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Abstract

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus constitutes the central circadian pacemaker. The SCN
receives light signals from the retina and controls peripheral circadian clocks (located in the cortex, the pineal gland, the
liver, the kidney, the heart, etc.). This hierarchical organization of the circadian system ensures the proper timing of
physiological processes. In each SCN neuron, interconnected transcriptional and translational feedback loops enable the
circadian expression of the clock genes. Although all the neurons have the same genotype, the oscillations of individual
cells are highly heterogeneous in dispersed cell culture: many cells present damped oscillations and the period of the
oscillations varies from cell to cell. In addition, the neurotransmitters that ensure the intercellular coupling, and thereby the
synchronization of the cellular rhythms, differ between the two main regions of the SCN. In this work, a mathematical model
that accounts for this heterogeneous organization of the SCN is presented and used to study the implication of the SCN
network topology on synchronization and entrainment properties. The results show that oscillations with larger amplitude
can be obtained with scale-free networks, in contrast to random and local connections. Networks with the small-world
property such as the scale-free networks used in this work can adapt faster to a delay or advance in the light/dark cycle (jet
lag). Interestingly a certain level of cellular heterogeneity is not detrimental to synchronization performances, but on the
contrary helps resynchronization after jet lag. When coupling two networks with different topologies that mimic the two
regions of the SCN, efficient filtering of pulse-like perturbations in the entrainment pattern is observed. These results
suggest that the complex and heterogeneous architecture of the SCN decreases the sensitivity of the network to short
entrainment perturbations while, at the same time, improving its adaptation abilities to long term changes.
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Introduction

In mammals, the suprachiasmatic nucleus (SCN) of the

hypothalamus constitutes the central circadian pacemaker [1,2].

The SCN comprises about 20000 densely packed neurons organized

into bilateral pairs of nuclei on each side of the third ventricle, above

the optic chiasm [2] (Fig. 1). The cells receive light signals from the

retina via the optic nerve. The SCN controls circadian rhythms in

other parts of the brain including the cortex and the pineal gland, as

well as in peripheral tissues such as the liver, kidney, and heart. This

hierarchical organization of the circadian system ensures the proper

timing of physiological processes and behavior [1,3]. In natural

conditions, the organism is subject to the alternation of days and

nights. In response and anticipation to this cycling environment, the

circadian pacemaker adjusts the phase of clock-controlled processes

with respect to the light-dark cycle.

Each SCN neuron expresses clock genes. Interconnected tran-

scriptional and translational feedback loops form the core circadian

network allowing each cell to produce circadian oscillations [4,5].

Such oscillations still subsist in cultured cells. However, in dispersed

culture, the oscillator population is highly heterogeneous: many cells

present damped oscillations [6] and the period of the oscillations

varies from cell to cell [7]. To produce a reliable global rhythm, the

SCN cells must oscillate in synchrony. Synchronization is achieved

via intercellular coupling mechanisms [8,9]. The SCN can thus be

regarded as a network of coupled oscillators.

Cells of the SCN can be roughly divided in two groups of

neurons that differ by their light sensitivity, the neurostransmitters

they produce, and consequently by their coupling properties [2]

(Fig. 1). Besides GABA which is expressed by all SCN neurons

[10], several region-specific neurotransmitters have been identi-

fied. In the ventro-lateral region (VL), the neurons mainly express
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vasoactive intestinal peptides (VIP), whereas the neurons of the

dorso-medial region (DM) express a different neural hormone, the

arginine-vasopressin (AVP). When the two regions are dissociated,

the VL cells remain synchronized while the DM cells run out of

phase [11]. Such results suggest that the two SCN regions differ by

their intercellular coupling properties. Additionally, only the VL

region is light-sensitive and just a distinct subset of VL neurons is

directly influenced by the photic input [12,13].

Little is known about the connectivity and topological properties

of the SCN cellular network. However the characterization of

anatomical and functional connectivity in other regions of the

brain (e.g. cortex) revealed small-world properties [14,15,16].

Small-world topology combines local and long-range connections,

thereby decreasing the average path length between cells [17].

Such organization was shown to lead to more efficient synchro-

nization at a lower energy cost (because fewer connections are

needed) [18,19,20,21,22]. It is thus reasonable to assume that the

SCN also exploits such network properties to efficiently synchro-

nize neurons.

In this paper we developed a multi-oscillator model for the SCN

and investigated the implication of the network topology on

synchronization and entrainment properties. The model studied

here extends the work previously published by Bernard et al. [23]

in three main directions: we introduced heterogeneity among the

different SCN cells, we systematically compared generic network

topologies, we proposed a model accounting for the distinction

between two distinct subareas in the SCN, and investigated the

possible role of this separation in the response of the SCN to light

signals. The core cellular oscillator is a molecular model of

intermediate complexity, which is based on interlocked feedback

loops [24]. In the present work, we introduced cellular

heterogeneity through variability in parameter values to mimic

experimental observations and various topologies for the coupling

of the oscillators: random, scale-free, and local networks. Long

connections are present in the random and scale-free topologies

forming a small-world network [25,26]. Scale-free networks are

characterized by a skewed distribution of the connections where a

few cells (hubs) are connected to a large number of cells while the

rest have few outgoing edges. On the contrary in a local topology,

cells are only connected to their close neighbors. We compared the

dynamical properties of the different networks: resynchronization

time after a temporary arrest of the oscillations or after a transient

decoupling, the synchronization and entrainment performances,

as well as the response of the system to jet lags. Finally, we

proposed a coupled dual network as a model of the VL-DM

organization of the SCN.

Results

Model of individual cells
Several models have been proposed for the cellular mammalian

circadian clock. Earlier models are mostly phenomenological and

rely either on abstract equations [27,28], or on simple biomolec-

ular mechanisms [29]. More recently, detailed molecular models

have been proposed [24,30,31,32]. For our purpose we have

chosen the model of intermediary complexity proposed by Becker-

Weimann et al. [24]. This models does not explicitly incorporate all

clock components (for example no distinction is done between

Per1–3 and Cry1–2, the Per/Cry complex is denoted by PER),

but accounts for the core architecture of the circadian clock,

involving interlocked positive and negative feedback loops (Fig. 2).

To take into account coupling and light entrainment, the Becker-

Weimann model was extended to include a neurotransmitter and a

signaling cascade [23]. The coupling between the molecular

oscillators is accomplished by a neurotransmitter V , released upon

Per/Cry complex activity in the upstream cell. The neurotrans-

mitter triggers, in the target cell, a signaling cascade involving

PKA and CREB that have been experimentally shown to activate

Per/Cry transcription [33,34]. The resulting two-step cascade can

be seen as a generic signaling pathway. In addition to a

modulation by CREB, the production of Per/Cry mRNA (mper)

is also increased by light in the light-sensitive cells. Overall, the

model we used comprises ten state variables that represent

different molecular species or complexes (Fig. 2). Reaction rates

are modeled using mass-action kinetics, except for the regulated

Figure 1. Scheme of the SCN. The SCN is divided in two identical
hemispheres (left and right), each composed of two groups of neurons
(core and shell, shown on the right hemisphere), distinguished by the
type of neurotransmitters they release. In the ventro-lateral part (VL),
the neurons mainly express VIP (shown on the left hemisphere),
whereas in the dorso-medial part (DM), AVP is expressed. The two parts
also differ by their coupling properties. Moreover, only a subset of VL
neurons are light-sensitive and are entrained by light cues originating
from the optical chiasm (OC).
doi:10.1371/journal.pcbi.1002419.g001

Author Summary

In order to adapt to their cycling environment, virtually all
living organisms have developed an internal timer, the
circadian clock. In mammals, the circadian pacemaker is
composed of about 20,000 neurons, called the suprachi-
asmatic nucleus (SCN) located in the hypothalamus. The
SCN receives light signals from the retina and controls
peripheral circadian clocks to ensure the proper timing of
physiological processes. In each SCN neuron, a genetic
regulatory network enables the circadian expression of the
clock genes, but individual dynamics are highly heteroge-
neous in dispersed cell culture: many cells present damped
oscillations and the period of the oscillations varies from
cell to cell. In addition, the neurotransmitters that ensure
the intercellular coupling, and thereby the synchronization
of the cellular rhythms, differ between the two main
regions of the SCN. We present here a mathematical model
that accounts for this heterogeneous organization of the
SCN and study the implication of the network topology on
synchronization and entrainment properties. Our results
show that cellular heterogeneity may help the resynchro-
nization after jet lag and suggest that the complex
architecture of the SCN decreases the sensitivity of the
network to short entrainment perturbations while, at the
same time, improving its adaptation abilities to long term
changes.

