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Abstract

Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion
of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated
dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as
variation in model parameters. These parameters are themselves phenotypic traits. By linking whole-cell phenotypic
variation to genetic variation in a computational model of a single heart cell, incorporating genotype-to-parameter maps,
we show that genome-wide association studies on parameters reveal much more genetic variation than when using higher-
level cellular phenotypes. The results suggest that letting such studies be guided by computational physiology may
facilitate a causal understanding of the genotype-to-phenotype map of complex traits, with strong implications for the
development of phenomics technology.
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Introduction

The phenotypic variance cumulatively explained by marker loci

found to associate with complex traits in genome-wide association

studies (GWAS) is usually much less than the narrow-sense

heritability [1–6], the ratio of additive genetic variance to total

phenotypic variance. Several explanations have been proposed for

this unexplained variance, popularly called the missing heritability

[1], including imprecise heritability estimates; insufficient sample

size; exclusion of particular types of polymorphisms such as copy

number variants and rare SNPs in GWAS; unaccounted epistatic

effects; and underestimated effect size of associated SNPs due to

incomplete linkage with causal variants [3,6]. Recently it was

shown [7] that a large proportion of the missing heritability can be

accounted for if one estimates the variance explained by all

available marker loci together. This suggests that most of the

genetic variation underlying complex trait variation is due to

marginal effects of many loci that are too small to pass stringent

significance tests. Strong support for this interpretation comes

from several meta-analyses of genome-wide association data [8–

10]. While this insight appears to resolve much of the missing

heritability issue as such, it also implies that standard GWAS

approaches will not be very helpful for disclosing which genetic

variants do actually contribute to additive variance.

Part of the problem underlying the missing heritability is that

while the genotype-phenotype map in reality arises from complex

biological systems best described by nonlinear dynamic models,

the statistical machinery of quantitative genetics, including GWAS

methods, is built upon linear models of gene action. The aim of

this study is not to improve the statistical methods per se, but rather

to explore how more of the missing heritability can be explained

and understood by combining nonlinear dynamic models with

existing GWAS methods. The research program of linking system

dynamics and genetics was suggested more than 40 years ago [11]

and has been an active research area for more than 10 years [12–

24]. Emergent properties of nonlinear systems, such as systemic

silencing [25], might lead to a situation where genetic variation

that penetrates to low-level phenotypes underlying a higher-level

phenotype does not necessarily manifest in the higher-level

phenotype itself. Doing GWAS on these low-phenotypes may

thus reveal more of the genetic variation influencing the higher-

level trait. This line of reasoning is reflected in recent GWA studies

on metabolite profiles [26,27], in pathway and network-based

analysis of genome-wide association studies [28] and in GWAS

analyses on global gene expression data [29–30]. While all these

studies represent important contributions, they do not combine a

genetic mapping framework with mathematical models describing

how high-level trait variation emerges from low-level trait

variation, i.e. they do not provide a quantitative framework for

elucidating how genetic variation affecting a low-level phenotype

do actually influence a focal high-level phenotype.

If a dynamic model can describe the phenotypic variation of a

given trait, it follows that irrespective of the biological resolution of

the model, the genetic variation underlying the phenotypic

variation will have to be reflected as variation in the parameters

of the model. We therefore hypothesized that performing GWAS
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on parameters in computational physiology models might reveal

much more of the underlying genetic variation, as well as shedding

light on how this variation actually causes phenotypic variation.

To test the plausibility of this reasoning, we combined GWAS

methodology with a causally-cohesive genotype-phenotype (cGP)

model linking genetic variation to phenotypic variation. More

specifically, a cGP model [19] is a mathematical model of a

biological system where low-level parameters have an articulated

relationship to an individual’s genotype, and higher-level pheno-

types emerge from the mathematical model describing the causal

dynamic relationships between these lower-level processes. Our

approach bears some resemblance to that of functional GWAS

(fGWAS) [31], where the genetic control of traits is analyzed by

integrating biological principles of trait formation into the GWAS

framework through mathematical and statistical bridges. Fu et al.

