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Abstract

The multifactorial nature of disease motivates the use of systems-level analyses to understand their pathology. We used a
systems biology approach to study tau aggregation, one of the hallmark features of Alzheimer’s disease. A mathematical
model was constructed to capture the current state of knowledge concerning tau’s behavior and interactions in cells. The
model was implemented in silico in the form of ordinary differential equations. The identifiability of the model was assessed
and parameters were estimated to generate two cellular states: a population of solutions that corresponds to normal tau
homeostasis and a population of solutions that displays aggregation-prone behavior. The model of normal tau homeostasis
was robust to perturbations, and disturbances in multiple processes were required to achieve an aggregation-prone state.
The aggregation-prone state was ultrasensitive to perturbations in diverse subsets of networks. Tau aggregation requires
that multiple cellular parameters are set coordinately to a set of values that drive pathological assembly of tau. This model
provides a foundation on which to build and increase our understanding of the series of events that lead to tau aggregation
and may ultimately be used to identify critical intervention points that can direct the cell away from tau aggregation to aid
in the treatment of tau-mediated (or related) aggregation diseases including Alzheimer’s.
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Introduction

Despite the fidelity of protein folding and the operation of

quality control mechanisms to eliminate misfolded and otherwise

abnormal proteins, a number of diseases can be traced to defects in

these processes [1]. Among them are many neurodegenerative

disorders, including the tauopathies, which are characterized by

the intraneuronal aggregation of tau protein and of which

Alzheimer’s disease (AD) is an example. Preventing aggregation

to halt or reverse cognitive decline is the goal of many drug

discovery programs, but effective, long-term treatments have yet to

be discovered [2].

A convincing body of evidence implicates defective tau

processing and the formation of intraneuronal tau aggregates in

cognitive decline. Mutations in the gene encoding tau protein are

directly responsible for a number of genetic conditions collectively

called primary tauopathies, among which is frontotemporal

dementia and Parkinsonism linked to chromosome 17 (FTDP-

17) [3,4]. Tau pathology is also present in a large number of

conditions whose cause cannot be traced to mutations in the gene

encoding tau, including traumatic brain injury and repeated head

trauma (dementia pugilista) from contact sports [5–7] as well as

Alzheimer’s disease, and has been observed with and without

amyloid-beta pathology. Post-mortem assessment of the neurofi-

brillary tangle load in the brains of demented human patients

showed that the severity of dementia was well correlated with the

presence of tangles, a finding that argues strongly that tau plays a

central role in disease progression [8–10]. In addition, the deficits

in spatial learning and memory observed in mouse models

expressing human APP can be ameliorated by reducing endog-

enous, wild-type tau [11], which also protects against early

mortality and inhibits excitoxicity; this finding is supported by

more recent experiments in an AB-forming mouse model [12].

Taken together, these studies point to tau as a key causative factor

in neurodegeneration and suggest that the tau pathway itself

represents a reasonable therapeutic target for diseases in which the

abnormal tau processing pathway is triggered.

Tau is a neuronal, microtubule-associated protein (MAP) whose

physiological function is to regulate microtubule dynamics (Figure

S1). Alternative mRNA splicing yields 6 protein isoforms that are
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divided into two broad classes according to whether they contain 3

or 4 microtubule binding repeats; they are known as the 3R and

4R isoforms, respectively [13,14]. The 4R isoforms have a higher

affinity for microtubules and greater tendency to aggregate [15–

18]. A phospho-protein with nearly 30 phosphorylation sites, tau’s

biological activity is also governed by its phosphorylation state. In

a healthy neuron, tau contains 2–3 moles of phosphate per mole of

tau and is found almost entirely bound to microtubules [19]. In

degenerating neurons, kinase and phosphatase activity is dysreg-

ulated and an abnormal variant containing 5–9 mol phosphate/

mol tau is generated. While normal amounts of physiological tau

are maintained, high amounts of hyper- and abnormally

phosphorylated tau with low affinity for microtubules and

resistance to degradation are generated [20]. These tau species

dissociate from microtubules and collect in the cytosol, where they

subsequently misfold and aggregate. The presence of ubiquitin, a

molecular tag that facilitates degradation by the proteasome, in the

aggregates suggests a failure of the quality control systems that

clear aberrant proteins, contribute to the accumulation of

abnormal tau and the neurofibrillary tangles [21]. Experiments

demonstrating that the ubiquitous, constitutively expressed

chaperone Hsc70 binds tau support this view, as Hsc70 is a

chaperone known to mediate a protein triage decision that results

in either refolding or degradation [22]. When the cell’s quality

control systems fail, tau aggregates and eventually neuron death

occurs. The long, insoluble filaments that form may serve as a

‘stop-gap’ measure to protect the cell from adverse consequences

by sequestering toxic intermediates. However, the actual toxic

moiety among various pathological tau states has not been

conclusively determined.