Effect of Network Architecture on SCN Oscillations
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mRNA production rate where Hill-type functions are used (see

Eqs. (1) in Models).

To mimic the experimentally observed population heterogeneity,

we introduce variability in all model parameters except Hill

coefficients. For each cell j, the parameters k
j
i (see Eqs. (1) and

Tab. S1) are uniformly distributed in the logarithmic space around

the original parameter values k0
i where the variability is controlled by

the heterogeneity parameter k: k
j
i~k0

i
:(1zx) with x*U({k,k), U

being a uniform distribution in the range ½{k,k�. All individual

parameters are randomly chosen without any intra- or intercellular

correlations. Examples of individual oscillators are shown in figure 3A.

We tested different values of k between 0.025 and 0.3 (Fig. 3B–C) and

observed that small values of k generate a population where about

half of cells have limit-cycle oscillations (Fig. 3B), but the pseudo-

periods (defined as the average duration between two peaks, see

Models) have little variability (Fig. 3C). On the other hand, large values

of k lead to high heterogeneity where some cells are overdamped and

the pseudo-periods are broadly distributed. In the intermediate

regime (k~0:075 � 0:2), the results are not very sensitive to k,

therefore for the different simulations, we chose a value of k~0:1.

For this value, about 35–40% of the cells oscillate in isolation as

observed experimentally [6] (Fig. 3D). The distribution of the pseudo-

period of oscillation is centered on a value of 21.2 hours with a

standard deviation of 0.7 hour (Fig. 3E) which is in the range of

experimental results [35].

The SCN as a network of oscillators
To form the SCN network, we supposed that the cells are

connected with directed (unidirectional) edges through the

dendrites. The upstream cell produces a neurotransmitter V acting

on a signaling cascade in the downstream cell that increases mper

expression, the PER coding mRNA (Fig. 2). The effect of the

incoming signals from the different cells sums up until saturation (see

Eq. (3) in Models). The coupling parameter K , that represents the

strength of the effect of V on PKA activation in the downstream

cell, was set to a value of 0.5 for most simulations (the effect of the

value of K will be discussed later). Note that, although K is identical

for all cells, intercellular heterogeneity causes variability in the

connection strengths due to differences in the dynamics of the

species involved in the cell-cell communication (V , PKA and

CREB).

In this analysis, we mainly focused on the effect of the network

topology on the synchronization properties and ignore the effect of

individual parameters. We selected three generic types of networks:

random connections between cells (R), scale-free distribution of the

outgoing edges (SF ), or local connections only (L) (see Models and

Fig. 4). Each type of network contains 200 cells and we tested

different values of �dd, the average number of edges per cell, ranging

from 3 to 15. For simulations with light, in agreement with the

experimental observations [13], we assumed that only 20% of cells,

on average, are light-sensitive and the distribution of light-sensitive

cells can be either random (RR, SFR or LR respectively, second

column in Fig. 4), biased to favor the cells with the highest outgoing

degree (RD or SFD) or spatially localized in the case of the local

topology (LF , third column in Fig. 4). In the six topologies, the

average degree and the fraction of light-sensitive cells are identical

to allow a fair comparison (see Tab. S2).

We first performed the following in silico experiments [9,11,36]:

interruption of the protein production due to an administration of

cycloheximide (CHX) or interruption of the cell-cell communica-

tion through exposure to tetrodotoxin (TTX, see Models for

implementation), both in a network without light entrainment.

Our results are consistent with the experiments: cells stop oscillating

upon exposure but quickly resynchronize after CHX (Fig. 5A) or

TTX wash-out (Fig. 5B). The phase of the individual oscillators

(measured at the stationary state, about 30 cycles after the

perturbation) is conserved after both CHX (Pearson’s r~0:92,

p~5:4|10{85 in Fig. 5C) [11] and TTX (Pearson’s r~0:98,

p~1:9|10{131 in Fig. 5D) perturbations [36]. Results in figure 5

were made using a scale-free network, but the other topologies

tested in this work (random and local) display similar results. As

previously reported [37], the period of the individual oscillators is

negatively correlated with the difference between the phase of the

same oscillator and the phase of the network (Pearson’s r~{0:27,

p~4:6|10{8, Fig. S1).

Synchronization properties of the different network
topologies

To compare the different networks, we focused on the

concentration of the PER/CRY complex (variable PER) averaged

over all cells (P, see Eq. (7) in Models) and evaluated its amplitude

and period of oscillation (see Fig. 6A and Models). As the networks

are randomly generated, all results in figures 6 and 7 represent the

mean of the value measured over 30 different networks. We also

defined two different order parameters as described in the Models

section, equations (8) and (9): the state order parameter R that

measures how synchronized are the individual oscillators over the

Figure 2. Scheme of the single-cell circadian oscillator. The
intracellular oscillator consists of interlocked positive and negative
transcriptional/translational feedback loops. In the negative feedback
loop, Per and Cry genes (treated as a single variable) inhibit their own
transcription by preventing BMAL1 activity. In the positive feedback
loop, the PER/CRY complex activates the transcription of their common
transcriptional activator, Bmal1 [24]. The release of the neurotransmitter
is activated by PER/CRY. In turn, the neurotransmitter activates, in the
downstream cell, a signaling cascade (involving PKA and CREB) that
increases Per/Cry mRNA expression [23]. In this model, light enhances
Per/Cry mRNA expression. In this schematic representation, solid arrows
denote transport, translation steps, or phosphorylation/dephosphory-
lation reactions, while dashed arrows denote transcriptional or post-
translational regulations. The stars indicate the active (phosphorylated
or complexed) forms of the proteins.
doi:10.1371/journal.pcbi.1002419.g002

Effect of Network Architecture on SCN Oscillations
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length of the simulation, and the phase order parameter r, that

measures how the individual oscillators are in phase at a given

time (note that this measure is independent of the magnitude of the

amplitude). It is worth noting that the coupling function implies

that a cell always acts on the dynamics of its downstream cells even

if they are synchronized. This differs from a diffusive interaction

(e.g. Kuramoto oscillators [28,38] in which the coupling depends

on the phase difference) for which synchronized oscillators have no

influence on each other. This property, along with cellular

heterogeneity, prevent the application of theoretical results found

in the literature [39,40], and require a numerical analysis.