[23] recently extended the functional mapping framework [15] to

handle cyclic phenotypes such as circadian rhythms by combining

differential equations with functional mapping of QTLs. However,

there are clear differences between functional mapping and the

cGP approach. In functional mapping the phenotypic measure-

ments are currently done at the systems level, while lower-level

parameters are estimated by combining curve-fitting with more

classical QTL methods. In contrast, the cGP approach advocated

here focuses on measuring lower-level parameters based on the

idea that they are highly relevant phenotypes of the system.

We studied a cGP model of a mouse heart cell [24], where

genetic variation is mapped to parametric variation, which

propagates through the physiological model to generate multivar-

iate phenotypes for the action potential (an electrical signal) and

calcium transient (linked to muscle contraction) under regular

pacing. The rationale for using a heart cell model was that

multiscale and multiphysics modelling of the mammalian heart has

a solid empirical basis, and arguably comprises the most complex

mathematical conceptualization of any organ or physiological trait

available. For clarity of exposition, and because heart cell models

lie at the core of this class of multiscale whole organ models [32–

37], we deemed it sufficient to illustrate our points using a single

cell model only. We used HapMap data [38,39] as a guide to

generate genetic variation with realistic allele frequencies and

linkage disequilibrium to underlie variation in the model

parameters. Based on HapMap [39] individuals we simulated

complex pedigree populations and performed GWAS on both low-

level parameters and high-level phenotypes arising from the cGP

model. The layout of the computational pipeline used for this

study is depicted in Figure 1.

We show that genome-wide association studies on parameters

reveal many more of the underlying SNPs than when using higher-

level cellular phenotypes. Furthermore, the SNPs identified by

GWAS on parameters can be used to build multivariate prediction

models of higher-level phenotypes giving much higher explained

variance than from GWAS on higher-level phenotypes alone. Our

results suggest that combining statistical genetics with computa-

tional biology will facilitate both identification of genetic variation

underlying complex traits and a much deeper understanding of

how this genetic variation becomes causative.

Methods

The general layout of the study is outlined in Figure 1.

Heart cell model
The cell model [40] extends that of Bondarenko et al. [41] with

more realistic calcium handling, conservation of charge, and

detailed re-parameterization to consistent experimental data for

the C57BL/6 ‘‘black 6’’ mouse. State variables include ion

concentrations of sodium, potassium and calcium in the cytosol,

calcium concentration in the sarcoplasmic reticulum, and the state

distribution of ion channels, whose transition rates between open,

closed, and inactivated conformations may depend on transmem-

brane voltage. Formulated as a system of coupled ordinary

Figure 1. Flowchart of computational pipeline. A heart cell
model, a genetic map and a virtual population are tied together by
selecting heart model parameters assumed to be under influence of
genetic variation and associating the parameter variation to a
population of virtual genomes based upon HapMap 3 data. Individual
genotypes are mapped into heart model parameters (steps 1–3) and by
running the heart cell model parameters are mapped into cell-level
phenotypes (step 4). Finally, GWAS analysis is then performed on the
virtual population (step 5).
doi:10.1371/journal.pcbi.1002459.g001

Author Summary

Despite an ever-increasing number of genome locations
reported to be associated with complex human diseases or
quantitative traits, only a small proportion of phenotypic
variations in a typical quantitative trait can be explained by
the discovered variants. We argue that this problem can
partly be resolved by combining the statistical methods of
quantitative genetics with computational biology. We
demonstrate this for the in silico genotype-to-phenotype
map of a model heart cell in conjunction with publically
accessible genomic data. We show that genome wide
association studies (GWAS) on model parameters identify
more causal variants and can build better prediction
models for the higher-level phenotypes than by perform-
ing GWAS on the higher-level phenotypes themselves.
Since model parameters are in principle measurable
physiological phenotypes, our findings suggest that
development of future phenotyping technologies could
be guided by mathematical models of the biological
systems being targeted.

Dynamic Model Parameters and Missing Heritability
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differential equations, this model provides a comprehensive

representation of membrane-bound channels and transporter

functions as well as fluxes between the cytosol and intracellular

organelles. As the action potential and calcium transient features

following an electrical stimulation are the only state descriptors fed

into higher level features of current multiscale heart models [33],

we used these and associated aggregated measures as high-level

phenotypes, see ‘‘Parameter to phenotype mapping’’ below. See

Vik et al. [24] for a detailed description of this model including

model diagram, differential equations and a CellML implemen-

tation.

