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Transcription factors with a large number of target genes—transcription hub(s), or THub(s)—are usually crucial
components of the regulatory system of a cell, and the different patterns through which they transfer the
transcriptional signal to downstream cascades are of great interest. By profiling normalized abundances (AN) of basic
regulatory patterns of individual THubs in the yeast Saccharomyces cerevisiae transcriptional regulation network under
five different cellular states and environmental conditions, we have investigated their preferences for different basic
regulatory patterns. Subgraph-normalized abundances downstream of individual THubs often differ significantly from
that of the network as a whole, and conversely, certain over-represented subgraphs are not preferred by any THub.
The THub preferences changed substantially when the cellular or environmental conditions changed. This switching of
regulatory pattern preferences suggests that a change in conditions does not only elicit a change in response by the
regulatory network, but also a change in the mechanisms by which the response is mediated. The THub subgraph
preference profile thus provides a novel tool for description of the structure and organization between the large-scale
exponents and local regulatory patterns.
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Introduction

The study of transcriptional regulatory networks is of
central importance to post-genomic research, because every
cell is the product of specific programs involving regulated
transcription of a large number of genes. With increasing
amounts of data becoming available by advanced data
collection and analysis methods, network models have been
established in a number of different species [1,2]. Transcrip-
tional regulatory networks can be depicted as directed
graphs, in which transcription factors and their target genes
are represented as vertices, whereas the binding of a
transcription factor in the regulatory region of a gene is
represented as a directed edge. The transcriptional relation-
ship between several transcription factors and their regulated
genes is represented as multi-node subgraphs of the network
graph. Some of the subgraph patterns are immediately
biologically meaningful, including the feed-forward loop
(FFL), feedback loop (FBL), single input motif (SIM), and
multi-input motif [1–3]. Such patterns usually exert specific
regulatory capacities, for example, a SIM may be used for
coordinating a set of genes, whereas a FFL has the potential
to provide temporal control of a process [1,2]. However,
subgraphs do not represent independent units that are
functionally separable from the rest of the network. Sub-
graphs are likely to aggregate with other subgraphs around
some highly connected transcription factors [4]; an individual
transcription factor can thus be a member of many different
subgraph patterns with different connectivity. At the global
level, analysis of the network topological organization shows
that most target genes are regulated by a small number of
factors. On the other hand, the number of target genes
regulated by a given transcription factor is distributed

according to power law, indicating that a selected few
transcription factors participate in the regulation of a
disproportionately large number of target genes [5]. This
particular type of well-connected transcription factor has
been called a ‘‘transcription hub (THub),’’ and it is usually
representative of crucial and essential transcription factors in
an organism [6].
Transcriptional regulatory networks have evolved to

process information such as external nutrients and stress
[7], and the way that the transcription factors in a network
perform will necessarily differ extensively. Analysis of signal
transduction in a mammalian cellular network showed that
three ligands—glutamate, norepinephrine, and brain-derived
neurotrophic factor—make use of different types of sub-
patterns at different levels of the network, and at different
subgraph densities [8]. Similarly, different condition-specific
sub-networks of the yeast transcriptional regulation network
showed different frequencies of various regulatory patterns,
and substantial changes in network structure occurred in
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response to changes in environment and during the develop-
ment of the organism [9]. However, so far, very few studies
have documented how differences in regulatory motif
abundance relate to individual transcription factors on a
genome-wide basis.

We have revisited the datasets of Luscombe et al. [9], in
which several transcriptional sub-networks corresponding to
particular cellular or environmental conditions (e.g., cell
cycle, stress response, etc.) have been identified, and used
these data to quantitatively depict the subgraph context in
transcription factor downstream cascades. To this end, we
defined the ‘‘subgraph preference profile (SPP)’’ of a tran-
scription factor as the vector of the normalized abundances
of a set of basic regulatory subgraph patterns, obtained by
counting the weighted census of the regulatory subgraph
patterns occurring downstream of the transcription factor.
This set of basic regulatory subgraph patterns contains five 3-
vertex patterns and 12 4-vertex patterns (Figure 1). Based on
this definition we studied the relationship between network
topology and transcription factor preference profiles, and the

dynamic changes in preference profiles occurring among
different cellular states or environmental conditions.
An algorithm was developed to analyze systematically the

subgraph preferences of transcription factors in a regulatory
network. Because the THubs represent the most influential
and essential components in a network [6,10], we limited our
interest to these crucial transcription factors. Using this
algorithm, we obtained two major results: 1) Certain kinds of
regulatory subgraph patterns are preferred by certain THubs
in different (sub-)networks, and these preferences cannot be
explained by general variations in motif abundance; 2) THubs
showed dynamic changes in subgraph preferences when
cellular or external conditions varied.

