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Abstract

Variable numbers of tandem repeats (VNTR) typing is widely used for studying the bacterial cause of tuberculosis.
Knowledge of the rate of mutation of VNTR loci facilitates the study of the evolution and epidemiology of Mycobacterium
tuberculosis. Previous studies have applied population genetic models to estimate the mutation rate, leading to estimates
varying widely from around 10{5 to 10{2 per locus per year. Resolving this issue using more detailed models and statistical
methods would lead to improved inference in the molecular epidemiology of tuberculosis. Here, we use a model-based
approach that incorporates two alternative forms of a stepwise mutation process for VNTR evolution within an
epidemiological model of disease transmission. Using this model in a Bayesian framework we estimate the mutation rate of
VNTR in M. tuberculosis from four published data sets of VNTR profiles from Albania, Iran, Morocco and Venezuela. In the first
variant, the mutation rate increases linearly with respect to repeat numbers (linear model); in the second, the mutation rate
is constant across repeat numbers (constant model). We find that under the constant model, the mean mutation rate per

locus is 10{2:06 (95% CI: 10{2:61,10{1:58)and under the linear model, the mean mutation rate per locus per repeat unit is

10{2:45 (95% CI: 10{3:07,10{1:94). These new estimates represent a high rate of mutation at VNTR loci compared to previous
estimates. To compare the two models we use posterior predictive checks to ascertain which of the two models is better
able to reproduce the observed data. From this procedure we find that the linear model performs better than the constant
model. The general framework we use allows the possibility of extending the analysis to more complex models in the future.
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Introduction

Mycobacterium tuberculosis, the bacterial pathogen that causes

tuberculosis, latently infects one third of the world’s population

and is responsible for the highest mortality rate of any single

bacterial pathogen [1]. Recent advances in genotyping techniques

have increased our ability to discriminate among M. tuberculosis

isolates, helping to shed light on the genetic diversity, demograph-

ics and evolution of this pathogen [2,3]. For instance, Pepperell

et al. [4,5] suggested that the restricted diversity in this bacterial

species is likely the result of population bottlenecks and founder

effects. Genotyping or fingerprinting also refines our understand-

ing of the epidemiological characteristics of the disease in a

population, for example by revealing the extent of local

transmission and factors associated with this transmission (e.g.,

[6]).

Frequently used methods for genetic fingerprinting of M.

tuberculosis include restriction fragment length polymorphism

typing based on mobility of the insertion sequence IS 6110 [7]

and spoligotyping which exploits variation at the Direct Repeat or

CRISPR locus [8]. More recently, a multilocus typing method

based on variable numbers of tandem repeats (VNTR) has been

developed for M. tuberculosis [9–11]. These loci are minisatellites,

and are also known as mycobacterial interspersed repetitive units

(MIRUs). We will refer to these as ‘‘VNTR loci’’.

VNTR-based methods are increasing in importance and efforts

are being made to standardise the loci used [9]. The larger the

number of loci used, the greater the discrimination among isolates

resulting in a large number of smaller clusters of identical profiles

in a sample. The early standard of 5 locus VNTR typing lacked

the discriminatory power of IS6110-typing but comparative

studies have shown that using at least 12 loci can have comparable

or better discrimination relative to IS6110 [12–14]. An advantage

of using VNTR is that if the mutation rate is low there is the

possibility of adding more loci to increase discriminatory power

[10].

Inferences about transmission are sensitive to the degree of

genetic clustering, which is a function of the mutation rate of the

marker [15]. It is therefore important to have accurate estimates of

the mutation rate of VNTR loci. Knowledge of the mutation rate

of VNTR also allows calibration of the molecular clock to make

inferences about the evolutionary history of M. tuberculosis, for

instance, the time until the most recent common ancestor of a

clade [3].