Polymorphic parameters
Out of the 86 model parameters we chose 34 to mediate the

effects of genetic variation (Table 1 and Table S1). Because the

genotype to parameter map for parameters describing ion channel

properties may in general be much more straightforward than

what is the case for many others, we picked mainly parameters

describing affinities, conductivities and ion permeabilities for the

ion channels and pumps underlying four potassium outward

currents, one calcium current, one chloride current, one sodium

current, the sodium-calcium exchangers, the sarcoplasmic reticu-

lar calcium ATPase (SERCA), the sodium potassium pump,

cytosolic calmodulin, the ryanodine receptors on sarcoplasmic

reticulum and the calcium handling processes within sarcoplasmic

reticulum.

Virtual genome and virtual population
To ensure some realism in the construction of the genetic

structure of our in silico populations in terms of allele frequencies

and LD patterns, we extracted HapMap3 data [39] for 2,000

evenly spaced SNPs (,5000 nucleotides apart) for each of the first

20 autosomal chromosomes. We extracted genotypes for the

40000 SNPs for the 1301 individuals in the 11 HapMap 3

populations. We then expanded this into a population of 5000

individuals by use of the Python package simuPOP [42]. The

population expansion by simuPOP maintained allele frequencies

and LD patterns in accordance with the HapMap 3 data.

Mutations were introduced based on a symmetric diallelic

mutation model, all recombinations were based on genetic maps

estimated from the HapMap data and migrations between the 11

subpopulations were allowed for. The mutation rate, migration

rate and number of generations used as input to the simuPOP

population expansion were 1e-8, 0.001 and 500, respectively.

Genotype to parameter mapping
Assuming a purely additive genetic model, 400 causal SNPs

were randomly sampled from the virtual genome for each of the

34 parameters selected to mediate genetic variation. The genotype

to parameter mapping for each parameter was set up by defining

the 5,000640,000 genotype matrix G, where each element gij

denoted the genotype of individual i at SNP j (21 for the

homozygous with the least frequent allele, 0 for the heterozygous

and 1 for the homozygous with the most frequent allele). We then

constructed for each parameter the 40,000x1 relative effect vector

E, where element ej was sampled from a Laplace (0, 0.0035)

distribution if the j-th SNP was among the 400 parameter-specific

causative SNPs, and set to 0 otherwise (the relative effect being

defined as the percentage increase or decrease of the baseline

parameter value (Table 1 and Table S1)). The 5000-element

vector of parameter values for all individuals was then computed

as p(GE+1), where p is the baseline value. With this procedure,

each of the focal 34 parameters was varied within ,635% of its

baseline value, and for each causal SNP, the heterozygous

individuals were assigned the baseline parameter value (Table 1

and Table S1). The 635% parameter variation range was chosen

as a compromise between getting ample genetic signals and

avoiding too many physiologically unrealistic phenotypes. We also

tested a genetic model with 200 causative SNPs for each

parameter, the only difference being that the standard deviation

of the Laplace distribution was set to 0.0049.

Parameter to phenotype mapping
Cellular phenotypes for individual parameter sets were

generated by a virtual experiment of constant pacing as described

in Bondarenko et al. [41]. The potassium current was stimulated by

215 V/s for 3 ms at the start of each stimulus interval.

Convergence was checked by comparing successive intervals with

respect to the initial value of each state variable as well as the

integral of its trajectory over that interval. A running history of 10

intervals was kept, and after each interval we checked for a match

(within a relative tolerance of 5% for all state variables) against the

previous one. This was done for three different pacing rates with

stimulus intervals of intervals 100, 200 and 300 ms, respectively.

The cell dynamics was categorized as ‘‘failure’’ if it did not

converge to non-alternating dynamics within 10 minutes of

simulation time. The Python code of the heart cell model was

autogenerated from CellML [43], using the code generating

service available at the CellML repository (www.cellml.org). The

equations were integrated using the CVODE solver [44] with a

Python wrapper.

