rarely, it would be equivalent to a succession of

FG’s. On the other hand, if goals switched too fast, the required

information would not have the sufficient time to be assimilated.

We find that in the case of the present models, the rate of

environmental switching that gives rise to evolvable organisms

spans several orders of magnitude [33,34].

This study employed two different models to study facilitated

variation, logic circuits and RNA structures. Importantly, these

two models differ in the type of modularity in their goals. RNA

goals contained explicit structural modules (e.g. hairpin loops).

Every RNA structure that satisfies such goals is modular by

definition. In contrast, the modularity in logic circuits goals is

implicit. Circuits that satisfy a modular goal can have either a

modular circuit structure or a non-modular one. Modular circuit

structures are in fact much more rare, and tend to evolve only

under MVG, where switching between goals with shared modules

constrain the circuits to evolve structural modules [33]. This

difference between RNA and logic circuit models may underlie the

fact that logic circuits showed a very strong enhancement of

facilitated variation in MVG compared to fixed goals, whereas

RNA model had a more modest enhancement. These two models

are approximations to different aspects of biological design: Cell

signaling and regulation networks that compute responses to

signals are more analogous to the circuit model, whereas

molecular structures are akin to the RNA model.

What happens if goals vary over time but in a non-modular

fashion? We find that an environment that varies between

randomly chosen goals typically causes confusion, where no good

solution is found that can rapidly adapt to both goals. It is possible,

however, to find pairs of goals which are not modular and yet

which have solutions that are only a few mutations away from

each other. In other words, goals whose neutral networks happen

to come very close at a certain point. Here, genomes evolve that

show rapid adaptation each time that the goal switches, but do not

have modular phenotypes. However, it is hard to define facilitated

variation towards novel goals in this case, since one can not define

the future goals that are in the same ‘language’. Adaptation to

novel goals is generally very poor (see Text S1 sections 2.1 and

6.5). In summary, evolution under non-modular varying environ-

ments might lead in certain cases to memory but not to

generalization.

Modularly varying goals seem to enhance facilitated variation

because of two main effects (i) they greatly improve the chances for

the existence of solutions for the different goals that are close in

genetic space (because the same modules need only be rewired by

a few mutations) (ii) they offer the possibility of learning not only

past goals, but also generalize to future goals as long as they are

made of the same subgoals or with the same division into modules

as previous goals. Finally, we note that facilitated variation comes

with a cost: organisms are less optimal to the current goal than

they might have been. For example, logic circuits that have high

FV are usually composed of more logic gates than the optimal

circuits that evolve if this goal is kept constant for very long times.

Modularity, genetic triggers, and storage of information about the

past in the genome, seem to demand more genes than is absolutely

required to solve the problem. Extreme optimality to present

environments is sacrificed to provide readiness to future ones.

Organisms or molecules that are under constant conditions

[51,52] are predicted by the present theory to lose their FV design,

and become less evolvable. One may test this prediction by

comparing organisms that evolved in varying and relatively

Figure 8. Enrichment of phenotypic neighborhood of logic
circuits with novel ‘useful’ phenotypes. Number of novel modular
functions divided by the number of all novel functions found in the
phenotypic neighborhood of an evolved circuit is shown. Mean6SE is
presented for best individuals in MVG and FG populations. Goals were:
G1 = (x XOR y) OR (w XOR z), G2 = (x XOR y) AND (w XOR z). For MVG,
data are for generations where the goal was G1. Data are from 40
simulations in each case.
doi:10.1371/journal.pcbi.1000206.g008
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constant environments [51,52]. A further prediction is that any

fluctuation in the system (such as molecular noise [53] or thermal

fluctuation) would result in an output that is channeled in

potentially useful directions.

In summary, the present study aimed at studying facilitated

variation in simple model systems. Populations evolved under

systematically varying conditions were found to exhibit not only a

memory of past goals but were also able to generalize to new

conditions that are in the same language as previous conditions.

Adaptation to useful novel goals was enhanced by organisms that

have learned the shared subgoals that existed in past environments

and are therefore likely to be encountered in future environments.

Several elements of facilitated variation theory, such as genetic

triggers, modularity, and reduced pleiotropy of mutations seem to

evolve spontaneously under these conditions. It would be

interesting to study the evolution of additional FV mechanisms

such as exploratory behavior and body-plan compartmentalization

using more elaborate models with hierarchical designs and

developmental programs.