PLoS Computational Biology | www.ploscompbiol.org 1 June 2012 | Volume 8 | Issue 6 | e1002573



A standard model for the evolution of VNTR loci is the stepwise

mutation model [16,17], which has successfully been used to

describe microsatellite evolution in eukaryotes (e.g. [18]). The

stepwise mutation model has also been applied to VNTR

evolution in M. tuberculosis [19], leading to estimates of the rate

of mutation. Such estimates in the literature vary widely from

10{5 per locus per year [19] to 10{3:9 per locus per year [3] to

10{3–10{2 [20]. This wide variation in estimates has led to

debate in the literature [21–24]. Taking a model-based approach

can help to resolve this question. It allows our understanding of

biological mechanisms underlying VNTR evolution to be incor-

porated into the analysis, while providing a natural framework for

model validation and criticism. Similarly, examination of multiple

data sets under the same models and methods could provide

support or otherwise for resulting estimates.

In this study we estimate the mutation rate of VNTR markers by

developing a stochastic stepwise mutation process of the evolution of

genotypes through gains and losses of repeat numbers [16,19]

embedded in a model of disease transmission [25]. We consider and

evaluate two alternative formulations of the stepwise mutation model

under a Bayesian statistical framework, applying our methods to four

geographically distinct data sets. Our study provides a posterior

estimate of the VNTR mutation rate under an explicit model of

evolution placed within an epidemiological context.

Methods

Model of the dynamics of infection and mutation of
VNTR loci

In the model of disease transmission we use, S(t) tracks the

number of individuals who are susceptible to infection and X (t)
tracks infectious individuals, where t is time measured in years. For

simplicity, we assume a population of fixed size N . Let bw0 be the

rate of transmission and dw0 be the rate of death or recovery. First

consider a deterministic model where the dynamics are given by

dX (t)

dt
~b(N{X (t))

X (t)

N
{dX (t): ð1Þ

We start the process with a single infected individual (X (0)~1).

Define R0 to be the basic reproductive ratio, that is, the number of

cases resulting from a single infectious case in a wholly susceptible

population. For this model, R0~b=d. The analytical solution of

Equation (1) can be written as

X (t)~
N(R0{1)

N(R0{1){R0½ �e{(dR0{d)tzR0

: ð2Þ

The steady state of the infectious population is

lim
t??

X (t)~N 1{
1

R0

� �
:

We use this deterministic model as the basis for a continuous-

time stochastic model that incorporates mutation at VNTR loci.

The transition rates of this model, summarised in Table 1, are as

follows: the rate of new infections is b(N{X (t))X (t)=N and the

rate out of the infectious class from death or recovery is dX (t). An

infection event increases X (t) by 1 while a death-or-recovery event

decreases X (t) by 1. Each infection is associated with a bacterial

genotype by which we mean the set of repeat states across all loci

considered in a VNTR typing technique, determined for a

particular isolate. Let Xi(t) be the number of individuals infected

with bacterial genotype i so that

X (t)~
XG(t)

i~1

Xi(t)

where G(t) is the number of distinct genotypes in the population at

time t.

We apply the stepwise mutation model to describe VNTR

mutation [16,17,19] in which an event results in a unit increase or

decrease in the number of repeats at a locus. We define Mi to be

the mutation rate per infectious case for genotype i so that the

transition rate for mutation of genotype i is MiXi(t). A mutation

event results in either a new genotype, or a pre-existing genotype

in the population (i.e., homoplasy). In the event of mutation to a

new genotype, the number of individuals from the mutating

genotype decreases by 1 and the number of individuals in the new

class becomes 1. In the case of homoplasy, the number of

individuals in the mutating genotype decreases by 1 while the

number of individuals in the existing class increases by 1. In either

case the total number of infected cases, X (t), does not change.

Table 1. Transition rates in the stochastic model.