Eight scalar phenotypes (see Table 2 and Table S2) were

extracted from each computed action potential and calcium

transient curve: the initial value (apbase and ctbase), the amplitude

(apamp and ctamp), the peak value (appeak and ctpeak), the time

to peak value (apttp and ctttp), the time to 25%, 50%, 75%, and

90% of the initial base value (apd25, apd50, apd75, apd90 and

ctd25, ctd50, ctd75, ctd90).

Data preparation
We removed individuals with physiologically unrealistic pheno-

types within each of the 100 datasets analyzed. The exclusion

criterion was based on the inter-quartile range (IQR); points that

were more than twice the IQR above the third quartile or below

the first quartile were excluded. Each filtered data set, containing

4000–5000 individuals, was divided into a training set of 2500

individuals and a test set consisting of the remaining individuals.

The training data set was used to detect causal SNPs, compute the

false positive rate and sensitivity characteristics. The test set was

used to estimate the phenotypic variation accounted for by the

detected SNPs.

Statistical analysis
The same GWAS procedure was used for each parameter and

each phenotype. The quantitative trait association analysis was

performed with the program PLINK [45] on the training data. We

used a threshold of 1e-5 on the Bonferroni-corrected p-value from

PLINK to determine the set of significant SNPs.

The detected SNP set and associated discovery rates were

defined as follows. Let Si denote the set of significant SNPs from

GWAS on the i-th parameter and let Ci denote the causal SNPs set

of the i-th parameter. The set of detected SNPs of the i-th

parameter was then computed as Di = Si>Ci, and the discovery

rate of i-th parameter was computed as di = |Di|/|Ci|. The union

of causal SNP sets for parameters defined the causal SNP set

underlying all cellular phenotypes, and the detected SNP set and

the discovery rate for each cellular phenotype was computed in the

Dynamic Model Parameters and Missing Heritability
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same way as for each parameter. The set of false positive SNPs of

the i-th parameter or phenotype, Fi, consists of SNPs in the set of

significant SNPs Si that are not in the causal SNPs set Ci.. The

false positive rate of the i-th parameter or phenotype was defined

as the number of false positive SNPs in Fi divided by the number

of signals in Si, |Fi|/|Si|.

To quantify explained genetic variance a multiple regression

model was constructed by regressing the phenotype or parameter

value of the training set on the causal SNPs detected by GWAS

(similar to the weighted genomic profile approach in [46]). Then

the phenotypes of test set individuals were predicted using the

corresponding fitted models. We measured the explained variation

by the R2 values from regressing observed values on predicted

phenotypic values for the individuals in the test set.

Global sensitivity analysis
We quantified the linear sensitivity [47] of each phenotype to

each parameter using linear regression in the training set. For each

high-level phenotype and Monte Carlo simulation we used the

2500 simulated phenotypes as response and performed a series of

univariate regressions each time with a single parameter as

predictor. We measured global sensitivity by the coefficient of

determination (R2).

Results/Discussion

The proportion of true causative SNPs detected by GWAS was

as expected substantially higher for the parameters than for the

cellular phenotypes (Figure 2 and Figure S2 for the 200 SNPs

Table 1. Parameters with genetic variation.

Parameter
name Description Unit Baseline value Min Max

Ka+ The PC1 – PO1 rate constant of the Ryanodine receptor mM24/ms 6.08e-3 4.09e-3 8.06e-3

Ka2 The PO1 – PC1 rate constant of the Ryanodine receptor ms21 7.133-2 4.70e-2 9.58e-2

Kb+ The PO1 – PO2 rate constant of the Ryanodine receptor mM23/ms 4.05e-3 2.64e-3 5.47e-3

Kb2 The PO2 – PO1 rate constant of the Ryanodine receptor ms21 9.65e-1 6.32e-1 1.31

Kc+ The PO1 – PC2 rate constant of the Ryanodine receptor ms21 9.00e-3 6.09e-3 1.20e-2

Kc2 The PC2 – PO1 rate constant of the Ryanodine receptor ms21 8.00e-4 5.24e-4 1.07e-3

m The Ca2+ cooperativity parameter of PO1 – PO2 of the Ryanodine receptor - 3.0 1.99 3.97

n The Ca2+ cooperativity parameter of PC1 – PO1 of the Ryanodine receptor - 4.0 2.75 5.33