Results

We have investigated the relationship between the THubs
and the normalized abundances (see Materials and Methods)
of a subset of regulatory subgraph patterns (Figure 1) in yeast
transcriptional regulation networks. We selected the static
network, and the cell cycle, sporulation, diauxic shift, DNA
damage, and stress response sub-networks from Luscombe et
al. [9] for analysis. A transcription factor in the static network
was regarded as a THub and included in the analysis if it had
39 or more out-degrees; similarly, THubs in the condition-
specific sub-networks had five or more out-degrees. This
produced 50 THubs in the static network, and 29–48 THubs
in the sub-networks (Table 1). Two categories of basic
regulatory subgraph patterns were included, the ring and
the tree, both with either three or four vertices, thus giving
four sets of subgraph patterns (Figure 1).
The normalized abundance of a subgraph pattern was

calculated as a weighted census of all occurrences of this
pattern in the downstream cascade of a given THub, and the
value of this normalized abundance was used to represent the
preference of this THub for the subgraph pattern (i.e.
subgraph preference). A regulatory subgraph occurring at a
THub with a significantly higher normalized abundance than
in the rest of the network, was termed a ‘‘preferred’’
regulatory subgraph pattern of this THub. The normalized
abundances of the entire subset of regulatory patterns
constituted the THub SPP. When, in turn, the preference
profiles of all THubs in a network were assembled in a matrix,
this formed a ‘‘subgraph preference landscape (SPL)’’ of that
particular network (Figure 2).

Figure 1. The Basic Subgraphs at the 3- and 4-Vertex Level

The IDs of each subgraph are given in brackets.
DOI: 10.1371/journal.pcbi.0020047.g001
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Synopsis

Transcription factors are proteins that bind to short segments of
DNA, thereby controlling transcription and expression of other
genes. Transcription factors may control a number of other genes,
and in turn be controlled by other transcription factors, thus forming
an extensive transcriptional network of control and counter-control,
which acts through space and time in the cell. In transcriptional
networks, transcription factors and their target genes form various
patterns (called subgraphs or motifs) that are suspected of being of
importance to how transcription factors exert their control of
cellular processes. Zhang and colleagues have studied how a subset
of transcription factors (called transcription hubs) utilizes such
subgraphs in networks generated from yeast cells under various
cellular states and environmental conditions. Their analyses show
that different transcription hubs in the same network prefer
different types of subgraphs, and that these preferences are not
governed by subgraph frequencies in the network. They further
show that when cellular conditions change, the transcription hubs
frequently change their subgraph preferences, indicating that
different modes of control require different types of subgraph use.
These findings could have implications for our understanding of the
mechanisms that underlie the fine-tuned control systems that
govern a cell or an organism.

Dynamic Changes in Subgraph Preference



SPLs were calculated for all six networks and sub-networks.
Similar to what previously has been found in Escherichia coli
[11,12], the analyses of the networks yielded a multi-layered
hierarchical cascade structure (see Protocol S1). There were
14 layers in the static network, and 13, 14, 9, 9, and 7 layers, in
the cell cycle, sporulation, diauxic shift, DNA damage, and
stress response condition-specific sub-networks, respectively.
As the SPLs were laid out according to the hierarchical
cascades, the common trend for all networks was that the
SPPs of THubs in the upper layers were more complex than
those of THubs in the lower layers (Figure 2A). In the

following sections, we first describe the preference profiles of
THubs in the different networks, and we thereafter go on to
describe the dynamic characteristics of the THub subgraph
profiles between the five condition-specific sub-networks.

THub Subgraph Preferences Differ among Regulatory
Networks
Different THubs tended to prefer certain regulatory

subgraph patterns, shown as dark squares in Figure 2A. The
SIMs (T3–3 and T4–7; Figure 1) were the only regulatory
subgraph patterns that appeared in all THub preference
profiles and in all layers. However, these motifs were not the
preferred patterns of any THub. Conversely, FFLs (R3–1)
were preferred by certain number of THubs, occurring at all
layers of the networks. THubs preferring FBLs (R3–2, R4–1)
were, on the other hand, located in the upper levels of the cell
cycle and sporulation sub-networks, but at the lower levels of
three other sub-networks (Figure 2A).
Over-representation of certain regulatory subgraph pat-