In the following, we distinguish two different conditions of

simulation: in constant dark (DD, no entrainment, Fig. 6A) or in a

light-dark cycle (LD, period of 24 hours with 12 hours of

entrainment, Fig. 6B). The results of the mean amplitude and

the oscillatory period for different network architectures (average

of 30 randomly chosen networks for each condition) are shown in

figure 6C–F. Considering the random networks, the amplitude of

P oscillations strongly depends on the average degree �dd with the

maximum value seen for an intermediate connectivity: 5 edges per

cell for the case without entrainment (Fig. 6C) and 7 with

entrainment (Fig. 6D). This dependence on the number of edges is

Figure 3. Individual cell variability. (A) Concentration of PER and BMAL in different cells. The cell is isolated and entrained by light until t~0,
then the number of oscillations (pseudo-cycles) is measured until the relative amplitude is lower than 0.1. (B) Distribution of oscillating and damped
cells depending on the parameter variability k. ‘Not Osc.’ stands for ‘Not Oscillating’ (see Models). (C) Mean and standard deviation of the pseudo-
period of individual cells for different values of k. (D) Distribution of the cell dynamics for k~0:1: more than one third of the cells show sustained
oscillations and the others display from 5 to 20 pseudo-cycles. (E) Distribution of the pseudo-periods for k~0:1 for the oscillating and damped cells
(see Models).
doi:10.1371/journal.pcbi.1002419.g003

Effect of Network Architecture on SCN Oscillations
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also reflected in the order parameters R and r whose values are

maximal for an intermediate connectivity of �dd~9 (Fig. S2). The

period in DD conditions is around 25 hours for low connectivity

which is closer to experimental evidence [35] than the period of

22 hours found in highly connected networks. In LD conditions,

all random networks have a 24-hour period, reflecting proper

entrainment by light.

For the scale-free networks, the amplitude the system exhibits in

darkness is the largest of all topologies, also for very low connectivity

(Fig. 6C). It drops when increasing the number of edges and

converges to the results of the other networks. The period of SF

networks without entrainment is around 26 hours for �dd~3 and

decreases down to 22 hours for higher connectivity as for the

random networks. In light-entrained conditions, a significant

difference can be noticed between the case where the light-sensitive

cells are randomly distributed (SFR), and the case where the cells

with high outgoing degree are light-sensitive (SFD). Although both

network types show large amplitude, the SFR networks do not

systematically have the same period as the entrainment signal for
�ddƒ5 because a significant fractions of the cells are not located

downstream of a light-sensitive cell. On the other hand, SFD

networks have a period of 24 hours for all tested �dd values which

means that SFD networks are more suitable to represent the SCN.

For the local topology, we observed that, without entrainment

(left column in Fig. 6), local networks have a low amplitude due to

a lack of synchronization throughout the network (see also Fig.

S2A–B). Clearly, since the connections are only local (Fig. 4), the

network does not have the small-world property [25]. On the

other hand, with light entrainment, local networks with a random

distribution (LR) of the light-sensitive cells have ample oscillations

and a 24-hour period. In this specific case, due to the random

distribution of light-sensitive cells, most of the cells are directly

downstream of a cell entrained by light even for small �dd (Fig. S3).

In the case where the light-sensitive cells are closely localized (LF ),

the entrainment efficiency is weak and the oscillation amplitude of

P is low.

These results suggest that, in constant dark, the scale-free, and

to a lesser extent, the random architectures with an intermediate

connectivity (5–7 edges per cell on average) seem to represent the

experimental data best. In contrast, local architectures as defined

in our work impede an efficient synchronization of the cells and

therefore show small oscillations. In LD conditions, the distribu-

tion of the light-sensitive cells plays a significant role and the

networks that have a smaller average distance to a light-sensitive

cell (Fig. S3), i.e. the RR, RD, SFD or LR networks, show a larger

oscillatory amplitude (Pearson’s r~{0:70, p~5:3|10{185 over

all networks types and average degrees).

Effect of the coupling constant on the synchronization
properties

The relationship between the average number of degrees and the

amplitude in both DD and LD conditions (Fig. 6C–D) suggests that

a strong connectivity is detrimental for system performance. This

raises the question of how the value of the coupling constant K
affects the network oscillations. While maintaining �dd~5, a stronger

coupling constant (larger K ) decreases the amplitude and the period

of oscillations in DD conditions (Fig. S4A, C). In light/dark

conditions, the relation between K and P oscillation amplitude

follows a bell-shaped curve, the maximum of which depends on the

network type. For L networks, a weak coupling (K&0:25) is

optimal, whereas an intermediate coupling (K&0:5) favors SF
networks and a strong coupling (K&0:75) is preferred for random

networks. Note that, for most of the K values the performance

ranking of the network types remains the same (scale-free networks

showing largest amplitude). In addition, although K can be fine-

tuned to increase the performance of a given network type, the

results we obtained with K~0:5 are qualitatively similar to results

with other K values which is why K~0:5 will be used for further

analyses.

Resynchronization and adaptation of the network after a
jet lag

We then considered the case of a perturbation in the

entrainment pattern of light/dark alternation. Since one of the

goals of the circadian clock is to ensure the adaptation to the day-

night cycle, an efficient clock should resynchronize rapidly after a

jet lag. We chose the case of an 8-hour shift resulting in a long

night of 20 hours, followed by the regular 12 h:12 h LD cycle. As

a measure of resynchronization, we considered the number of

cycles until the system recovers, i.e. has a phase difference between

the peak of P and the beginning of the night similar to the one

prior to the jet lag [41]. We also determined the maximal decrease

of the phase order parameter after the jet lag as a measure of how

the individual cells desynchronize as a consequence of the jet lag.

As shown in figure 7A–C, the effect of a long night depends on

the network type. In the case of an SFD topology, the

Figure 4. The different topologies tested. Three types of networks
are used in this work: random architecture (first row, R), scale-free
architecture (second row, SF ) and local connections (last row, L). Note
that the spatial distribution plays a role only in the ‘local’ networks. In
the first column the corresponding adjacency matrix A is shown (a
black square at position Aij represents a connection from the j-th to the
i-th cell). In the second column, a representative network is drawn
showing outgoing edges (blue lines) from certain cells (larger black
circles) and a random distribution of light-sensitive cells (small yellow
dots in the black circles). These networks are named RR, SFR and LR

respectively. In the third column, the network has a biased distribution
of light-sensitive cells, either on the cells with a higher outgoing degree
(for random and scale-free networks, first two row, named respectively
RD and SFD), or spatially localized (for local networks, last row, named
LF ).
doi:10.1371/journal.pcbi.1002419.g004

Effect of Network Architecture on SCN Oscillations
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synchronization of the system is hardly perturbed (blue line in

Fig. 7A) and the phase difference between the peak of P and the

beginning of the night recovers its value prior to the jet lag in

about 3 cycles. On the contrary, the SFR network needs about 6

cycles to regain the proper phase with a strong decrease of

synchronization (Fig. 7B). For the LR network, although the

system experiences desynchronization, the phase difference is

recovered in about 4 cycles (Fig. 7C). A systematic analysis of the

different network types shows that random networks (RR and RD)

and scale-free networks with biased distribution of the light-

sensitive cells (SFD) undergo very little desynchronization (Fig. 7D–

E). Note that the results for the LF networks are less relevant

because these networks display very low amplitude.