Methods

Genetic Algorithm
We used a standard genetic algorithm [54,55] to evolve

combinatorial logic circuits and a structural model of RNA. The

settings of the algorithm were as follows: a population of Npop

individuals was initialized to random binary genomes of length B

bits (random nucleotide sequences of length B bases in the case of

RNA, in the main examples B = 76 for the RNA and B = 104 for

logic circuits). In each generation, Npop individuals were selected

with repeats from the previous generation according to a

probability that exponentially scales with their fitness (selection

Figure 9. Dynamics of facilitated variation. (A) Schematic presentation of a phenotypic neighborhood with high facilitated variation. Outer
ellipse is the phenotypic space, inner ellipses stand for non-trivial Boolean functions that are within (right ellipse), or without the MVG modularity
language (left ellipse), P0 is the wild-type phenotype and P1–10 are neighboring phenotypes. The thickness of the arrow represents the probability of
the wild-type to generate Pi with one genetic mutation. Length of an edge represents the distance of the phenotypic ‘jump’. High FV corresponds to
many long and thick arrows towards the right ellipse. (B) Facilitated variation measure (mean6SE) in RNA model of MVG, FG and a random class of
inverse-fold genomes (genomes generated by an algorithm to yield a desired fold) [36] with G1 structure. Data are from 30 simulations in the case of
FG and MVG and 200 random genomes. (C) Facilitated variation measure (mean6SE) as a function of generations in logic circuits evolution. Goals
were: G1 = (x XOR y) OR (w XOR z), G2 = (x XOR y) AND (w XOR z). For MVG, data are for generations where the goal was G1. Data are from 40
simulations in each case. The random class (dashed line) includes circuits which achieve the goal but were generated by an optimization algorithm
rather than by an evolutionary process (see Text S1 section 3.1). (D) Facilitated variation rapidly decays when goal becomes constant over time. Each
simulation started from end-of MVG evolution population that had perfect fitness for the goal G1.At the generation marked zero, the population was
placed under a FG evolution with the same goal G1, with a selection pressure for minimizing the number of gates [33] (fitness reduction of 0.2/gate
for each gate over 10 gates). Mean FV measure (6SE) vs. generations of 500 best-fitness circuits in each population is shown. Statistics are for 30
independent experiments.
doi:10.1371/journal.pcbi.1000206.g009
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strategy, see Text S1 section 1). Pairs of genomes from the selected

individuals were recombined, using crossover probability Pc

(Pc = 0.5 for the circuits model; Pc = 0 for the RNA model) and

then each genome was randomly mutated (mutation probability

Pm = 0.7/B per locus per genome). The present conclusions for the

logic circuit model are generally valid also in the absence of

recombination (Pc = 0). The present results were based on

simulations of a population of size Npop = 5000 evolved for

L = 105 generations for the circuit model, and a population of

Npop = 500 evolved for L = 105 generations for the RNA model.

These population sizes were empirically found to serve as minimal

values for many of the presented effects, which seem to apply also

for larger population sizes. For statistical analyses we considered

only simulations that ended with maximal fitness of 1 within the

predefined generation limit L. Similar conclusions were found

when analyzing all runs.

Logic Circuits Evolution (Model 1)
Circuits were composed of up to twelve 2-input NAND gates.

The binary genome coded for the circuit wiring as described in

[33,34,54,55]. Self loops and feedback loops were allowed. Goals

were 4-input 1-output Boolean functions composed of XOR, EQ,

AND, and OR operations. The goals were of the form

u(x,y,w,z) = f(g(x,y),h(w,z)), where g and h were 2-input XOR or

EQ functions, and f was an AND or an OR function [34]. Each

Boolean function can be represented as a truth table, where each

row represents a different combination of inputs values (0 or 1),

and the relevant output value (again 0 or 1). Thus each goal can be

uniquely defined by the output column vector. The fitness of each

circuit was defined as the fraction of correct outputs over all

possible inputs. In the MVG simulations the goals were modularly

related by changing the functions f,g or h. The goal changed over

time in a probabilistic manner every E = 20 generations.

RNA Secondary Structure (Model 2)
We followed the work of Schuster [42] and Ancel and Fontana

[12] and used standard tools for structure prediction available at

http://www.tbi.univie.ac.at/RNA/, and the ‘‘tree edit’’ structural

distance [56]. The goals were secondary structures of length 60–90

nucleotides such as the Saccharomyces cerevisiae phenylalanine tRNA

and synthetic secondary structures composed of three hairpins (for

the full list of structures see Text S1 section 1.2). In MVG, the

modular changes were applied by modifications of single hairpin

at a time (such as changing the shape of the hairpin to an open

loop). Goals changed every E = 20 generations (unless otherwise

noted).

Normalized Fitness
Normalized fitness in Figures 3A, 6B, 6D, and 6E is defined as

Fn~
F{Fr

1{Fr
, where F is the maximal fitness in the population and Fr

is the average maximal fitness of a population of Npop random

genomes. Normalized fitness Fn = 1 means a perfect solution to the

goal, and Fn = 0 means a solution that is as good as expected in a

random population of the same size. For the purposes of

computing the best fitness X of a genetic neighborhood of a given

system with phenotype P, as in Figure 3B and 3C, we used a

normalization in which Fr is the value of X averaged over Npop

samples taken from genomes with the same phenotype P. In the

case of logic circuits, genomes with the phenotype P were obtained

by simulated annealing optimization algorithm which produced

genomes that satisfy the desired goal. In the case of RNA

structures, genomes with phenotype P were generated using a

standard inverse fold algorithm [36]. The normalized fitness of the

genetic neighborhood is Fn~
F{Fr

1{Fr
.