P_CaL The permeability of the L-type Ca2+ channel ms21 2.5 1.62 3.30

t_L The time constant of the switch between open and close states of the L-type Ca2+ channel ms21 1.5 1.01 1.98

tau_L The Inactivation time constant of the L-type Ca2+ channel ms21 1.15e3 7.82e2 1.52e3

phi_L The proportion of closed states in open mode of the L-type Ca2+ channel - 1.80 1.23 2.43

Kup The SERCA affinity to Ca2+ mM 4.12e-1 2.93e-1 5.68e-1

V1 The leak constant of the Network Sarcoplasmic Reticulum ms21 4.5 3.05 5.90

KCSQN The Calsequestrin affinity to Ca2+ mM 6.30e2 4.35e2 8.57e2

K_Co The affinities of the Na+/Ca2+ exchanger to extracellular Ca2+ mM 1.4e3 9.38e2 1.85e3

K_Ci The affinities of the Na+/Ca2+ exchanger to intracellular Ca2+ mM 3.6 2.45 4.93

K_No The affinities of the Na+/Ca2+ exchanger to extracellular Na+ mM 8.80e4 6.06e4 1.20e5

K_Ni The affinities of the Na+/Ca2+ exchanger to intracellular Na+ mM 1.2e4 8.38e3 1.58e4

KNai The affinity of the Na+/K+ pump to intracellular Na+ mM 1.66e4 1.13e4 2.17e4

KKo The affinity of the Na+/K+ pump to extracellular K+ mM 1.5e3 1.04e3 2.08e3

KpCa The affinity of the Ca2+ pump to intracellular Ca2+ mM 2.89e-1 1.95e-1 3.93e-1

Vmax The maximal exchange rate of Na+/Ca2+ exchanger pA/pF 3.94 2.71 5.19

Imax The maximal current of the Na+/K+ pump pA/pF 2.49 1.71 3.58

GK1 The maximal conductance of the time-dependent K+ channel ms/mF 3.5e-1 2.39e-1 4.52e-1

GKr The maximal conductance of the rapid delayed rectifier K+ channel ms/mF 1.65e-2 1.11e-2 2.17e-2

GKur The maximal conductance of the ultrarapidly activating delayed rectifier K+ channel ms/mF 2.50e-1 1.76e-1 3.27e-1

KCl The half saturation constant of the Ca2+ activated Cl2 channel mM 1.00e1 6.65 1.36e1

GNa The maximal conductance of the Na+ channel ms/mF 1.60e1 1.07e1 2.10e1

GKtof The maximal conductance of the rapidly recovering transient outward K+ channel ms/mF 5.35e-1 3.97e-1 7.11e-1

GClCa The maximum conductance of the Ca2+ activated Cl2 channel ms/mF 1.00e1 6.56 1.33e1

on_rate The autophosphorylation rate of Calmodulin ms21 5.0e-2 3.25e-2 6.56e-2

off_rate The dephosphorylation rate of the Calmodulin ms21 2.0e-4 1.34e-4 2.67e-4

IpCm The maximal current of the Ca2+ pump pA/pF 9.55e-2 6.35e-2 1.26e-1

Listing of the 34 parameters where genetic variation was introduced. The descriptions, units and baseline values are taken from the original publication [40]. The
minimum and maximum values were obtained from the Monte Carlo simulations.
doi:10.1371/journal.pcbi.1002459.t001
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case). Median detection rates of causal SNPs were in the range

3.5%–4% after GWAS directly on parameter values (Figure 2A),

and this number dropped to ,0.05% for GWAS studies on action

potential phenotypes and ,0.02% for calcium transient pheno-

types (Figure 2B), and the corresponding figures in the 200 SNPs

case were 8–8.5%, ,0.16% and ,0.08%. The low overall

detection rates were to be expected since we sampled SNP effects

from an L-shaped distribution resulting in datasets where a small

proportion of the SNPs underlying a given parameter will explain

a substantial part of the variation. The main explanation for the

decrease in detection rates is that the number of causal SNPs

increases 34 times and the relative effects of all causal SNPs

decrease, making them harder to pick up. Another, probably less

important, phenomenon contributing to lower detection rates at

the higher-level phenotypes is that going from parameter level to

the system-level phenotype introduces nonlinearities in the SNP

effects, and standard GWAS methods pick up only the additive

part.