Event Transition Rate

Infection X (t)?X (t)z1 b N{X (t)ð ÞX (t)=N

Xi(t)?Xi(t)z1 b N{X (t)ð ÞXi(t)=N

Death X (t)?X (t){1 dX (t)

Xi(t)?Xi(t){1 dXi(t)

Mutation Xi(t)?Xi(t){1 MiXi(t)

G(t)?G(t)z1* PG(t)
i~1 MiXi(t)

XG(t)(t)~1* MiXi(t)

*If an existing genotype is re-created by mutation, the count of that genotype is
incremented instead. Note that the increment G(t)?G(t)z1 occurs before the
assignment XG(t)(t)~1.

doi:10.1371/journal.pcbi.1002573.t001

Author Summary

Genetically typing the bacterium responsible for tubercu-
losis is useful for understanding the evolutionary and
epidemiological characteristics of the disease. Typing
methods based on variable number tandem repeat (VNTR)
loci are increasingly being used. These loci, which are
composed of repeated units, mutate by increasing or
decreasing in the number of these repeats. Knowledge of
the mutation rate of molecular markers facilitates the
epidemiological interpretation of the observed genetic
variation in a sample of bacterial isolates. Few studies have
examined the rate of mutation at these markers and
estimates to date have varied considerably. To address this
problem we develop a stochastic model of evolution of
these markers and then estimate their mutation rate using
approximate Bayesian computation. We examine two
alternative forms of the mutation process. The observed
data are from four published data sets of tuberculosis
bacterial isolates sampled in Albania, Iran, Morocco and
Venezuela. We find that these markers have fairly high
rates of mutation compared with estimates from previous
studies.

Estimate of VNTR Mutation Rate in M. tuberculosis
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We consider two alternative ways to specify VNTR mutation.

In the first model, the mutation rate at a locus is proportional to

the number of repeats at that locus. In this linear model, the per-

locus mutation rate increases linearly with the number of repeats

at the locus. In the second constant model, the mutation rate the per-

locus mutation rate is constant and thus not dependent on repeat

number. Defining L to be the number of loci, Ri,j to be the

number of repeats at locus j for genotype i, and m1w0 to be the

rate of mutation at a locus with a single repeat, under the linear

model

Mi~m1

XL

j~1

Ri,j :

Under the constant model

Mi~m
XL

j~1

1½Ri,jw0�,

where mw0 is the per locus mutation rate and where the indicator

function 1½A�~1 if A is true and 0 otherwise. In both models the

boundary condition Ri,j~0 is an absorbing state in that a locus

with zero repeats cannot gain or lose repeats.

The process starts at time t~1 with a single infected individual

and the population evolves until time t~Tstop. The initial

individual has genotype given by (w1, . . . ,wL), which we call the

founding genotype. At time Tstop a sample of size n is taken from

the population. We simulate this process using the Gillespie exact

algorithm [26] so that the time between events is distributed

exponentially, with parameter l(t), where

l(t)~b(N{X (t))
X (t)

N
zdX (t)z

XG(t)

i~1

MiXi(t):

Given an event, the probability of a specific outcome is

proportional to the rate of that outcome, so that

P(infectionDevent)~
b(N{X (t))X (t)=N

l(t)

P(deathDevent)~
dX (t)

l(t)

P(mutationjevent)~

PG(t)
i~1 MiXi(t)

l(t)
:

Given a mutation event, the probability of mutation in an

individual with genotype i is

P(mutation at genotype iDmutation)~
MiXi(t)PG(t)
i~1MiXi(t)

and given a mutation event in genotype i, the probability that it

occurs at locus j under the linear model is

Pl(mutation at locus jDmutation at genotype i)~
m1Ri,j

Mi

,

and under the constant model is

Pc(mutation at locus jDmutation at genotype i)~
m1½Ri,jw0�

Mi

:

We assume that given a mutation event at locus j in genotype i, the

probability of repeat gain is equal to the probability of repeat loss,

following [3,19].

Inference procedure
We implement a standard Bayesian analysis of model parameters

using approximate Bayesian computation (ABC) [27–29]. ABC

methods permit approximate Bayesian inference when numerical

evaluation of the posterior distribution is either computationally

prohibitive or not available, and have been successfully applied to

problems in molecular epidemiology [30–34].