terns in the various networks could not explain the strong
subgraph preferences of the THubs. The regulatory subgraph
patterns FFL and SIM, also called network motifs [1–3], were
all significantly over-represented in most of the transcrip-
tional regulatory networks. However, SIMs were never
preferred by any THub under any condition, and contrarily,
certain sparsely represented subgraph patterns (like T3–1,
T3–2) were significantly preferred by some THubs.
The high preference of a regulatory subgraph pattern by a

given THub might be an effect of pattern clustering. For
example, the FFL was the preferred regulatory subgraph
pattern by the THub YLR013W (GAT3) in the cell cycle
specific sub-network. There are four FFLs clustered around
YLR013W, forming a symmetrical grid (Figure 3). However,
not all high regulatory SPPs can be explained by local
clustering. In the entire static network, there are only three
instances of 3-vertex FBLs and two instances of 4-vertex
FBLs. These FBLs are not only clustered together, but also
serially interlinked into a larger loop, whose vertices are all
THubs (Figure 3). Despite this, not all THubs in this serial
loop preferred FBLs (e.g., YKL112W, YLR182W, and
YLR183C; ABF1, Swi6, and TOS4, respectively), and the only
transcription factor in this larger loop that preferred FBLs
under all conditions was YBR049C (Reb1). The regulatory
subgraph pattern preferences also could not be fully
explained by the pattern density. The vertices of FBLs located
in the upper parts of the network cascades, were directly
regulated by five global regulators (YDL056W, YMR021C,
YPL038W, YMR043W, and YPL089C; MBP1, Mac1, Met31,
Mcm1, and RLM1, respectively), and 3,040 out of 3,459 genes
in the static network were further regulated through these
three FBLs. Transcription factors forming FBLs are often
involved in fundamental biological functions, such as
YBR049C (Reb1), which is required for termination of RNA
polymerase I transcription [13]. As the pattern density
surrounding a transcription factor increases nearly exponen-
tially with an increasing number of target genes, most of FBL-
preferring transcription factors have high pattern densities
(e.g., YBR049C regulates 163 target genes); however, there are
notable exceptions to this, for instance the FBL-preferring
transcription factor (YGL073W;HFS1) in the static network
regulates only 63 target genes. Thus the tendency for THubs
to prefer different regulatory subgraph patterns under