The difference between parameter and cellular phenotypes is

also evident when looking at the amount of phenotypic variance

explained by SNPs detected in the GWAS (Figure 3 and Figure S3

for the 200 SNPs case). The median explained variance is typically

in the range 30–40% for parameter phenotypes (Figure 3A), 10–

20% for action potential phenotypes and ,5% for calcium

transient phenotypes (Figure 3B). The proportion of phenotypic

variance explained by detected SNPs was on average 2.6 (2.0 in

the 200 SNP case) and 5.6 (3.9 for the 200 SNPs case) times higher

for a parameter phenotype than for an action potential and

calcium transient phenotype, respectively. However, when we

made use of the SNPs detected for parameters we were able to

explain 1.8 and 3.9 times (1.6 and 2.9 times for the 200 SNPs case)

more of the phenotypic variance of the action potential and

calcium transient phenotypes, respectively, approaching the levels

obtained for the parameters (Figure 3C). We also calculated the

explained variances with all significant SNPs and obtained similar

results. This suggests that our approach can be tested empirically

in a straightforward way.

The gain in explained variance by using parameter-associated

SNPs was not as dramatic for the action potential phenotypes as

for the calcium transient phenotypes (Figure 3C), but even in this

case the gain in number of identified SNPs was on average 13.96
(12.3 for the 200 SNPs case). The corresponding figure for the

calcium transient phenotypes was 39.46 (26.5 for the 200 SNPs

case). Because these additional SNPs are attached to one or more

parameters describing specific biological processes or features that

are causally related according to the functional structure of the

mathematical model, the gain in our causal understanding of the

genotype to phenotype map may be substantial.

Both the detection rate of causal SNP and the variances

explained for the calcium transient phenotypes were overall

significantly lower than those for the action potential phenotypes

(Figure 2B and 3B). We investigated this further by a linear global

sensitivity analysis of how variation in the cellular phenotypes

depended on variation in the parameters, and compared this with

the number of causative SNPs for each parameter detected by

performing GWAS on high-level cellular phenotypes. We found

that the GWAS results for the two cellular phenotype groups are

predominantly a consequence of the sensitivity structure of the

dynamic model (Figure 4 and Figure S4 for the 200 SNPs case),

and that the action potential phenotypes are overall more sensitive

to fewer parameters than the calcium transient phenotypes. The

only exception to this latter pattern is the parameter Kup,

quantifying the affinity of SERCA to calcium ions (Figure 4A). It

has a substantial impact on the calcium transient base value

phenotype (ctbase), and the amount of variance explained by the

SNPs detected for this phenotype is on par with the action

potential phenotypes (Figure 3B). This suggests that SNPs

associated with traits that are sensitive to few parameters will

have a higher penetrance than SNPs associated with traits that are

sensitive to many parameters for a given model resolution.

Moreover, the results imply that the more poly-parametric the

sensitivity profile of a model phenotype is, the more will be gained

in terms of added explained variance by performing GWAS on

parameters. On the other hand, the results also imply that a

sensitivity analysis can be used to systematically reveal hotspots for

genetic variation underlying a complex trait and thus guide a

parameter phenotyping program. Within this framework a SNP

affecting a parameter to which the focal higher-level phenotypes

are not very sensitive will have little impact on these phenotypes

unless it is highly penetrant at the parameter level.

GWAS methods are well known for producing false positives

due to multiple testing and high LD between SNPs. A typical

GWAS block of SNPs in high LD is often reduced to a subset of

tagSNPs in low LD (typically with a pairwise correlation ,0.2).

The GWAS methods are aimed at identifying significant tagSNPs,

and the task of distinguishing the causal SNPs from false positives

in high LD has to be done with other methods such as functional

studies of candidate SNPs. Our approach is not intended to solve

this problem (but see e.g. [48,49] for reviews of methods for

identifying causal variants after GWAS) and in our study the

increases detection rate for parameters is accompanied by an

expected increased false positive rate (Figure S1 and Figure S5 for

the 200 SNPs case). However, as parameters as a rule are closer to

mechanism than higher-level phenotypes, it should be noted that

to do GWAS on parameters could become very instrumental for

identifying candidate mechanisms and genes for follow up studies.