Intuitively, given a candidate parameter vector, h[H, prior

distribution p(h) and model likelihood p(y0Dh) with observed data

y0, ABC methods proceed by generating an artificial dataset from

the model y*p(yDh) and then reducing the dataset to a low

dimensional vector of summary statistics, s~s(y). If s is similar to

the same vector of statistics obtained from the observed data,

s0~s(y0), then h could have credibly reproduced the observed

data under the model. As such, the parameter vector is then

retained as part of the approximate posterior, otherwise it is

discarded. More precisely, the posterior obtained under ABC

methods is given by

p(hDs0)&
ð

Ke(s{s0)p(sDh)p(h)ds ð3Þ

where Ke(u)~K(DuD=e)=e is a standard smoothing kernel with scale

parameter ew0. As e becomes small, the approximation (3)

becomes increasingly accurate, although computational overheads

increase. If the vector of summary statistics are informative for the

model parameters, then this posterior distribution approximates the

true posterior distribution so that p(hDs0)&p(hDy0)!p(y0Dh)p(h).
See e.g. [30,31,35,36] for further description of ABC methods.

The parameter vector for the constant model above is

hc~fR0,m,Tstop,w1, . . . ,wLg where w1, . . . ,wL is the repeat struc-

ture of the founding genotype in the simulation. For the linear

model we have hl~fR0,m1,Tstop,w1, . . . ,wLg. Except where this

may cause confusion, we will refer to a non-model-specific

parameter vector as h.

Conditional on the parameter vector h, and following simula-

tion under the model, a sample of size n individuals is drawn from

the resulting population. Summary statistics, s, are then computed,

determined as quantities expected to be highly informative

regarding the model parameters. Using lower case letters (e.g.

g,rij ) to denote sample-based values of the population-level

counterparts (e.g. G,Ri,j ), the summary statistics include the

number of distinct genotypes in the sample, g, and the set of L
sample means of repeats at each locus

�rr:j~
1

n

Xg

i~1

xirij ,

for j~1, . . . ,L, which is expected to contain information about the

initial repeat numbers w1, . . . ,wL for some time after the founding

Estimate of VNTR Mutation Rate in M. tuberculosis

PLoS Computational Biology | www.ploscompbiol.org 3 June 2012 | Volume 8 | Issue 6 | e1002573



case. Here, xi denotes the number of individuals in the sample

with genotype i, and rij denotes the within-sample number of

repeats at locus j for genotype i. The final two statistics are based

on the ANOVA decomposition SStotal~SSbetweenzSSwithin given

by

XL

j~1

Xg

i~1

xi(rij{�rr::)
2~

XL

j~1

Xg

i~1

xi(�rr:j{�rr::)
2z

XL

j~1

Xg

i~1

xi(rij{�rr:j)
2,

where �rr::~
1

nL

PL
j~1

Pg
i~1 xirij , from which MSbetween~

SSbetween=(L{1) and MSwithin~SSwithin=(L(n{1)) can be com-

puted. These two statistics are expected to be informative about the

mutation rate between and within loci. The complete vector of

summary statistics is then given by

s~fg,MSwithin,MSbetween=MSwithin,rr:1,rr:2, . . . ,rr:Lg:

To complete the model specification, we set the parameter d to 0:52,

following [32,37]. This death/recovery rate is the sum of the death

rate due to tuberculosis, the death rate due to other causes, and the

recovery rate from tuberculosis. We chose an informative prior

distribution for R0 based on the study of the basic reproductive

value of tuberculosis by Blower et al. [38]. We use a distribution

approximating the histogram in Figure 3a in reference [38] which

has a mean of 5.16 and a standard deviation of 2.82, and in

particular define the prior of (R0{1) to be a gamma distribution

with a shape parameter of (5:16{1)2=2:822 and a scale parameter

of 2:822=(5:16{1). The priors for log10 (m), log10 (m1),
log10 (Tstop) and w1, . . . ,wL are uniform with wide ranges as shown

in Table 2.