Table 1. The Transcriptional Hubs Included in This Study

Static Cell

Cycle

Sporulation DNA

Damage

Diauxic

Shift

Stress

Response

YHR206W YMR043W YLR182W YKL043W YGL096W YCR065W

YMR043W YPL089C YMR021C YDL056W YGL209W YKL043W

YMR021C YDL056W YDL056W YCR065W YJR060W YMR043W

YPL089C YLR182W YJR060W YGL209W YDL056W YMR021C

YDL056W YLR183C YML027W YJR060W YML027W YDL056W

YGL096W YML027W YKL112W YEL009C YGL073W YGL096W

YDR043C YKL112W YNL216W YNL103W YOL004W YDR043C

YML027W YNL216W YOL004W YGL035C YOL108C YGL209W

YDR259C YPR104C YKL043W YMR043W YBR049C YDR501W

YOR028C YER111C YDR207C YPL248C YMR043W YLR131C

YGL073W YDR501W YBR049C YLR013W YGL035C YJR060W

YDR501W YIL122W YCR065W YIR018W YEL009C YGL035C

YOR372C YKL043W YIL122W YHR206W YDR146C YML007W

YKL043W YJR060W YGL209W YGL073W YKL043W YGL073W

YLR131C YKL062W YMR043W YOL004W YNL103W YOL004W

YDR207C YBR049C YGL035C YLR131C YDR043C YBR049C

YJR060W YCR065W YEL009C YBR049C YPL248C YKL109W

YBR049C YIL131C YNL103W YKL112W YKL109W YLR013W

YPR065W YDR146C YDR146C YCR097W YLR013W YIR018W

YLR182W YKL109W YKL109W YJL056C YIR018W YDR259C

YLR183C YLR013W YLR013W YOR028C YLR131C YOR028C

YKL112W YCL067C YIR018W YMR280C YKL112W YPR065W

YNL216W YHR084W YHR084W YNL199C YCR097W YKL112W

YPR104C YEL009C YCR097W YGR044C YBR182C YPL089C

YNL068C YDR451C YBR182C YLR256W YOR028C YOL089C

YML007W YHR206W YHR206W YLR403W YMR280C YBR182C

YER111C YLR131C YHL027W YMR021C YNL199C YMR037C

YIL122W YMR016C YPL038W YPL089C YGR044C YGL071W

YKL062W YGL013C YJR094C YML007W YLR256W YFR034C

YCR065W YPL177C YPL038W YMR021C YGL013C

YIL131C YGL071W YPL075W YPL089C YLR403W

YEL009C YOR358W YDR463W YML007W YEL009C

YDR146C YBL021C YPL177C YPL075W YIR023W

YPL248C YIR023W YGL071W YPL177C YOR344C

YKL109W YFR034C YBL021C YGL071W YIL122W

YLR013W YGL237C YGL013C YBL021C YKL062W

YIR018W YOL108C YFR034C

YHR084W YPR065W YGL013C

YDR451C YDR310C YJL089W

YOR344C YKR034W YPR065W

YBR182C YKL032C YDR310C

YMR016C YIR023W YKR034W

YDL106C YOR344C YKL032C

YGL013C YIL122W YOR344C

YFR034C YKL062W YPL038W

YBL021C YGL237C YIL122W

YDR423C YKL062W

YDR310C YGL237C

YKR099W

YIR023W

DOI: 10.1371/journal.pcbi.0020047.t001
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Figure 2. SPP and SPL

(A) THub SPLs at the 3-vertex level of the yeast static transcriptional regulatory network and the five condition-specific sub-networks. The THub SPPs
(rows) are ordered according to the hierarchical structure of each network. The layer numbers are given to the left of each row. The normalized
abundances (AN) of the regulatory subgraph patterns are represented as shades of grey (black means AN � 10); squares with red borders indicating the
significantly preferred patterns. The corresponding figure for the 4-vertex level SPLs can be found in Protocol S1.
(B) Three-vertex SPP of the THub YGL073W.
DOI: 10.1371/journal.pcbi.0020047.g002
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different conditions can neither be fully explained by the
clustering of certain regulatory subgraph patterns nor by bias
in the abundance of subgraph patterns, and it apparently
represents an inherent characteristic of THubs toward
utilizing particular types of subgraphs under specific cellular
and environmental conditions.

Certain regulatory subgraph patterns, other than the
globally identified motifs, were also preferred by some
THubs. An example is YMR043W (Mcm1), a cell-type-specific
transcription and pheromone response-related global tran-
scription factor which may play a central role in the
formation of both repressor and activator complexes [14].
In the stress response sub-network, this transcription factor
preferred several regulatory subgraph patterns, such as the

non-motif regulator chain (T4–1) and multi-pooling regu-
lation (T4–8), in addition to the FFL motif (Table 2).
An attempt to relate subgraph preferences to Biological

Process Annotations in the Gene Ontology [15] did not
produce any firm correlations. There might be a tendency for
FFL-preferring THubs and their target genes to be associated
with processes related to energy generation and general
metabolism; likewise, FBL-preferring THubs and target genes
could possibly be associated with processes involving larger
cellular structures (see Protocol S1 for details).

Evidence of Dynamic Shifts in THub SPPs among
Condition-Specific Sub-Networks
When comparing the THub preference landscapes for the

five condition-specific sub-networks, we observed dynamic
changes in SPPs between different conditions.
First, the SPLs changed dynamically between the different

conditions. The 3-vertex preference landscapes of the diauxic
shift, DNA damage, and stress response sub-networks (termed
‘‘exogenous sub-networks’’ by Luscombe et al. [9]) were, on
one hand, distinctly different from the two ‘‘endogenous’’
networks (cell cycle and sporulation), except for some
similarity between the sporulation and stress response sub-
networks (Kolmogorov-Smirnov test; Table 3). This exception
may reflect a partial exogenous influence (i.e. nitrogen
depletion) during sporulation. The three 3-vertex preference
landscapes of the exogenous networks were relatively similar
among themselves, whereas those of the two endogenous
conditions showed significant differences in distributions of
normalized subgraph abundances. The differences among the
4-vertex preference landscapes were roughly in accordance
with the observations made for the 3-vertex level (see
Protocol S1).