The multifactorial nature of disease motivates our systems

biology approach to understanding tau pathophysiology. We have

developed a computational model that represents the network of

interactions in which tau is involved as a system of ordinary

differential equations that describe the deterministic chemical

kinetics. The model was tuned to capture observed behavior in a

healthy neuron and an aggregation-prone neuron. Although the

class of tauopathies contains several diseases, specific experimental

data from Alzheimer’s disease studies informed this model.

Sensitivity analysis tools were used to interrogate the model and

ascertain the relative contributions of each component in the tau

pathway from its synthesis to its post-translational modifications, to

its degradation. Within both populations of neurons, and

particularly the aggregation-prone population, we found ultrasen-

sitive cellular conditions that are likely to be resistant to rescue.

Results

Model structure
As one of the first attempts at in silico simulation of tau

pathophysiology, a mathematical model representative of the

known biology was established within the limitations of the

available data (Figure 1). Although this model is necessarily a

simplified version of reality, it captures essential features of the

known tau network and could be easily extended to incorporate

additional detail as new data is generated. Among the key

components are the 3R and 4R isoforms of tau. Alternative

splicing of other tau exons was not considered in the model;

therefore we modeled two species to be representative of the 3R

and 4R classes. The isoform classes were divided into a number of

phospho-states; although there are likely many disease-relevant

phospho-isoforms, for simplicity, each 3R and 4R form was

divided into in a minimally phosphorylated, normally phosphor-

ylated, or abnormally phosphorylated/conformationally altered

state. Minimally phosphorylated 3R and 4R tau are constitutively

produced in a single reaction that captures transcription and

translation. Specific tau kinases and phosphatases such as GSK3-b
and PP5A were not explicitly included in the model. The kinetics

of phospho-isoform conversion were modeled using Michaelis-

Menten kinetics and based on in vivo data, from which the bounds

on the Michaelis-Menten constants and the dependence of the

kinetics on the phospho-state were derived. Tubulin, the building

block of microtubules, was included although the total pool of

tubulin with which tau interacts was considered constant

throughout these analyses. Makrides and colleagues [23] moni-

tored the in vitro reaction kinetics between tau and pre-assembled

microtubules and found that a two-step mechanism in which

either tau or tubulin underwent a conformational change before

binding fit the data best; we employed that two-step mechanism

here, assuming the conformational change occurred in the tau

protein prior to association. Tau degradation by the proteasome

has been shown both in vitro and in vivo in neuronal cell culture

[24], and has also been shown that natively unfolded tau can be

degraded by the 20S proteasome in a non-ubiquitin dependent

manner [25]. This degradation process was modeled with first

order kinetics and a constant pool of proteasomes.

Abnormal 3R and 4R tau are bound by the chaperone Hsc70

[22], which mediates a choice between rescue and ubiquitin-

dependent degradation. We assumed a simple, reversible binding

reaction that does not involve ATP; although Hsp70 is usually an

ATP-dependent chaperone, recent evidence suggests it binds tau

independently of ATP [22]. Rescue is facilitated by the chaperone

Hsp90 [26,27]; although other proteins such as the peptidyl-prolyl

isomerase PIN1 are likely to participate in this pathway [28], we

assumed a simple mechanism by which Hsp90 binds abnormal

tau. In this simplification, abnormal tau is dephosphorylated and

restored to its normal functional form upon Hsp90 binding, and is

released to re-bind microtubules. CHIP, an Hsc70-interacting

protein and E3 ligase, links the chaperone and degradation

machineries and shuttles abnormal tau to the 26S proteasome

[29,30]. BAG-2 binds with the CHIP-Hsc70-Tau complex and

subsequently dissociates with CHIP, restoring the Hsc70-Tau

Author Summary

Neurodegenerative disorders, particularly the tauopathy
Alzheimer’s disease, affect millions of people and cost
billions of dollars a year in healthcare costs. Although
effective treatments to delay or reverse cognitive decline
are still unavailable, several approaches to address this
medical need are being pursued. One such strategy
involves ameliorating aberrant tau processing, as the
characteristic tau tangles associated with the tauopathies
are well-correlated with cognitive dysfunction, genetic
mutations in tau lead directly to neurodegeneration, and
experiments in animal models have yielded promising
results. Two avenues are currently being explored:
inhibition of kinase activity to reduce the presence of
aberrant, hyperphosphorylated tau and means to prevent
and reduce tau aggregation. We have taken a systems
biology approach to understanding tau pathophysiology,
creating a mathematical model to quantitatively explore
the vulnerabilities in the tau network and identify effective
intervention points. Our analysis of the resulting in silico
neuron populations, representing healthy and aggrega-
tion-prone neurons, highlights the multifactorial nature of
the disease and provides insight into pathological triggers
and the timing of treatment, which will be an important
element in effectively treating patients.