We examine the effectiveness of the ABC inference procedure

by evaluating its ability to recover accurate estimates of the

mutation rate based on data generated under the constant

and linear models We simulated a population of N~5000
individuals with L~24 loci, R0~2, Tstop~300, and considered

a range of mutation rates under each model varying across

orders of magnitude log10 (m)[f{3:5,{3,{2:5,{2g and

log10 (m1)[f{4,{3:5,{3,{3g. The number of repeats of the

founding genotype were initialised as 13,27,35,44,53,61,81 (deter-

mined as random draws from Binomial(9,3=11)z1), where ab

denotes b loci with repeat number a. Based on a sample of size

n~200 we generated data under each mutation rate value, and

obtained weighted samples from the ABC posterior approxima-

tions p(hDs) (c.f. 3) using a population-based ABC algorithm,

following [32,39,40]. The technical algorithmic details are given

in Text S1.

The estimated posterior distributions of log10 (m) and log10 (m1)
using the simulated data are shown in Figure 1. These results

indicate that mutation rates can generally be recovered accurately,

with the true parameter values lying in regions of high posterior

density close to the posterior mode, and with a clear location shift

in the density with varying mutation rate. Higher precision can be

attained by using a larger sample size, although n~200 already

represents a sample larger than the real datasets used for this study

(c.f. Table 3). In the ABC setting, posterior precision can also be

improved by reducing the kernel scale parameter e in (3) or by the

inclusion of more summary statistics [30,31,35,36], although each

of these can substantially increase computational overheads.

Improving the precision of posterior parameter estimates for

given summary statistics is currently an area of active ABC

research [41].

Data
We selected recently published VNTR loci data sets from

studies undertaken in four countries: Albania [42], Iran [43],

Morocco [11] and Venezuela [44]. We chose data sets with a high

number of isolates largely from the same clade, a high number of

VNTR loci in the typing method, and relatively short periods of

isolate collection. The data from Albania and Venezuela are based

on 24-locus typing, and the data from Iran and Morocco are based

on 15 and 12 loci respectively. A summary of these data are

provided in Table 3, along with the incidence of tuberculosis for

each country.

As an initial exploratory examination of these data, we

computed gene diversity [45] (also known as virtual heterozygos-

ity), for each locus in each data set. This statistic is given by

1{
P

k (njk=n)2 where njk~
P

i 1½rij~k�xi is the number of

isolates with repeat size k at locus j. Figure 2 (left plots) shows the

empirical cumulative distribution function of gene diversity across

loci for each of the data sets. There is no obvious bimodality in

these distributions. This feature is consistent with a common

process generating diversity, compared to, for example, the

potential bi- or multi-modality in the empirical cumulative

distribution function arising from a multi-modal distribution of

mutation rates. Similarly, plotting the proportion of VNTR states

per locus per repeat (right plots of Figure 2) reveals that while some

loci are more variable than others, there is no obvious separation

between loci exhibiting high and low variation.

Results

Figure 3 shows the marginal posterior distribution of the

mutation rate of VNTR loci for each of the four data sets analysed.

In the case of the linear model we also show (middle panel of

Figure 3) the posterior of �mm~�rr::m1, the per-locus mutation rate m1

at repeat size 1 scaled by the average repeat number �rr:: of each

dataset to provide estimates of the mean per-locus mutation rate in

a population with the same distribution of repeats as found in each

sample. The posterior means of the mutation rate under the two

models, along with 95% central credibility intervals are given in

Table 4. The mean per-locus mutation rate at a locus with a single

repeat from the four data sets under the linear model is 10{2:45,

and under the constant model the mean per-locus rate is 10{2:06.

Note that the prior distributions of the mutation parameters are

uniform on a logarithmic (base 10) scale, and so Figure 3 displays

the posterior distributions on this scale.

To evaluate the suitability of the constant and linear models to

describe the observed data, we follow [36,46,47] and implement

posterior predictive model checks. This approach examines the

predictive distribution of specified validation statistics (based on

Table 2. Prior distributions and initial sampling distributions
for each model parameter.