Table 2. The THubs with Preferred 3-Vertices Subgraphs in the
Cell Cycle Sub-Network

THub R3–1 R3–2 T3–1 T3–2 T3–3

YCL067C 0.03 — 0.102 — —

YKL109W 0.039 — — — —

YEL009C 0.049 — — — —

YNL216W — 0.077 — 0.012 —

YPR104C — 0.085 — — —

YLR013W 0.019 — 0.11 0.003 —

YDR501W — 0.239 — — —

YIL122W — 0.087 — — —

YJR060W — 0.058 — — —

YBR049C — 0.125 — — —

YCL067C 0.03 — 0.102 — —

YKL109W 0.03 — — — —

YEL009C 0.04 — — — —

YNL216W — 0.077 — 0.012 —

YPR104C — 0.085 — — —

YLR013W 0.019 — 0.11 0.003 —

YDR501W — 0.239 — — —

YIL122W — 0.087 — — —

YJR060W — 0.058 — — —

YBR049C — 0.125 — — —

— indicates THubs not preferring the corresponding subgraph. The numbers indicate the
probability (p-value) of the THub preferring the corresponding subgraph. The full list of
preferred regulatory subgraph patterns can be found in Protocol S1.
DOI: 10.1371/journal.pcbi.0020047.t002

Figure 3. Two Examples of Yeast THubs with Significantly Preferred

Regulatory Subgraph Patterns

(A) The THub YLR013W (GAT3) significantly preferred FFLs in the cell cycle
sub-network. (B) The THub YBR049C (Reb1) preferred FBLs in the static
network.
DOI: 10.1371/journal.pcbi.0020047.g003
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Second, calculating Euclidean distances between pairs of
SPPs, we show that the preference profiles of THubs within a
layer had different tendencies towards similarity in the
different networks. For 3-vertex subgraphs, THubs within
the same layer of the static, cell cycle, or stress response
networks, tended to have similar preference profiles (Table
4). On the other hand, same-layer THubs of the sporulation,
DNA damage, or diauxic shift networks were more diverse in
3-vertex SPPs. At the 4-vertex level, THubs at the same-layer
of the static, cell cycle, and diauxic shift networks had similar
SPPs, but the preference profiles of same-layer THubs of the
other networks were quite different (Protocol S1). Because
the preference profiles of THubs in the bottom layer only
have SIMs in any transcription regulatory network, we
excluded the THubs at the bottom layer in this assessment
of within-layer THub preference profile similarities.

Finally, we looked into the dynamics of the preference
profiles of nine transcription factors that were identified as
THubs in all five of the condition-specific sub-networks
(Figure 4). Of these there was only one, YLR013W (GAT3),
whose preference profile changed significantly between the
two endogenous sub-networks, despite the fact that the
distributions of normalized abundances of regulatory sub-
graph patterns in the two sub-networks were quite different.
On the other hand, four of the THubs (YMR043W, YJR060W,
YKL043W, and YLR013W; Mcm1, CBF1, PHD1, and GAT3,

respectively) showed significantly altered preference profiles
in the three exogenous sub-networks, even though the SPLs
of these networks had similar distributions of normalized
pattern abundances. At the 4-vertex level, we observed even
more dynamic changes in preference profiles (see Protocol
S1). These dynamic changes might reflect switches in THub
biological function with altered environmental conditions.
For example, in the cell cycle sub-network, a transcription
factor required for nucleosome function (YJR060W; CBF1)
[16] favored FBLs at both the 3- and 4-vertex levels. In the
stress response condition, YJR060W also prefers FBLs, but in
another adverse condition, DNA damage, YJR060W switches
to favor FFLs. As a clock- and oscillator-like gene circuit [17],
FBLs may control the cell growth rate, and the high
preference for FBLsof YJR060W suggests that this gene may
have certain clock- and oscillator-related role in the cell cycle
process. The SPPs of YJR060W thus suggests that this
transcription factor employs different mechanisms, FFLs
[18], and FBLs [19] in response to changing conditions.

Discussion

Recent cellular network studies have focused either on
global topological organization, or on local structure occur-
rences (for review, see [10]). However, investigators need a
novel tool to describe the topological and dynamic character-
istics of a cellular network that appear between the global and
the local level [20]. In this study, we have tried to connect the
two opposite poles of cellular network research by inves-
tigating the way crucial transcription factors propagate their
transcriptional signals to the downstream cascades. The
subgraph patterns of regulatory transcription factors have
been reported to form clusters [4], but how these clusters
affect the propagation of transcriptional signals has been
poorly understood. We have developed an approach to count
weighted censuses of connected subgraph patterns below
these well-connected THubs, which represent the most
influential and essential components in a network [6,10].
To our knowledge, our work is the first to quantify the

relationship between THubs and their associated regulatory
subgraph patterns. The tendencies we present here have been
carefully normalized against biases of the networks, and have
been well-controlled against random background. The results
were also strongly robust against several sources of noise,
from both the ChIP-chip experimental data and the
condition-specific sub-network specification.