We envision that ongoing efforts such as the RICORDO project

[50] aimed at developing semantic interoperability for biomedical

data and models will facilitate bioinformatic identification of

Table 2. Attained cellular phenotype values.

Phenotypes Unit Baseline value Min Max

apd25 ms 4.34 4.10 4.56

apd50 ms 5.89 5.33 6.39

apd75 ms 1.11e1 9.28 1.29e1

apd90 ms 1.95e1 1.60e1 2.30e1

apamp mV 1.18e2 1.14e2 1.23e2

apbase mV 28.00e1 28.0.6e1 27.93e1

appeak mV 3.82e1 3.41e1 4.23e1

apttp ms 3.20 3.03 3.35

ctd25 ms 6.19e1 4.80e1 7.98e1

ctd50 ms 1.05e2 7.98e1 1.37e2

ctd75 ms 1.79e2 1.39e2 2.16e2

ctd90 ms 2.55e2 2.20e2 2.79e2

ctamp mM 1.4e-1 4.85e-2 2.76e-1

ctbase mM 8.14e-2 6.12e-2 1.05e-1

ctpeak mM 0.22 1.15e-1 3.68e-1

ctttp ms 2.40e1 1.93e1 2.98e1

The phenotypic values resulting from use of the baseline parameter values (see
Table 1) are listed together with the minimum and maximum values achieved in
the Monte Carlo simulations.
doi:10.1371/journal.pcbi.1002459.t002
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candidate mechanisms and genes from cGP model sensitivities and

GWAS results on parameter phenotypes.

We made deliberate use of the simplest possible genotype to

parameter map in this study. A more complex map incorporating

genetic dominance and various types of epistasis [51] would have

diminished the SNP discovery rates and the explained variances of

the parameters. However, this reduction in penetrance would

apply equally well at higher phenotypic levels, and so would not

affect our conclusions. We did not put any environmental

variation on the parameters as we deemed this unnecessary in a

Figure 2. Percentage of causative SNPs detected by GWAS. (A) The percentage of 400 causative SNPs (y axis) detected as significant SNPs by
GWAS on genetically controlled model parameters (x axis). (B) The percentage of all 13600 causative SNPs (y axis) detected as significant SNPs by
GWAS on cellular phenotypes (x axis). Each boxplot summarizes 100 Monte Carlo runs. See Methods for further descriptions of model parameters and
phenotypes.
doi:10.1371/journal.pcbi.1002459.g002

Figure 3. Phenotypic variance explained by genotypic variation. (A) Total explained variance for genetically controlled parameters (x axis)
using detected causal SNPs as predictors. (B) Total explained variance for cellular phenotypes (x axis) using detected causal SNPs obtained from
GWAS targeting these phenotypes. (C) Total explained variance for cellular phenotypes (x axis) using detected causal SNPs obtained from GWAS
targeting all genetically controlled parameters. Each boxplot summarizes total explained variance by GWAS for 100 Monte Carlo runs. Explained
variance was measured as R2 from test set prediction with a multiple regression model, see Methods for further descriptions.
doi:10.1371/journal.pcbi.1002459.g003
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context where the main focus was to compare the genetic signal

strength at the parameter and cellular phenotype levels. However,

in future studies this aspect needs to be taken into account in order

to make quantitative assessments of how well we will be able to

pick up genetic signals as function of environmental variation.

Our approach will remain useful in conjunction with future

advances in statistical GWAS methodology, as it is applicable to

any phenotypic variation that can be described by computational

physiological modeling, irrespective of its position in the

phenotypic hierarchy. Even in those cases where the parameters

of a computational model are quite high-level phenotypes, our

results suggest that one will be able to gain insights about the

genotype to phenotype map that would otherwise be challenging

to achieve.

There has been an enormous expansion in efforts to model

complex biological systems the last decade, and steadily expanding

model repositories such as http://www.cellml.org and http://

biomodels.net facilitate exchange and reuse of such models.