Parameter Prior distribution
Initial sampling
distribution

log10 (m1) U({5,{1) U({4,{2)

log10 (m) U({5,{1) U({4,{2)

R0{1 Gamma(2:18,1:91) Gamma(2:18,1:91)

log10 (Tstop) U({?,?) U(2,4)

wj Uniform on f1,2, . . .g Binom(9,1=5)z1

Initial sampling distributions are utilised in the ABC simulations (see Text S1).
doi:10.1371/journal.pcbi.1002573.t002

Estimate of VNTR Mutation Rate in M. tuberculosis
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data-generation under the fitted models) expected to be informa-

tive about various model aspects. Comparing the predictive

distribution of these statistics with the same statistics derived from

the observed data, enables some degree of discrimination between

models. To avoid confusing model fitting with model assessment,

these statistics should be different from those used in the ABC

model fitting process.

Unlike the constant model, the mutation rate increases with

repeat number under the linear model, and so we expect variation

in repeat numbers to increase with repeat numbers. Our model

assessment statistics aim to capture these differences from the data.

Specifically, we focus on measures of the spread of repeats over the

loci. Defining

v1~ max
j
fD(j)g, v2~ max

j
fD(j)g{ min

j
fD(j)g

where D(j)~maxifrijg{minifrijg, and

v3~ max
j
fv(j)g and v4~ max

j
fv(j)g{ min

j
fv(j)g,

where v(j)~
P

i xi(rij{�rr:j)
2=(n{1), and j indexes loci as before,

we consider the maximum (over loci) range (v1), the difference

between maximum and minimum range (v2), maximum variance

(v3) and the difference between maximum and minimum variance

(v4).

Under the linear model, the distributions of these statistics are

expected to be shifted to higher values compared to the constant

model. We also fit a simple linear regression to each data set with

the standard deviation of repeat number at a locus as the response

variable and the mean repeat number at a locus as the predictor

variable. Based on this fit, we consider

v5~ the regression slope and v6~the intercept at one repeat,

where v6 is the fitted standard deviation in repeats at a locus with a

mean repeat number of one. These statistics are expected to be

informative in that the slope should be positive under the linear model

and near zero under the constant value, and the intercept should be

low under the linear model and high under the constant model.

Figure 4 displays the predictive distributions of v2 versus v4

under both models. The observed data statistics are indicated by a

cross (|). If the cross does not lie within the body of the predictive

distribution, this suggests that the model and data are inconsistent

with respect to aspects of the data captured by these statistics. The

lower four panels present these diagnostics for artificial data

generated under both models. The linear data (lower images) can

be seen to be inconsistent with the constant model, but consistent

with the linear model. The constant data (middle images) appear

to be consistent with both models. As such, these diagnostics are

able to reject the constant model when the data is generated by the

linear model. In terms of the actual empirical data, the top plots in

Figure 4 are based on the data from Albania. Clearly, the constant

model is insufficient to describe the variation in repeat numbers

inherent in the data. The linear model is better able to account for

the observed pattern of repeat variation, although it is still

imperfect. The posterior predictive distributions using the data sets

from the other three countries were very similar to those of the

Albanian data set (not shown).

The question of whether the linear model is adequate is

examined further in Figure 5 which shows a posterior predictive

check of v1 versus v6 under the linear model for each of the

analysed data sets. In each case, the observed data lie on the

periphery of the predictive densities. Although the linear model is

partially able to reproduce these statistics, this analysis shows that

there is room for improvement.

Discussion

We have analysed VNTR data from four tuberculosis studies

using a model combining marker mutation and disease transmis-

sion processes, within a Bayesian framework. Our analysis shows

that the VNTR mutation rate is likely to be relatively high – the

posterior mean is higher than some previous estimates obtained in

the literature [3,19] and closer to more recent estimates [20]. The

four data sets, which are from different geographic regions, yielded

very similar estimates. Such agreement of estimates is expected if

there is a common mechanism of mutation across data sets.