Table 4. Euclidean Distances of THub SPPs (3-Vertex Level)
within Each Layer

Condition All Rand All p-Valuea Inner Rand Inner p-Valuea

Static 1.354 1.697 , 0.001 1.405 1.649 , 0.001

Cycle 1.972 2.511 0.006 1.995 2.489 0.012

Sporulation 1.17 2.233 , 0.001 2.227 2.394 0.266

Damage 3.461 6.3 , 0.002 8.235 8.388 0.434

Diauxic 3.299 5.234 , 0.003 8.127 6.948 0.913

Stress 2.853 5.743 , 0.004 5.605 7.214 0.042

Within each layer, we calculated every pair of one-to-one Euclidean distances of THub
SPPs. The ‘‘All’’ columns show the average THub SPP distances, including the bottom
layer, for each network. The ‘‘Inner’’ columns show the average distances of THub SPPs,
excluding bottom layer. The corresponding data for 4-vertex regulatory subgraph
patterns can be found in Protocol S1.
ap-Values ,0.001 indicate that for the 1,000 randomly selected pairs of THub SPPs, no
Euclidean distances are larger than the average of real pairs.
DOI: 10.1371/journal.pcbi.0020047.t004

Table 3. Distribution of Normalized Abundances of 3-Vertex Regulatory Subgraph Patterns under Different Conditions

Condition Static Cell Cycle Sporulation DNA Damage Diauxic Shift Stress Response

Static — (0.1931)a (0.0086)b (,1 3 10�10)b (,1 3 10�10)b (,1 3 10�10)b

Cell Cycle (0.1931)a — (0.0071)b (,1 3 10�10)b (,1 3 10�10)b (,1 3 10�10)b

Sporulation (0.0086)b (0.0071)b — (0.0133)b (0.0063)b (0.1611)a

DNA Damage (,1 3 10�10)b (,1 3 10�10)b (0.0133)b — (0.3738)a (0.0905)a

Diauxic Shift (,1 3 10�10)b (,1 3 10�10)b (0.0063)b (0.3738)a — (0.1294)a

Stress Response (,1 3 10�10)b (,1 3 10�10)b (0.1611)a (0.0905)a (0.1294)a —

We used the Kolmogorov-Smirnov test to show whether any two SPLs have the same distribution. The p-values are given in brackets. The corresponding data for the 4-vertex regulatory
subgraph patterns can be found in Protocol S1.
aDenotes that the hypothesis stating the two datasets of normalized abundances were derived from the same population was accepted.
bDenotes otherwise.
DOI: 10.1371/journal.pcbi.0020047.t003
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No convincing overall associations between subgraph
preferences and gene function of biological process could
be found. This could be due to a number of reasons. One is
that the relatively few subgraphs at the 3- and 4-vertex levels
will necessarily need to be used for a variety of functions or
processes going across the established patterns of gene or
process annotation found in established databases. Another
might be that annotations of biological function or process
are (statically) linked to genes (THubs or targets), whereas the
associations between THubs, subgraphs, and target genes are,
as our data indicate, dynamic, varying between different
cellular conditions, thus rendering any possible association
between subgraph (preference) and biological process very
difficult to capture by analysis of present-day databases. In
any case, the analysis of subgraph—transcription factor—
target gene relationships may constitute a first small step
toward identifying (and possibly annotating) functional and
process-related properties of subgraph patterns. Nonetheless,
a number of individual THubs showed high preference for
certain regulatory subgraph patterns, hinting at particular
downstream cascade characteristics of THub control. For
example, FFLs were preferred by YLR013W (GAT3) in the
cell-cycle sub-network. There are four FFLs immediately
downstream of this THub that can be aligned in a sym-
metrical grid (Figure 3A). Irrespective of whether these FFLs
are coherent or incoherent, a highly complex mode of
regulation can be generated through this module [18].
Theoretical analysis and experimental evidence suggest that
autoregulation and cross-feedback have multiple functions in
cell signaling systems [17]. FBLs consisting of three or more

factors also enable similar functions in transcriptional
regulatory networks [19,21]. In yeast transcriptional net-
works, FBLs with more than three regulators are relatively
rare, but have been identified in high-throughput ChIP
datasets [2,9].
There are only three instances of FBLs in the static network