Quantitative Measure of Genetic Variance
Following Adami et al. [48], genetic variance was measured

using entropy H computed as follows. In a RNA genome of length

B, each position can hold one of the 4 possible nucleotides with the

probabilities: Pi,j where i = 1..B and j = {C,G,A,U}. The entropy

of position i is Hi = 2SPi,jlog(Pi,j). The maximal entropy per

position (using logarithm of base 4) is 1, which occurs when the

nucleotides distribution at that site is uniform. Perfectly conserved

positions have zero entropy meaning that they contain maximal

information (see Text S1 section 11.1). The nucleotide probabil-

ities for each genomic position were computed from the

population genomes. The genetic entropy is the sum of the

entropies of all positions. We note that this is only an

approximation of the full genomic entropy since we ignore the

epistatic relations between positions. It is also important to note

that this measure is not the marginal genomic entropy but the

conditional entropy of the genome given its current environment

(for FG, the two measures coincide). For an example, see Text S1

section 10.1.

Detection of Genetic Triggers
In order to detect the genetic triggers in a genome, we

computed the mutual information I between target goal T and

specific genomic site i, Xi, as I(Xi,T) = H(Xi)2H(Xi |T) where H is

the entropy per site as described above [see Text S1 sections 10

and 11]. Triggers are defined by the positions with the highest

mutual information (I) between goal and genomic contents.

Intra- and Inter-Modular Effects of Mutations
To define the effects of mutations on phenotype modules, we

first computed the modules in each phenotype. For RNA this was

based on the modular partition of the structure (into hairpin loops

etc.), and in logic-circuits, modules were defined using the

Newman-Girvan algorithm [57]. We then measured the effects

of each possible genomic mutation on the phenotype of its own

module, and on the phenotype of all other modules. In the RNA

model, the effect of mutations on the phenotype of each module

was evaluated by the distance d between the wild-type and the

mutant structure in each module (Hamming distance between the

string representations of the secondary structure [58]). In the case

of logic circuits, the output series of each gate was evaluated, and

the Hamming distance d between the mutant and wild-type was

evaluated for each gate. Intra-module effects of mutations were the

mean of all changes in the same module as the mutated gate, and

inter-module effects of a mutation was the mean effect on the output

of all gates in all other modules. The physical ranges of those

effects were estimated by analyzing samples from the solution

space (obtained by optimization algorithms).

Logic Circuits Modularity
To quantify the modularity of a network we used the

normalized Qm measure of Kashtan et. al. [33,51].

Definition of Phenotypic Distance
Logic circuit model. A logic circuit computes Boolean

function of inputs, thus the phenotype can be described as a

truth table (in our model, the goal function was 4-input, 1-output).

We define the phenotypic distance of two circuits, as the

Hamming distance between the corresponding output columns

of two truth tables, i.e. fraction of different entries produced by the

two circuits. In cases in which the output of the gate/circuit was

time-dependent (oscillatory), we simulated the output of the gate/

circuit over a window of 20 time-points. The final phenotypic

Evolution of Facilitated Phenotypic Variation
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distance was obtained by averaging the truth tables-distances over

all time-points, and taking the best result out of all possible frames

with a sliding window of 1-time point.
RNA secondary structure model. The phenotype of RNA

sequence is a secondary structure that can be represented as a

string of left and right parenthesis [36]. We used the ‘tree-edit’

distance [56] to compute the phenotypic distance between two

legal structures (i.e. structures with balanced left and right

parenthesis, where the number of left parenthesis is always

larger or equal to the number of right parenthesis when reading

the string from left to right). When measuring the phenotypic

change in a certain module, ‘tree-edit’ distance can not be applied

(since it operates on two legal structures, and sub-structure in a

mutant genome is not necessarily legal). In such cases, we

measured the Hamming distance between the two parenthesis sub-

strings.

Definition of Potentially Useful Phenotypes
Logic circuit model. A potentially useful phenotype in the

present context is a decomposable (i.e. modular) Boolean function

of the form: u(x,y,w,z) = f(g(x,y), h(w,z))where f,g and h correspond

to any 2 input, 1-output Boolean function, such as: AND, NAND,

OR, XOR, EQ. Trivial cases such as u(x,y,w,z) = 0 or

u(x,y,w,z) = x were not considered.
RNA secondary structure model. A potentially useful

neighboring structure in the present context is a structure with

independent structural modules that correspond in their genomic

positions to the wild-type modules. To define this, consider a

phenotype P9 in the phenotypic neighborhood of sequence S0,

with MFE structure P0 (the wild-type structure), we say that P9 is a

viable phenotype if: (i) P9 has legal sub-structures (legal parenthesis

strings) at the genetic positions correspond to P0’s modules and (ii)

The genomic positions that correspond to distinct inter-module

locations (for example, positions between module 1–2 and

positions between modules 3–4) in P0, do not base-paired with

each other in P9.

Supporting Information

Text S1 Supporting Information. Includes additional detailed

examples and analysis.

Found at: doi:10.1371/journal.pcbi.1000206.s001 (3.02 MB

DOC)
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