Figure 1. Marginal posterior distributions for log10 (m) and log10 (m1) using simulated data. Plots show the marginal posterior distribution of
m (left) and m1 (right) using four simulated data sets generated from the constant (left) and linear (right) VNTR models. The known values of m and m1

used to generate the data, log10 (m)[f{3:5,{3,{2:5,{2g and log10 (m1)[f{4,{3:5,{3,{3g, are indicated by vertical lines.
doi:10.1371/journal.pcbi.1002573.g001

Table 3. Summary of data sets analysed in this study.

Country TB incidence* Loci Isolates Collection periodSource

Albania 15 24 100 2006–2007 [42]

Iran 19 15 154 2004–2005 [43]

Morocco 92 12 153 1997–1998 [11]

Venezuela 33 24 67 1997–2007 [44]

*per 100,000 per year. Data from [57].
doi:10.1371/journal.pcbi.1002573.t003

Estimate of VNTR Mutation Rate in M. tuberculosis
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Previous work by two of us [20] used standard equilibrium

results of the infinite alleles model to describe mutation at multiple

VNTR loci, and used estimates of other markers (IS6110 and

spoligotyping) to calibrate the VNTR rates. That population

genetic approach did not account for evolution of VNTRs as a

stepwise mutation process. It therefore did not account for

homoplasy, though this problem is mitigated by the inclusion of

multiple VNTR loci. Further, the underlying dynamics did not

include any epidemiological details. Nevertheless, it allowed us to

analyse a large number of data sets in the literature to provide a

ballpark estimate of VNTR mutation rates. In contrast to that and

other prior work, here we used a model that explicitly and

simultaneously accounts for the mutation process of the marker

and the disease dynamics, and we explored two alternative models

of mutation. In addition, the stepwise mutation model used here

allows mutation events to re-generate existing VNTR profiles,

thereby accounting for homoplasy [48].

In the debate over the magnitude of VNTR mutation rates

[3,21–24] it has been noted that if loci are classified as less

variable and more variable, then lower values would be estimated

from the former category of loci. This raises the question of

whether classification of loci into two categories of rates is

supported by an underlying bimodal distribution whose modes

correspond to low and high levels of polymorphism. In examining

gene diversity, which is a measure of polymorphism, across loci in

each data set (Figure 2) we did not observe any obvious break

separating less and more variable loci. We have therefore pooled

all loci and obtained an estimate of the rate of an arbitrary locus,

rather than for a subset of slow or fast evolving loci. If

hypermutable VNTR loci exist and are excluded from estimation

procedures, using the remaining loci would clearly yield a lower

mutation rate.

Our use of the linear model is a step towards resolving this issue.

The linear relationship by which more units of a repeat are more

Figure 2. Genetic diversity of VNTR loci for each published dataset. Left plots: Empirical cumulative distribution function of gene diversity
across loci. The gene diversity is computed at each locus as 1{

P
k (njk=n)2 where njk~

P
i 1½rij~k�xi is the number of isolates with repeat size k at

locus j. Right plots: Heat-map diversity, following Aminian et al (2009), illustrating the proportion of tandem repeats for each locus (ordered
according to the original study).
doi:10.1371/journal.pcbi.1002573.g002

Figure 3. Marginal posterior estimates for log10 (m1), log10 (�mm) and log10 (m). Here m1 is the per-locus mutation rate for a locus with a single
repeat under the linear model; �mm~�rr::m1 is the same quantity scaled by the mean number of repeats observed in the sample; m is the per-locus
mutation rate for any repeat number under the constant model.
doi:10.1371/journal.pcbi.1002573.g003
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prone to mutation naturally creates variation in rates. In fact, in

assessing the ability of each of our two mutation models to describe

the data, we found that the linear model performs better than the

constant model (Figure 4). We note that the average mutation rate

�mm under the linear model was estimated to be very close to the

mutation rate m in the constant model; in this sense our analysis is

robust to the exact form of the mutation model.