In order to generalize the measured advantage of the RR, RD

and SFD network types for resynchronization after a jet lag, we

tested 3 other types of 8-hour shifts: a short night, a long and a

short days. The results (summarized in Fig. S5) show that these

three types of networks are also the best performers when

experiencing other types of jet lags, but also that the long day or

night (delay shifts) have less impact than the short day or night

(advance shifts). We further investigated this difference between

delays and advances for RD and SFD networks with �dd~5. For

different shifts ranging from 4 to 10 hours, long shifts induce

longer resynchronization time (Fig. 7F–G), but additionally, the

network resynchronizes significantly faster after a delay than an

advance of the same shift duration (Wilcoxon’s pv0:01 with

n = 30 for all shifts and both networks, expect for RD with a 4-hour

shift). Remarkably, this corresponds to experimental evidence on

mice [42] and physiological observations showing that recovery

from a jet lag due to westbound flights (long day or night) is easier

than recovery from eastbound ones [43].

Coupling two network types to model the VL and DM
regions of the SCN

The next question we addressed concerns the separation of the

SCN in two different regions, namely ventro-lateral (VL) and dorso-

medial (DM). Experimental observations have shown that the VL is

entrained by light but oscillates with large amplitude even in dark

conditions [11,12]. These properties closely correspond to networks

with RR, RD or SFD architectures. On the other hand, the current

consensus for the DM, is an entrainment through the VL and not

directly by light [11]. Additionally, when detached from the VL, the

cells of the DM hardly oscillate and are not synchronized. When

looking for these features in the network types studied above, a local

network with random distribution of the entrained cells seems to

best represent the DM. In terms of geometry, the VL forms a core

surrounded by the DM which would lead to the hypothesis that

connections between the VL and the DM regions occurs locally on

the border between the two regions. A biased distribution of the

light-sensitive cells in the VL is also plausible as the SCN is located

Figure 5. Effect of CHX and TTX treatments. (A) Resynchronization in constant dark for a scale-free network with �dd~5 and k~0:1 after addition
of CHX (no protein production) for 32 hours and its removal. (B) Same network exposed to TTX (no cell-cell communication) for 72 hours. Gray lines
represent PER/CRY concentration in individual cells and the thick black line is the population average P. (C–D) Comparison of the phases of the
individual oscillators before (x-axis) and after (left y-axis) CHX (C) or TTX (D) exposure (black dots). In blue, the distribution of the phase prior to the
perturbation is plotted on the right y-axis. A positive phase difference corresponds to a phase advance of the individual cell compared to the average
PER concentration.
doi:10.1371/journal.pcbi.1002419.g005

Effect of Network Architecture on SCN Oscillations
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above the optical chiasm (Fig. 1) and thus the cells located in the

lower part of the VL could be more sensitive to the light clues. Such

configuration would allow a compact organization of the SCN

without long neuronal connections (Fig. 8A–B and S7).

To test this hypothesis, we performed simulations of a SCN

composed of two regions with the following properties. The VL is

modeled by an SFD network composed of 200 cells and has an

average value of �ddVL~7 edges. Random networks are also able to

produce ample oscillations in the VL (Fig. S6A, C), however the

local networks are not plausible due to their low amplitude in DD

conditions. For the DM, we chose a local network of 200 cells with
�ddDM~7 surrounding the VL region as other topologies would

require long connections across the VL. Cells of the VL and the

DM are heterogeneous with parameters distributed as previously

(k~0:1). Entrainment of the DM by the VL is made by local

connections with an average outgoing degree of �ddVL{DM~5
(Fig. S7). Note that this architecture implies that no DM cells can

be upstream of a VL cell.

Figure 6. Properties of the synchronized network. (A) Synchronization in constant darkness (DD) of a scale-free architecture (SFD) network
with �dd~5 and k~0:1. The measured properties are the amplitude of the P oscillations and the period of these oscillations. Each gray line represents
the concentration of PER in an individual cell; the thick black line is P. (B) Synchronization in 12 h:12 h light/dark conditions (LD) for the same
network as (A). (C–D) Amplitude of the P oscillations in the DD (C) and LD (D) conditions for different network types as a function of �dd . (E–F) Period of
the P oscillations in the DD conditions (E) and in LD conditions (F) for different network types as a function of �dd . The amplitude and period in the LD
conditions for the SFR and LF networks (D and F) shows large variability because some networks with low connectivity are not properly entrained.
This weak entrainment (due to the architecture) induces amplitude modulation and biases the results. In C–F, error bars represent the standard
deviation for the results of 30 different networks of the same type. The network types are abbreviated as R for random, SF for scale-free, and L for
local; the subscript R stands for a random distribution of the light-sensitive cells and the subscripts D or F for a biased distribution as shown in
figure 4.
doi:10.1371/journal.pcbi.1002419.g006
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The simulations of this system show good synchronization and

entrainment of the DM part in both dark and light/dark

conditions (Fig. S8). However we saw a delay of the DM phase

in comparison to the VL (Fig. S8B, D), which contradicts the

experimental results [11]. To counter this problem, we used faster

oscillating cells for the DM (see Eq. (6) in Models) as suggested by

experimental data [44]. With this adjustment, the DM is not

properly entrained by the VL because the free-running period of

the whole DM is too short. This can be improved by decreasing K

to 0:15 in the DM only (Fig. 8) which results in oscillations with

larger amplitude (Fig. S4B) in LD conditions, as well as an increase

of the free-running period (Fig. S4C). Additionally, reducing the

coupling has also been suggested as a way of facilitating the

entrainment [45]. With this configuration, the center of the DM is

Figure 7. Effect of a jet lag on the SCN model. (A) In the case of an SFD network with �dd~5, the 8-hour shift due to a long night (at t~0 h)
affects the phase of the peak of P (black line) for about 3 cycles. Before the jet lag, the peak occurs about 4 hours after the night. In the first 3 cycles,
the peak is in the late day and regains its initial phase at the fourth cycle (top inset, a positive value implies a phase advance). Throughout this
perturbation, the cells remain well synchronized: the phase order parameter (blue line) is even increased. (B) For an SFR network with �dd~9, the
system needs about 6 cycles to recover its correct phase and suffers a strong desynchronization. (C) For an LR network with �dd~5, the system needs
only 4 cycles to recover the phase, but cells are strongly desynchronized and the amplitude of oscillations decreases significantly. (D–E) Decrease in
the phase order parameter after the jet lag (D), and number of cycles needed for the phase to be within 1 hour of the phase prior to the jet lag (E) as
a function of the network type and the average degree. In both plots, lower values correspond to a faster adaptation: SFD networks show better
results for both properties. Note that the results for the LF networks are less relevant as the oscillation amplitude is low (Fig. 4D). Results using other
types of jet lags are plotted in figure S5. (F–G) Decrease in the phase order parameter (F), and number of cycles needed for phase resynchronization
(G) after the jet lag as a function of the shift in hours for RD and SFD networks with �dd~5. In all cases, except RD with �dd~5, advance shifts (dots) have
a stronger impact than the corresponding delay shifts (circles).
doi:10.1371/journal.pcbi.1002419.g007
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in phase with the VL and some exterior cells are in phase advance

(Fig. 8A,B). When isolated from the VL, the DM cells are not

synchronized (Fig. S9) which is in agreement with experimental

observations [11]. Note that for a core formed of a random

network, the DM is delayed in LD conditions despite these

adjustments (Fig. S6B, D). This suggests that a scale-free

architecture is the most plausible topology for the VL region of

the SCN.