Illustratively, our study benefited from the reuse of a model

available in CellML format. Future development of the cGP

approach and systems genetics in general will benefit greatly from

these standards and online resources as well as modeling efforts

like the Virtual Physiological Human (http://www.vph-noe.eu).

Reflecting upon how to improve the current performance of

large-scale GWA studies aiming to find the genetic determinants

underlying complex diseases, Dermitzakis and Clark stated

recently that ‘‘A major breakthrough will be to predict and

interpret the effect of mutational and biochemical changes in

human cells and understand how this signal is transmitted spatially

(among tissues) and temporally (spanning development)’’ [52]. Our

results suggest that combining GWAS methodology with a mature

phenomics technology guided to fit the needs of computational

physiology [53], may contribute substantially to making this vision

come true.

Supporting Information

Figure S1 False positive rates of GWAS on parameters
and cellular phenotypes (400 SNPs case). Boxplots

summarizing false positive rates (y axis) for 100 Monte Carlo

simulations for (A) parameters and (B) cellular phenotypes. The

false positive rate is defined as the proportion of the non-causative

SNPs among those identified as significant by the GWAS.

(EPS)

Figure S2 Percentage of causative SNPs detected by
GWAS (200 SNPs case). (A) The percentage of 200 causative

SNPs (y axis) detected as significant SNPs by GWAS on genetically

controlled model parameters (x axis). (B) The percentage of all

6800 causative SNPs (y axis) detected as significant SNPs by

GWAS on cellular phenotypes (x axis). Each boxplot summarizes

100 Monte Carlo runs. See Methods for further descriptions of

model parameters and phenotypes.

(EPS)

Figure S3 Phenotypic variance explained by genotypic
variation (200 SNPs case). (A) Total explained variance for

genetically controlled parameters (x axis) using detected causal

SNPs as predictors. (B) Total explained variance for cellular

phenotypes (x axis) using detected causal SNPs obtained from

GWAS targeting these phenotypes. (C) Total explained variance

for cellular phenotypes (x axis) using detected causal SNPs

obtained from GWAS targeting all genetically controlled param-

eters. Each boxplot summarizes total explained variance by

GWAS for 100 Monte Carlo runs. Explained variance was

measured as R2 from test set prediction with a multiple regression

model, see Methods for further descriptions.

(EPS)

Figure S4 The close resemblance between GWAS results
and linear sensitivity analysis (200 SNPs case). (A) The

number of causative SNPs for each parameter (y axis) detected by

performing GWAS on high-level cellular phenotypes (x axis). The

color intensity of each square describes the mean value of 100

Monte Carlo runs. (B) Sensitivities of the high-level phenotypes (x

axis) of the 2500 individuals in the training set to variation in each

parameter (y axis) quantified by univariate linear regression (see

Methods). The color intensity of each square describes the mean

R2 (coefficient of determination) value of 100 Monte Carlo runs.

(EPS)

Figure S5 False positive rates of GWAS on parameters
and cellular phenotypes (200 SNPs case). Boxplots

summarizing false positive rates (y axis) for 100 Monte Carlo

simulations for (A) parameters and (B) cellular phenotypes. The

false positive rate is defined as the proportion of the non-causative

SNPs among those identified as significant by the GWAS.

(EPS)

Table S1 Parameters with genetic variation. This sup-

plementary table contains data similar to that shown in Table 1,

the only difference being that it is based on 200 causal SNPs per

parameter instead of 400.

(PDF)

Table S2 Attained cellular phenotype values. This

supplementary table contains data similar to that shown in

Figure 4. The close resemblance between GWAS results and
linear sensitivity analysis. (A) The number of causative SNPs for
each parameter(y axis) detected by performing GWAS on high-level
cellular phenotypes(x axis). The color intensity of each square describes
the mean value of 100 Monte Carlo runs. (B) Sensitivities of the high-
level phenotypes (x axis) of the 2500 individuals in the training set to
variation in each parameter (y axis) quantified by univariate linear
regression (see Methods). The color intensity of each square describes
the mean R2 (coefficient of determination) value of 100 Monte Carlo
runs.
doi:10.1371/journal.pcbi.1002459.g004
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Table 2, the only difference being that it is based on 200 causal

SNPs per parameter instead of 400.

(PDF)
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