Vulnerabilities in the Tau Network

PLoS Computational Biology | www.ploscompbiol.org 2 November 2010 | Volume 6 | Issue 11 | e1000997



complex B, acting to potentially rescue tau from CHIP-mediated

degradation [31,32]. Alternatively, CHIP and Hsc70 can release

ubiquitinated, abnormal tau in a single-step reaction, after which

tau is degraded. Because tau has been shown to be abnormally

phosphorylated prior to ubiquitination, we assumed that only the

abnormal tau species could be degraded in a ubiquitin-dependent,

chaperone-assisted manner [33]. Aggregation is an alternate

pathway down which abnormal tau can travel. Tau aggregation

was modeled with the nucleation-elongation reaction mechanism

and kinetics established by Congdon et. al. They monitored in vitro

tau fibrillization and found that a tau dimer acted as the nucleus

for the reaction, best fitting the experimental data and providing a

good prediction of the length distribution of aggregates through

time [34]. We assumed that only abnormal, ubiquitinated tau

could polymerize as the presence of ubiquitin in tau aggregates is

well-established [35,36] and full-length, wild-type tau does not

aggregate readily under physiological conditions in vitro in the

absence of polymerization promoters because it is hydrophilic and

relatively unstructured [18]. Although normal tau may be

sequestered by abnormal tau and thus aggregate [37], this

mechanism was excluded from our construction due to a paucity

of available data. Furthermore, the paired helical filaments into

which abnormal tau aggregates in Alzheimer’s disease patients

contain 3–4 times more phosphate than physiological tau and the

level of phosphorylation observed in soluble amorphous tau is

similarly elevated, suggesting that paired helical filaments are

primarily comprised of abnormal tau [19,38]. In a study of brains

from patients diagnosed with the tauopathy FTDP-17, in whom

tau is mutated, the insoluble fraction was observed to have a much

greater ratio of mutated tau than normal tau [39], also supporting

this assumption. The effect of macromolecular crowding was also

neglected for parsimony. Excluding these mechanisms from our

model is likely to have little effect on the qualitative results,

resulting in a re-scaling of parameters but not substantially

changing the qualitative behavior and overall conclusions.

Mass action kinetics described all reactions in the network

except the phosphorylation and dephosphorylation reactions,

which were described by Michaelis-Menten kinetics. For each

species represented by our model, an ordinary differential

equation that describes the species time-evolution was constructed

as illustrated in Eq. S1. In total, the network contains 84 reactions,

93 parameters, and 45 states (i.e., differential equations). A full

listing of the states, reactions, parameters, and differential

equations can be found in Tables S1 and S2.

A priori identifiability
Parameter space for the healthy and aggregation-prone

identifiability and optimization steps is different, as the chaperone

and degradation machinery was considered to be operating

homeostatically. As a result, before initiating each stage of the

optimization, an a priori identifiability analysis was completed.

Correlation matrices were calculated at 1024 quasi-random points

in the relevant parameter space, each matrix was weighted based

on the objective function value determined at its corresponding

location in parameter space, and then the matrices were averaged

to establish pseudo-global a priori identifiability.

The results of both stages of this analysis confirm that the

proposed model is a priori identifiable and, by extension,

structurally identifiable (Figures S2 and S3). To improve the

efficiency of the optimizations, we did remove three parameters

(k1, k84, k10) from the first stage of the procedure as they were

highly correlated (.0.95).

Establishing healthy neuron models
In the next step, we optimized parameters to achieve steady-state

behavior that represents healthy neuron function. Parameters

Figure 1. Model structure of tau pathophysiology for a single isoform. The network captures tau phosphorylation and dephosphorylation,
microtubule binding and release, uptake, rescue, and degradation by the chaperone machinery, and aggregation. Specifically, unphosphorylated tau
(Tau0) can be degraded or phosphorylated, producing normally phosphorylated tau (TauN). TauN can also be degraded in a non-ubiquitin
dependent fashion, dephosphorylated, or phosphorylated to create abnormal tau (TauH), which can likewise be degraded, dephosphorylated, or
phosphorylated. Each of these free tau species undergoes a conformation change to produce a form with high affinity for microtubules; these species
are denoted with a star as Tau0*, TauN*, and TauH*. Abnormal TauH is taken up by the chaperone Hsp70, which mediates the decision between
rescue and degradation. Both isoforms participate in the same series of reactions, but at different rates of reaction, and their behavior is coupled
through the chaperone and degradation machinery.
doi:10.1371/journal.pcbi.1000997.g001