Effects of perturbations on an SCN composed of two
network types

A possible advantage of a division of the SCN in two regions can

be to filter disturbances of the entraining LD cycle. To test this

hypothesis, we perturbed the light inputs in two different ways and

measured the effect on P in the VL and the DM regions of the

SCN. The first perturbation is an interruption of 4 hours of the

light cue during the day (a pulse of light during the night has only a

marginal effect and was therefore not studied further). In this case,

(Fig. 9A), the amplitude of the average PER concentration over

the VL cells rises before dropping by about 20%. The initial value

is recovered after about 10 cycles (Fig. 9C). The phase is also

affected, first delayed by about 1.5 hours and then advanced by

the same value (Fig. 9E). However, the amplitude of the DM part

is hardly affected by the perturbation, although the maximal phase

shift is similar. To quantify the effect of the perturbation, we

defined d as the average normalized difference between the peaks

and the stationary peaks over 300 hours after the perturbation (see

Eq. (10) in Models). Averaged over 30 different networks, the effect

of the 4 h light interruption on the VL is dVL~0:141+0:017,

which is 33% more (Wilcoxon’s p~2:1|10{6) than on the DM:

dDM~0:106+0:026.

The second perturbation studied is, as previously, a jet lag of

8 hours occurring during the night (resulting in a long night of

20 hours). The VL cell reacts strongly by increasing the peak value

Figure 8. Simulation of the SCN composed of two regions in DD and LD conditions. Simulation of the SCN with different architectures for
the VL and DM regions (an SFD coupled to an LR network, see Fig. S7 for a sketch of the topology), where the coupling constant K between the DM
cells is 0.15 and the DM cells are oscillating faster (see Models). (A–B) Phase difference of the cells in DD (A) and LD (B) conditions. Dots represent cells
of the VL (beige region), whereas DM cells are small squares (light yellow region). Phase difference is color encoded: green corresponds to a phase
delay, blue to a phase advance and red to antiphase (see also Fig. S13). (C–D) Concentration of PER in the individual VL (cyan lines) and DM cells
(magenta lines), as well as the average over the VL cells (thick blue line), the DM cells (bold red line), and over the entire SCN (thick black line) in DD
(C) and LD (D) conditions.
doi:10.1371/journal.pcbi.1002419.g008
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of oscillations by about 50% (Fig. 9B,D). As already measured

(Fig. 7E), the phase of the VL adjusts precisely to the new

entrainment pattern in about 4 cycles (Fig. 9F). The phase of the

DM follows the VL within one cycle reaching the correct phase in

5 cycles. Here also, we observed a strong difference between the

VL and the DM parts of the SCN: dVL~0:279+0:023 whereas

dDM~0:101+0:027 (Wilcoxon’s p~3:0|10{11). These results

suggest that the separation of the SCN in two parts with different

topologies allows the DM region to have a lower sensitivity to short

entrainment perturbations while at the same time better adapts to

long term changes than a network formed of a unique topology

such as the VL.

Discussion

In this work, we addressed the question of the organization of

the neuronal cells in the SCN by assessing the synchronization

properties of different types of networks. In these networks, each

cell is a circadian oscillator but the population shows heterogeneity

in its oscillatory behavior as observed experimentally [7,6]. We

Figure 9. Effects of entrainment perturbations on the SCN composed of two regions. (A) Effect of a 4-hour interruption of the light
entrainment during the day (see arrow a t~0 h) on VL (blue) and DM (red) average PER concentrations in the same SCN network as in figure 8.
Dashed lines represent the unperturbed trajectories. (B) Effect of an 8-hour jet lag (long night, see arrow at t~0 h) on VL (blue), DM (red) average
PER concentrations (same network). Dashed lines represent the unperturbed trajectory shifted from 8 hours. (C–D) Average concentration of PER at
the extremum (points) of oscillations after an interruption of the light entrainment of 4 hours during the day (C), corresponding to panel A, or after a
jet lag of 8 hours equivalent to a long night (D), corresponding to panel B. The average of VL cells is in blue and of DM cells in red. Dashed lines show
unperturbed values. (E–F) Phase shift of the peak of P for the VL (blue) and DM (red) after an interruption of the light entrainment of 4 hours during
the day (E), corresponding to panel A, or after a jet lag of 8 hours equivalent to a long night (F), corresponding to panel B. A positive value
corresponds to a phase advance.
doi:10.1371/journal.pcbi.1002419.g009
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found that, in general, the network is able to cope with cellular

heterogeneity and the system oscillates with large amplitude and a

period slightly longer than the individual period which is consistent

with in vitro measures [46].

Our results show that the architecture of the network,

independently of the number of cells in the network (Fig. S10),

plays a significant role in the synchronization properties. In

general, we observed that a strong connectivity, either due to a

high number of connections or a strong value of the coupling

constant K , is detrimental for the amplitude of oscillations. The

distribution of the edges also plays a critical role: Vasalou et al. [25]

already observed that small-world networks are better synchro-

nized than networks with local connections. Our results not only

confirm that random networks better synchronize than our local

networks, but also show that scale-free networks exhibit larger

oscillations and better synchrony with fewer connections in DD

conditions. In LD conditions, a strong correlation exists between

the average distance to a light-sensitive cell and the performance of

the network (Fig. S3). In our work, two types of networks result in

a short average distance and therefore ample oscillations in LD

conditions: (1) networks with a uniform degree distribution (local

or random) and uniformly distributed light-sensitive cells, or (2)

scale-free networks where the cells with high outgoing degree are

light-sensitive.

These results were obtained with a variability k~0:1 as the

distribution of individual cells properties matched experimental

data. We now briefly comment on the effect of the value k for the

different types of networks. To simplify the analysis, we varied k
only for networks with an average degree of �dd~5 as all types of

networks show good performance for this value. In both DD and

LD conditions, although the synchronization increases, oscillation

amplitude remains similar for values of k between 0 and 0.1 (Fig.

S11A–B), reflecting that the networks can efficiently cope with

some cell-to-cell variability and that a tight tuning of individual

oscillators is not necessary. This property holds for all types of

networks. Cell heterogeneity also induces phase fluctuation [47]

and we found a rather weak correlation (Pearson correlation

coefficient r~{0:27) between individual phase differences and

the period of the cellular oscillators (Fig. S1) which is closer to

experimental observations [47] than the high correlation reported

for simpler models where heterogeneity was only introduced at the

level of the period [37].

One of the properties of the circadian clock is adaptation to

changes in the entrainment pattern for example after a jet lag or a

long period of dark (hibernation). Although circadian rhythms and

chronotherapy play an important role in medicine, the specific

case of jet lag has only been marginally discussed in the modeling

literature [41]. Our contribution to this question shows that the

network topologies are strongly related to the resetting of the SCN

with an advantage for small-world networks (such as random R or

scale-free networks with biased distribution of light-sensitive cells,

SFD) with an intermediate connectivity of 5–7 edges per cell.

When comparing our results to experiments [42,43], we observed

that the SFD networks are closer to the experimental results where

resynchronization is fast (2–3 cycles) for delay, and slower (4–5

cycles) for advance in the entrainment, confirming the observa-

tions that the circadian rhythm is more affected by eastbound than

westbound-induced jet lags. It is also interesting to notice that a

heterogeneous cell population seems to enhance resynchronization

after a jet lag for the RR, RD and SFD network types (Fig. S11C–

D). Remarkably, experimental observations already suggested that

the SCN regional heterogeneity and the multiple phase relation-

ships among SCN cells could contribute to the photoperiodic

adaptation [48]. Alternatively, a different entrainment pattern

with a shorter light exposure (diurnal duration of 8 hours with a

period of 24 hours), results in ampler oscillations than a system

with a 16-hour light exposure especially for SFD networks (Fig.

S12), which is once again consistent with experimental observa-

tions [49].