and the cell cycle sub-network, and even fewer in the other
sub-networks; it may therefore be argued that the observed
high-preference of the pattern could be caused by random
fluctuation FBL. To address this issue, we introduced various
kinds of noise to the networks, to tests the robustness on the
THub subgraph preferences (see Protocol S1). Despite the
low number of FBLs in the networks, the preference profiles
were fairly stable against random perturbations, possibly
owing (at least in part) to the fact that in both the static and
cell cycle networks, the FBLs are interlinked in a larger
structure (Figure 3B), which may have increased the
structural stability of the networks. We therefore see little
reason to assume that the THub preferences for FBLs are any
less real than for other subgraph patterns.
A FBL-preferring THub, YBR049C (REB1), has been found

to perform different biological functions under different
conditions. Under endogenous conditions, it may work as a
member of a clock or oscillator structure [22] to control
multi-phase cell processes like cell cycle progression and
sporulation. Under diauxic shift, however, it may work as a
member of a switcher [21], or as a factor speeding up
response times under DNA damage and stress response
conditions [23,24]. Non-motif gene circuits have not yet been
well-studied [19]. However, we found that under every

Figure 4. Dynamic Shifts in the SPPs (3-Vertex Level) of Nine THubs

The bars represent the THubs YDL056W, YMR043W, YBR049C, YJR060W, YIL122W, YKL043W, YKL112W, YEL009C, and YLR013W (top to bottom). A black bar
indicates that the THub showed a significant change in its SPP between the two conditions, whereas a white bar indicates a significant lack of change in
the SPP of the THub. The assessment of the statistical significances was made by comparing to a set of random networks as described in Protocol S1.
DOI: 10.1371/journal.pcbi.0020047.g004
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condition there were a few THubs that preferred non-motif-
like regulatory subgraph patterns, possibly indicating partic-
ular features of the signal transduction of these THubs. In the
stress response network, the THub YMR043W (Mcm1)
preferred two non-motif regulatory subgraph patterns,
regulatory chain and multi-pooling regulation patterns.
Responding to environmental stress, this THub might quickly
pass the signal to the every corner of the network through
these two patterns. When the stress is over, this may be sensed
by persistent detector FFLs [1,18], and the signal can also be
broadcasted through the same two non-motif-like regulatory
patterns.

SIMs stand out as a peculiar case. Over-represented in most
transcriptional network, SIMs have been regarded as impor-
tant network building blocks conveying some sort of evolu-
tionary advantage [1,3]. However, as SIMs were little, if at all,
preferred by individual THubs, our results are unable to
support the idea of particular position in the transcriptional
network for this motif. As pointed out by Artzy-Randrup [25],
network design biases, although not favoring any particular
motif per se, may still produce an overabundance of
particular subgraphs, and the reason for the global over-
representation of SIMs may thus have to be sought elsewhere.
Gene duplications are common evolutionary events and
possibly the most important force driving network enlarge-
ment [26]. If gene duplication also includes the upstream
control sequence, this will directly create a novel SIM. Such
events are not rare [27]. Thus, the very mechanism of network
expansion (e.g., gene duplication) may be sufficient to cause
deviations from a true random network (i.e. overabundance
of SIMs) without active selection for a particular motif per se
(although it cannot be ruled out that gene duplication itself
may be under positive selection). In this respect, the observed
THub subgraph preferences may actually be seen as evidence
in favor of an evolutionary explanation for the non-random
distribution of subgraph motifs in transcriptional networks.
Whereas it may be conceivable (although debatable [28]) that
over-abundance of subgraphs in the biological networks may
have other explanations than evolutionary selection [25], it
seems utterly unlikely that there should at the same time exist

some (non-evolutionary) network design ‘‘rule’’ able to
account for individual transcription factors selectively
accumulating one or the other subgraph motif, in particular,
as this seems to occur independently of the overall network
accumulation of motifs.
Distinguishing clearly between truly dynamic features and

random fluctuations of a network remains a challenge. The
SPL combines information on global topological organiza-
tion with the connective structure of the network and relative
abundances of local subgraphs, data which are all proven
powerful tools for annotating gene expression data [29],
inferring network mechanisms [30], and classifying networks
into families [31]. The figurative representation of SPLs (e.g.,
Figure 1) is also a visualization of the inner structures of a
regulatory network which could be used to obtain a clearer
picture of network activity. This method for network
subgraph analysis might also be applied to other biological
or non-biological networks, such as metabolic networks,
neuronal circuits, or electronic chips.

Materials and Methods

Dataset. The S. cerevisiae transcriptional regulatory network data
(see Table 5 for accession numbers of genes), including the static and
the five condition-specific (cell cycle, sporulation, diauxic shift, DNA
damage, and stress response) networks, were retrieved from http://
sandy.topnet.gersteinlab.org [9]. Auto-regulative interactions were
excluded.