Despite the linear model outperforming the constant model, a

posterior predictive goodness-of-fit analysis revealed some evi-

dence that the linear model did not fit the data perfectly (Figure 5).

Table 4. Bayesian posterior estimates for mutation rate.

m1 m

Country mean
95% credible
interval mean

95% credible
interval

Albania 10{2:54 (10{3:14,10{2:05) 10{2:08 (10{2:64,10{1:52)

Iran 10{2:37 (10{2:94,10{1:82) 10{1:95 (10{2:53,10{1:57)

Morocco 10{2:44 (10{3:04,10{1:86) 10{2:19 (10{2:58,10{1:54)

Venezuela 10{2:48 (10{3:19,10{2:10) 10{2:03 (10{2:67,10{1:69)

doi:10.1371/journal.pcbi.1002573.t004

Figure 4. Posterior predictive model checks. Scatterplots of the posterior predictive distributions of v2 (the difference between maximum and
minimum range of repeat numbers over loci), versus v4 (the same quantity substituting variance for range). Columns represent constant (left) and
linear (right) models. Rows represent the Albanian dataset (top), artificially generated data from the constant model (middle) and artificially
generated data from the linear model (bottom). The | indicates the statistics derived from the observed dataset.
doi:10.1371/journal.pcbi.1002573.g004

Figure 5. Further posterior predictive model checks. Scatterplots
of the posterior predictive distributions of v1 (the maximum range of
repeat numbers over loci) versus v6 (the intercept at one repeat) under
the linear model, for each observed dataset. The | indicates the
statistics derived from the observed dataset.
doi:10.1371/journal.pcbi.1002573.g005
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While previous studies of eukaryote minisatellites agree with a

linear relationship between repeat number and mutation rate [49],

some studies of eukaryote microsatellites indicate a more complex

relationship between repeat number and mutation rate [50–53].

We investigated a third model in which the mutation rate increases

exponentially with repeat number, but the results are very similar

to those of the linear model (Figure S3 in Text S1). Future work

might adopt a per locus mutation rate that grows non-linearly with

repeat number. A drawback of this possibility would be the added

complexity and dimensionality of the model with the need to

estimate further parameters in a framework that is already

computationally intensive. An alternative approach might be to

construct a hierarchical Bayesian model of mutation rates in which

each locus is associated with its own rate according to some

distribution, akin to the analysis of Bazin et al. [54].

We have used a simple model to avoid overfitting the data.

However, it is possible to extend the model in future studies to

incorporate further complexity and realism. One such detail is the

reactivation of latent infection, which could be described by a

susceptible-exposed-infected (SEI) model in which a proportion of

cases progress directly to disease [38]. We performed preliminary

simulations from a stochastic version of such a model (details in

Text S1). We consider the number of distinct genotypes since this

is one of the statistics we use in the inference and it is known to be

informative for mutation rate in similar models [55,56]. Figure S2

in Text S1 shows how the number of distinct genotypes in a

sample varies with the mutation rate under both models. The

latent reactivation model was able to generate statistics close to the

observed statistic. The points in the region of the observed statistic

are near the posterior density generated under the original model.

While this is suggestive that a latency model would produce similar

estimates, a full Bayesian analysis would be required to address this

issue. The lack of latency is a limitation of our study which should

be addressed in future research.

Migration is another factor which a more realistic multi-deme

population model might incorporate. The interplay between

migration and mutation may affect the resulting estimates of the

mutation rate. For example, migration from regions with

genetically very different clades of M. tuberculosis occurs at a high

rate would lead to over-estimation of the mutation rate. Our

approach based on the approximate Bayesian computation

framework makes future directions such as this and those relating

to the mutation process feasible.

Supporting Information

Text S1 Additional technical details of the algorithm used in the

Bayesian analysis, the stochastic model of latent tuberculosis

reactivation, and the mutation model of VNTR with an

exponential increase in rate with respect to repeat number.

(PDF)
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