Finally, the last and probably most ambitious part of this work

consisted of coupling two networks with different properties to

mimic the two regions of the SCN, namely the ventro-lateral and

the dorso-medial parts. From our previous results, we selected a

network combination that matched experimental facts: namely a

core (VL) that is entrained by light and oscillates on its own, and a

shell (DM) that can have sustained oscillations only while

entrained by the VL. A scale-free network with biased distribution

of the light-sensitive cells for the VL combined with a local

network for the DM results in the desired properties with minimal

connections. To more accurately match experimental data, we

had to decrease the period of the cells in the DM as well as their

coupling strength. With these adjustments, we obtained waves of

PER expression through the SCN (Fig. S13) as observed in

cultured SCN slices [47,50]. Other combinations of parameters

can possibly reproduce the properties of the VL and DM parts but

our exploration of the different types of networks was not

exhaustive, due to high number of possible combinations. We

nevertheless tried different types of connectivity for the DM as well

as different distribution of the edges (allowing longer connections)

and eventually obtained a valid model of the SCN that can be used

for further analysis. In this work, we found that combining two

networks with different connectivity properties (both in the

topology, the strength of connections and the oscillation speed of

the individual cells) showed better results than a homogeneous

network. These results may provide insight on why different

neurotransmitters are found in the different regions of the SCN.

Our results, proposing an optimal organization for the SCN,

represent a step toward the understanding of the brain topology

[51]. In practice, we can think that the neurons sensitive to light

increase their number of connections to other cells in the SCN to

form a scale-free network, an architecture already observed in C.

elegans [52]. With such architecture, our model is able to reproduce

many experimental results including the difference in recovery

time between eastbound and westbound-induced jet lags, the

larger amplitude for short days, and the distribution of the phase

differences in the VL and DM regions of the SCN. The next stage

in the SCN modeling would be to study how these topologies scale

for a few thousands of cells in three dimensions [50]; indeed our

hypotheses of a scale-free core with a surrounding shell should

hold if the number of connections between the core and the shell

remains sufficient.

Further studies could take into account additional sources of

noise such as the molecular noise due to the low number of

molecules involved in the generation of circadian oscillation in a

single cell [53]. This approach could help to determine whether

circadian oscillations at the level of a single cell are noisy self-

sustained oscillators or damped oscillators driven by noise as

current single cell bioluminescence data are not sufficient to

discriminate between the two hypotheses [54]. Other sources of

variability such as differences in the light sensitivity, or in the

cellular coupling [55] along with correlations in the parameter

variability can impair or, on the contrary, contribute to the

sustainability of the circadian oscillations [56]. Indeed, heteroge-

neity in the periods has also been shown to help the population of

globally coupled Goodwin-like oscillators to respond in a more

coherent way to the external light-dark cycle [57]. Future work

could also include more details on the molecular mechanism

involved in the signaling pathway to explicitly study the

Effect of Network Architecture on SCN Oscillations

PLoS Computational Biology | www.ploscompbiol.org 11 March 2012 | Volume 8 | Issue 3 | e1002419



consequence of a loss of cAMP circadian production [24]. Another

direction would be to analyze the role of the network topology on

the robustness of the oscillations with respect to noise as well as

other perturbations like mutations [58]. Finally, other oscillator

models [30,32] should be tested and if our predictions (high

connectivity is detrimental, the DM is less perturbed than the VL)

are proven to be independent of the model, these results may have

interesting medical applications and would be worth being studied

experimentally in the context of circadian disturbances.

Models

Cellular oscillator
Using the generic parameters k~(k1, . . . , k28), the equations

of the Becker-Weimann model [23,24], extended to account for

the receptor signaling cascade are (1). Note that, in the network,

each parameter of the cell j has a specific values k
j
i randomly

drawn as described in equation (5) and Table S1.

d½mper�
dt

~fper
:L(t){k4½mper�

d½PER�
dt

~c:k5½mper�3{k6½PER�{k7½PER�zk8½nPER�

d½nPER�
dt

~k7½PER�{k8½nPER�{k9½nPER�

d½mbmal �
dt

~fbmal{k12½mbmal �

d½BMAL�
dt

~c:k13½mbmal �{k14½BMAL�

{k15½BMAL�zk16½nBMAL�

d½nBMAL�
dt

~k15½BMAL�{k16½nBMAL�

{k17½nBMAL�{k18½nBMAL�zk19½BMAL��

d½BMAL��
dt

~k18½nBMAL�{k19½BMAL��{k20½BMAL��

d½V �
dt

~c:k21½PER�{k22½V �

d½PKA��
dt

~Q(t):k24(½PKA�Tot{½PKA��){k25½PKA��

d½CREB��
dt

~k27½PKA��(½CREB�Tot{½CREB��){k28½CREB��

ð1Þ

Note that no distinction between PER and CRY is made. Thus,

mper denotes both Per mRNA and Cry mRNA, PER the PER/

CRY cytosolic protein complex, and nPER the PER/CRY

nuclear protein complex.

The regulated transcription rates of the Per/Cry and Bmal1

genes are modeled by the phenomenological functions fper and

fbmal , respectively:

fper~k1
(½BMAL��z½CREB��2)

k2 1z
½nPER�

k3

� �3
 !

z(½BMAL��z½CREB��2)

 !

fbmal~k10
½nPER�3

k11
3z½nPER�3

:

ð2Þ

Parameter c allows us to modulate the protein production rate.

By default, c is kept equal to 1. In presence of cycloheximide

(CHX, a toxin used experimentally to decrease protein produc-

tion), c is decreased to 0.01.

The effect of light is expressed by the function L(t) which is a

multiplicative smoothed square wave that oscillates between 1 and

2, scaled by kL~0:22 [23,59], with a period TL~24 h simulating

a 12 h:12 h Light/Dark cycle:

L(t)~1:5kLzkL( arctan (8 (t{TL=2)mod TL{TL=2ð Þ){

arctan (8 t mod TL{TL=2ð Þ))=(p=2):

For parsimony, we assumed that the neurotransmitter V is

produced in a linear manner by the PER/CRY complex, but

more complex rate functions such as Hill terms can produce

equivalent results.

Intercellular coupling
The effect of cell-cell communication Qj(t) on the concentration

of PKA� in the j-th cell (see Eq. (1)) depends on the sum of the

neurotransmitters ½Vj
ext� from the upstream cells:

Qj(t)~
½Vj

ext�
1z½Vj

ext�
with ½Vj

ext�~K
XN

j~1

Aij ½Vj � ð3Þ

with K~0:5, or K~0 when tetrodotoxin (TTX, a neurotoxin that

blocks cell-cell communication) is added to the medium. ½Vj � is the

concentration of V in the j-th cell, N is the total number of cells,

and A is the adjacency matrix of the network. As self-loops induce

strong self-sustained oscillations in individual cell, a behavior that

contradicts our hypothesis about cells in isolation, we deliberately

prevented self-loops (i.e. Aii~0Vi). The topological characteristics

of each set of 30 networks used for figure 5 are reported in Table

S2. The simulations of the system are made with an ordinary

differential equation integrator in MATLAB.

Random topology. Each possible directed connection Aij ,

with i,j~1 . . . N; i=j has a probability �dd=(N{1) to exist. It

results in an average degree of �dd .

Scale-free topology. The Barabási-Albert algorithm [26] is

used to construct the scale-free network. We adapted it such that

the outgoing distribution is biased but the incoming one is

uniform. As in the Barabási-Albert algorithm, the construction of

the network starts with a small nucleus of cells and then, during the

‘growth’ of the network, each new cell has �dd incoming connections

whose upstream cells are chosen with a probability depending on

their number of outgoing connections. Scale-free networks

constructed in this manner possess the small-world property [26].