THubs and the two classes of transcriptional regulatory patterns.
THubs were defined as transcription factors with more than 39 out-
going degrees in the static transcription regulatory network, and with
more than five out-going degrees in the condition specific sub-
networks. To analyze the relationship between THubs and regulatory
motifs, we selected two categories of basic regulatory subgraph
patterns, the ring and the tree. Opening and closing are two of the
basic topology characteristics of a subgraph pattern. Accordingly, a
subgraph pattern is said to be a ring if, and only if, it represents a
single loop, regardless of the directions of the edges. A subgraph
pattern is said to be a tree if, and only if, it contains no ring as a
component (Figure 1). Only trees and rings with three or four vertices
were considered because, at the 2-vertex level, T2–1 is trivial, whereas
R2–1 is too infrequent to be considered independently. On the other
hand, due to computational limitations, it is difficult to identify all
the rings and trees in the network when the number of vertices in the
subgraphs exceeds four. An additional advantage of these subgraph
sets is that there are no overlaps within a set of subgraphs with a fixed
number of vertices, and also that these subgraph sets are basic
enough for our analysis.

Definition of THub SPP and SPL. In this work, we use term SPP to
describe the relative abundances of a set of regulatory subgraph
patterns that appear in the cascade downstream of a transcription
factor. Given a subgraph pattern, P, and a transcription factor, H, we
count the weighed abundance of subgraphs connected to the
transcription factor as:

AwðH;PÞ ¼
X

sg2SGðH;PÞ

X

k2NðsgÞ

1

ðdðH; kÞ þ 1Þ2
; ð1Þ

where SG(H, P) is a set that includes all the subgraph patterns P
appearing in the cascade downstream of the transcription factor H. sg
is a member of set SG(H, P). N(sg) is the set of nodes in sg. d(H, k) is the
length of the shortest path from transcription factor H to the node k
in the network, calculated by Dijkstra’s algorithm [32]. The weigh
factor in Equation 1, 1/(d(H, k) þ 1)2, was designed to quantify the
reduction in ‘‘signal strength’’ with increasing distance from a
transcription factor. However, in addition to the number in nodes of
the transcription factors downstream cascade, there are several other
systematic biases influencing the abundance calculation. The tran-
scriptional patterns appear in the network with a wide range of
frequencies [1,3], and the topological relationships between different
subgraph patterns may also introduce systematic bias. To account for
all the above considerations, we normalized the abundance for all
chosen subgraph patterns of the THubs by

Table 5. Swiss-Prot Accession Numbers for Genes and Proteins
Mentioned in the Text

Open Reading Frame Gene Name Swiss-Prot Accession Number

YBR049C Reb1 P21538

YDL056W MBP1 P39678

YGL073W HFS1 P10961

YJR060W CBF1 P17106

YKL043W PHD1 P36093

YKL112W ABF1 P14164

YLR013W GAT3 Q07928

YLR182W Swi6 P09959

YLR183C TOS4 Q06266

YMR021C Mac1 P35192

YMR043W Mcm1 P11746

YPL038W Met31 Q03081

YPL089C RLM1 Q12224

DOI: 10.1371/journal.pcbi.0020047.t005
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AN ðHi;PjÞ ¼
AwðHi;PjÞ=

X

j2SG
AwðHi;PjÞ

X

i2THubs

AwðHi;PjÞ=
X

i2THubs

X

j2SG
AwðHi;PjÞ

; ð2Þ

where THubs denotes all THubs in a transcriptional regulatory
network and SG denotes a set of subgraph patterns. After the
normalization process, we obtained the ‘‘normalized abundances’’ of
all the given THubs and subgraphs. The normalized abundance of a
subgraph pattern was called the THub SPP for this pattern. The SPP
of a transcription factor was then defined as the vector of the
normalized abundances of all subgraphs in SG and, in turn, the SPL of
a network was defined as the collection of SPPs of all the THubs in
the transcriptional regulatory network. The SPL can be represented
as a matrix where all subgraph normalized abundances are laid out in
certain order for every THubs (Figure 2A).

Statistical significance and robustness analysis. Randomly shuffled
networks were generated to assess the statistical significance of our
analysis. We also tested the robustness of our results from different
source of noises and variations. The detailed algorithm for noise
generation and assessment for the robustness can be found in
Protocol S1.

Supporting Information

Protocol S1. Supporting Methods, Figures, and Tables

Found at DOI: 10.1371/journal.pcbi.0020047.sd001 (8.0 MB TXT)
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