Local topology. In the local topology, cells are placed on a

two-dimensional rectangular grid (each cell siting at an integer

position) and the probability of forming an edge for cell j toward

cell i is a function of the Euclidian distance Dij between the two

cells Aij~ exp ({D2
ij=d2) exp (d{2) where d is adjusted to obtain

an average of �dd edges, i.e.
PN

j~1,j=i Aij~�dd=(N{1).

Parameter sets
Parameters of the oscillator model are adjusted to obtain

damped oscillations with an individual period around 21 hours
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and sustained oscillations when entrained by light or stimulated by

another cell through intercellular communication. Although there

is no direct biological evidence for the values of each individual

parameter, these values are in their biological range and the model

show results consistent with experimental evidence for individual

cell behavior [24], synchronization and entrainment. If we define

the original parameter (see description in Tab. S1) as

k0~(k0
1, . . . , k0

28)

~(6:89 nMh{1, 0:90 nM, 0:50 nM, 0:126 h{1, 0:257 nM{2h{1,

0:0760 h{1, 0:248 h{1, 0:0140 h{1,0:135 h{1, 1:24 nMh{1,

1:94 nM, 0:760 h{1, 0:186 h{1, 0:0620 h{1, 0:345 h{1,

0:0460 h{1,0:124 h{1, 0:0690 h{1, 0:0023 h{1, 0:0880 h{1,

0:760 h{1, 2:84 h{1, 13:5 nM, 5:40 h{1,7:20 h{1, 13:5 nM,

0:270 h{1, 9:00 h{1),

ð4Þ

with k23~½PKA�Tot and k26~½CREB�Tot, the parameters of the

j-th cell are defined as:

k
j
i~k0

i
:(1zx) , i[f1, . . . ,28g, ð5Þ

where k0
i is the value in (4), and x*U({k,k) is a uniformly

distributed random number in the interval ½{k,k�. The variability

parameter k represents the amplitude of the rescaling of the

parameters in the model.

For the model of the SCN composed of the VL and the DM

regions, the cells in the DM are oscillating faster due to a rescaling

of the kinetic constants in k0 by a factor 1.15 prior to the draw of

their parameters, i.e.

k0,DM
i ~

1:15:k0
i if i[f1, 4, . . . , 10, 12, . . . , 22g

k0
i otherwise

(
: ð6Þ

Oscillator classification
To calibrate k (Fig. 3), the oscillatory behavior of the individual

cells should be classified even for damped oscillators. To this

purpose, we defined the ‘pseudo-cycle’ as the trajectory between

two peaks of PER concentration. We considered that the cell stops

oscillating (are damped) if the relative amplitude (amplitude of a

pseudo-cycle divided by the maximal value) is lower than 0.1.

With this statement, we defined the ‘pseudo-period’ as the average

duration of the pseudo-cycles until the cell is damped. Cells are

called ‘Not Oscillating’ if they are overdamped (i.e. no PER peak)

after the entrainment is released.

Measures of synchronization
A potentially important phenotype of the SCN is the average

signal of the network. We considered the output to be the cell-

average concentration of PER, as experimental studies usually

measure the luminescence of a reporter linked to the PER gene

[50,60]:

P(t)~
1

N

XN

i~1

½PERj �(t), ð7Þ

and we measured the mean amplitude and the mean period

(Fig. 6A) over a time of 100 hours (300 hours for the VL-DM

model) after a relaxation time of 720 hours.

We also defined two order parameters to quantify the

synchronization of the cells in the network. The first one is the

state order parameter R based on PER defined as [23,61]:

R~
Vart(P)

1=N
PN
j~1

(Vart(½PERj �)
, ð8Þ

where Vart(P) is the variance over time of P.

However informativeness-wise, this measure is not always

appropriate as cells have different individual amplitude due to

parameter variability. Moreover it is based on an average over

time which implies that it cannot measure how cells are

synchronized at a given time point. We therefore defined another

order parameter based on the phase of the individual oscillators. If

wj(t) is the phase at time t of the j-th cell evaluated with the

Hilbert transform (see supplementary information of [62]) and w(t)
is the phase of the cell-average P, the phase order parameter r at

each time point t is:

r(t)~
1

1z(1=N
PN
j~1

(wj(t){w(t)))2

: ð9Þ

Measure for the perturbation of the VL and DM parts
For the results of the model composed of two regions, we

measured how the extrema differ from their stationary values. In

order to account for the stationary amplitude, we normalized the

difference. If the ensemble m of local minima for P in the time

interval ½0,300 h� is:

m~ mi~P(ti)
dP(ti)

dt
~0,

d2P(ti)

dt2
w0, and ti[½0,300 h�

����
( )

,

the ensemble M of local maxima:

M~ Mi~P(ti)
dP(ti)

dt
~0,

d2P(ti)

dt2
v0, and ti[½0,300 h�

����
( )

,

the cardinality of each ensemble nm~jmj and nM~jMj, and the

absolute minimum and resp. maximum before the perturbation:

m0~ min
tv0

P(t), M0~ max
tv0

P(t),

the value d calculates as:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nm

Xnm

i~1

mi{m0

m0

� �2

vuut z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nM

XnM

i~1

Mi{M0

M0

� �2

vuut : ð10Þ

This value is evaluated for the VL and the DM independently.

Supporting Information

Figure S1 Relation between the phase and the individ-
ual period. (A–B) Phase difference between the peak of PER in

the individual cells and the peak of the average PER concentra-
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tion corresponding to the main text figures 5A,C for (A) and 5B,D

for (B). Oscillators with longer individual period show a delay in

their phase represented by a negative value of the difference

(Pearson’s r~{0:27, p~4:6|10{8). In this plot, the phase

difference prior to the CHX or TTX perturbation is chosen but

only marginal changes are observed when plotting the phase

difference after the perturbation.

(PDF)

Figure S2 Order parameter for constant dark (DD) and
12 h:12 h light/dark (LD) conditions. (A–B) State order

parameter in the DD (A) and LD (B) conditions for different

network types as a function of �dd . Error bars represent the standard

deviation for the results of 30 different networks of the same type.

(C–D) Phase order parameter in the DD (C) and LD (D)

conditions for different network types as a function of �dd.

(PDF)

Figure S3 Correlation between the average minimal
distance to a light-sensitive cell and the amplitude of
average PER concentration in LD conditions. Each color is

a different network type and the size of the points reflects the value

of �dd (ranging from 3 for the smallest points to 15 for the largest).

Except for the specific network type SFD where the average

minimal distance is around 0.9 for most networks with �dd§5, a

negative correlation is observed.

(PDF)

Figure S4 Effect of the intercellular coupling parameter
K on the network properties. (A–B) Amplitude of the

oscillations of P in the DD (A) and LD (B) conditions for different

network types with �dd~5 and K~f0:1, 0:25, 0:4, 0:5, 0:6, 0:75,
1g. In DD conditions, the maximal amplitude is obtained with

values around K~0:25 whereas in the entrained case (LD)

K~0:4� 0:6 is optimal. (C–D) Period of the oscillations of P in

the DD (C) and LD (D) conditions for different network types with
�dd~5 and same K values as in A. In DD conditions, the free-

running period decreases when K is increased whereas in LD

conditions a larger K helps the LF networks to be better entrained

(other networks are already well-entrained).

(PDF)

Figure S5 Effect of different types of jet lag on the SCN
model. Decrease in the phase order parameter after the jet lag

plotted against the number of cycles needed for the phase to be

within 1 hour of the phase prior to jet lag. All subplots represent

8-hour shifts that induce either a short night (A), a long night (B),

a short day (C) or a long day (D). Interestingly, shifts that

correspond to a westbound flight (long night or day) have a

smaller effects on the network than shifts corresponding to an

eastbound flight (A,C).

(PDF)

Figure S6 Simulation of the SCN with different archi-
tectures of the VL and DM regions (an RR network
coupled to an LR one) with KDM~0:15 and faster
oscillating DM cells (see Models). (A–B) Phase difference

of the cells in DD (A) and LD (B) conditions. Dots represent the

cells of the VL (beige region), squares DM cells (light yellow

region). Green corresponds to a phase delay, blue to a phase

advance and red to antiphase. (C–D) Concentration of PER in the

individual VL (cyan lines) and DM cells (magenta lines) and

average over the VL (thick blue line) and DM cells (thick red line)

as well as the entire SCN (thick black line) in DD (C) and LD (D)

conditions.

(PDF)

Figure S7 Example of a network composed of the VL
and the DM regions. (A) Adjacency matrix where the top rows

and left columns are for the VL cells and the bottom rows and

right columns represent the DM cells (a black square at position

Aij represents an connection from the j-th cell to the i-th one). (B)

Cell positions and network architecture. Black dots represent the

cells of the VL (beige region) and green squares the DM cells (light

yellow region). Outgoing edges (blue lines) from certain cells

(larger black circles) are also shown along with the light-sensitive

cells (small yellow dots in the black circles).

(PDF)

Figure S8 Simulation of the SCN with different archi-
tectures of the VL and DM regions (an RR network
coupled to an LR one, see Fig. S7 for a sketch of the
topology) with KDM~0:5. (A–B) Phase difference between the

cells in DD (A) and LD (B) conditions. Dots represent the cells of

the VL (beige region) and squares the DM cells (light yellow

region). Green corresponds to a phase delay, blue to a phase

advance and red to antiphase. (C–D) Concentration of PER in the

individual VL (cyan lines) and DM cells (magenta lines) and

average over the VL (thick blue line) and DM cells (thick red line)

and the entire SCN (thick black line) in DD (C) and LD (D)

conditions.

(PDF)

Figure S9 Simulation of the cells of the DM with a
coupling constant K~0:15 isolated from the VL cells
(corresponding to Fig. 8 of the main text).

(PDF)

Figure S10 Effect of the number of cells on the network
properties. (A–B) Amplitude of the oscillations of P in the DD

(C) and LD (D) conditions for different network types with �dd~5
and a network size from 100 to 400 cells. (C–D) Period of the

oscillations of P in the DD (C) and LD (D) conditions for different

network types with �dd~5 and a network size from 100 to 400 cells.

Both properties are independent of the network size (p-value for

correlation with the network size is above 0.05 for all combinations

except for the amplitude of the L networks in DD).

(PDF)

Figure S11 Effect of the cellular heterogeneity param-
eterized by k on the network properties. (A–B) Amplitude

of the oscillations of P in the DD (C) and LD (D) conditions for

different network types with �dd~5 and k~f0, 0:025, 0:05,
0:1, 0:15g. In the range k~0:0250:1 the amplitude is almost

constant. (C–D) Period of P oscillations in the DD (C) and LD (D)

conditions for different network types with �dd~5 and k~f0,
0:025, 0:05, 0:1, 0:15g. Periods of the R and L networks are

hardly influenced by k, whereas SF networks have a period closer

to 24 hours for large k values. (E–F) Decrease in the phase order

parameter after the jet lag (E) and number of cycles needed for the

phase to be within 1 hour of the phase prior to the jet lag (F) for

different network types with �dd~5 and k~f0, 0:025, 0:05,
0:1, 0:15g. In general, cellular heterogeneity speeds up resynchro-

nization of the network after the perturbation.

(PDF)

Figure S12 Changes in the oscillation amplitude for
short and long days. Amplitude in LD conditions for the six

types of networks with either 8 hours (left bar) or 16 hours (right

bar) of light (the period of the cycle remains 24 hours). All

topologies have ampler oscillations for shorter days, consistent with

[49].

(PDF)
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Figure S13 Wave propagation in the combined VL and
DM model of the SCN. (A) Normalized PER concentration in

DD conditions as a function of time (y-axis) for the 400 cells (x-

axis), corresponding to the network in figures 8 and S7. The cells

closest to the optical chiasm (corresponding to the VL) are shown

in the middle and the cells furthest (DM cells) are at the edge. (B)

Normalized PER concentration in LD conditions for the same

network.

(PDF)

Table S1 Value and description of the parameters of the
model (adapted from [24]).
(PDF)

Table S2 Statistics of the networks used for results of
figure 6. All values are the average over 30 different networks.

For the average degree, the value in parenthesis is the desired

value.

(PDF)
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Heterogeneity of rhythmic suprachias- matic nucleus neurons: Implications for

circadian waveform and photoperiodic encoding. Proc Natl Acad Sci U S A 100:

15994–9.

49. vanderLeest HT, Rohling JHT, Michel S, Meijer JH (2009) Phase shifting

capacity of the circadian pace- maker determined by the SCN neuronal network

organization. PLoS ONE 4: e4976.

Effect of Network Architecture on SCN Oscillations

PLoS Computational Biology | www.ploscompbiol.org 15 March 2012 | Volume 8 | Issue 3 | e1002419



50. Fukuda H, Tokuda I, Hashimoto S, Hayasaka N (2011) Quantitative analysis of

phase wave of gene expression in the mammalian central circadian clock

network. PLoS ONE 6: e23568.

51. Perin R, Berger TK, Markram H (2011) A synaptic organizing principle for

cortical neuronal groups. Proc Natl Acad Sci U S A 108: 5419–5424.

52. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.

53. Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with

respect to molecular noise. Proc Natl Acad Sci U S A 99: 673–8.

54. Westermark PO, Welsh DK, Okamura H, Herzel H (2009) Quantification of

circadian rhythms in single cells. PLoS Comput Biol 5: e1000580.

55. Ullner E, Buceta J, Diez-Noguera A, Garcia-Ojalvo J (2009) Noise-induced

coherence in multicellular circadian clocks. Biophys J 96: 3573–3581.

56. Ko C, Yamada Y, Welsh D, Buhr E, Liu A, et al. (2010) Emergence of noise-

induced oscillations in the central circadian pacemaker. PLoS Biol 8: e1000513.

57. Komin N, Murza A, Hernendez-Garcia E, Toral R (2011) Synchronization and

entrainment of coupled circadian oscillators. J Roy Soc Interface Focus 1:
167–176.

58. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, et al. (2007) Intercellular

coupling confers robustness against mutations in the scn circadian clock network.
Cell 129: 605–616.

59. Geier F, Becker-Weimann S, Kramer A, Herzel H (2005) Entrainment in a
model of the mammalian circadian oscillator. J Biol Rhythms 20: 83–93.

60. Foley NC, Tong TY, Foley D, LeSauter J, Welsh DK, et al. (2011)

Characterization of orderly spatiotemporal patterns of clock gene activation in
mammalian suprachiasmatic nucleus. Eur J Neurosci 33: 1851–1865.

61. Garcia-Ojalvo J, Elowitz M, Strogatz S (2004) Modeling a synthetic multicellular
clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci U S A 101:

10955–10960.
62. Hafner M, Koeppl H, Hasler M, Wagner A (2009) ‘Glocal’ robustness analysis

and model discrimination for circadian oscillators. PLoS Comput Biol 5:

e1000534.

Effect of Network Architecture on SCN Oscillations

PLoS Computational Biology | www.ploscompbiol.org 16 March 2012 | Volume 8 | Issue 3 | e1002419