Vulnerabilities in the Tau Network
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associated with phosphorylation and dephosphorylation, microtu-

bule binding and release, synthesis, and ubiquitin-independent

degradation were estimated. We also estimated ATP synthesis and

depletion. Parameters were generally assumed isoform-indepen-

dent, with the exception of the microtubule binding parameters and

aggregation parameters. Because evidence suggests that 4R tau has

a greater affinity for microtubules [15–17] and for aggregation,

these parameters were increased relative to the corresponding

reactions involving 3R tau. Estimating chaperone and degradation

parameters was excluded from the healthy state computations

because under normal conditions Hsc70 does not bind microtubule

bound tau [22]. Although Hsc70 may bind free normal tau species,

these species represent a small portion of total tau and thus the

model was simplified to exclude these minor interactions.

The objective function that mathematically quantifies the

behavior of a healthy neuron was constructed to reflect known

quantitative experimental data. It is well-established that aberrant

tau species are undetectable in normal neurons; thus we require that

free and microtubule-bound aberrant tau is minimized. From

measurement of total tau in human brain homogenates [40], and

assuming total protein concentration is 500 mg/ml [41], the total

neuronal concentration of tau protein was estimated to be 5–

10 mM, consistent with many reported values. In adult human brain

that is not afflicted by Alzheimer’s, the ratio of 3R to 4R tau was

determined to be 1:1 [14,42]. The affinity of normal tau for

microtubules is 16 nM [23] and at least 80% of the total neuronal

tau is bound to microtubules. These data are quantified in a cost

function that sums the squared percent difference between the

model result and the experimental results. Several of the objectives

in our cost function are ‘‘fuzzy’’, i.e. they allow states to achieve a

range of values without penalty, rather than admitting only a single

value without penalty. This construction is a better representation of

biological systems than those that force the system to converge to a

single value for objectives such as species concentrations, because it

captures the intrinsic variability of these systems and it results in a

large population of equally feasible parameter sets. A global solver

that uses a scatter-search method followed by refinement with a

local, gradient-based method handles the flat expanses of the search

space. The sample code given in Eq. S2 demonstrates the

implementation of this type of multi-objective, fuzzy cost function.

Necessarily, the solution in this case is not unique. Therefore, a

set of 2500 optimizations was performed in which the model was

run to steady-state, then evaluated against these objectives to

generate a set of equally valid parameter vectors with which to

initialize the model (Dataset S1); qualitatively, the number of

optimizations does not affect the results. For this stage, the only

species for which an initial condition was needed was microtu-

bules; we assume 15 mM tubulin is present in abundance and

excess over tau, and therefore do not include synthesis and

degradation reactions for them. A total of 31 parameters were

estimated. The resulting set of parameter vectors represents a

population of neurons that behave in a healthy fashion and

provides a way of evaluating the range of possible responses the

system can display.

Sensitivity of the healthy neuron population
The median sensitivity of the population to perturbations in the

parameters was calculated at steady-state, to provide insight into

the triggers that disturb the system’s homeostasis (Figure 2). The

95% confidence interval for the sensitivities was also calculated

(Figure S4). Because the ratio of 3R to 4R tau is 1:1 in healthy

neurons, the results for each are equivalent.

The identifiability of the sensitivity coefficients is defined by the

span of the confidence interval; if the interval does not contain

Figure 2. Relative, steady-state sensitivity for the healthy population of in silico neuron models. Median sensitivity coefficient at steady-
state is shown for pairs of states (proteins) and parameters (rate constants). States and parameters associated with the chaperone and degradation
are not shown, as this network is not engaged when the model is behaving in a manner consistent with a healthy neuron.
doi:10.1371/journal.pcbi.1000997.g002

Vulnerabilities in the Tau Network
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zero, the coefficient is considered identifiable. Although some

small sensitivity coefficients are identifiable, most are not and the

converse is true for larger coefficients, particularly those .0.5

(Figure S5). We find that changes in synthesis rates have the

greatest positive impact on in silico homeostasis, while the

perturbations in ubiquitin-independent degradation strongly and

inversely alters the distribution of tau species. The situation for

sensitivity to phosphorylation and dephosphorylation is more

complex. Strong influences of this part of the network are found,

but they do not act in concert. For example, aberrant 3R tau has a

positive correlation with perturbations to the rate at with normal

3R tau is phosphorylated but it has an inverse relationship with the

Michaelis-Menten constant. A similar situation is seen with bound

tau states. The relationship between the microtubule interactions

and tau distribution is similarly complex.

In Figure 3, the distribution of sensitivity coefficients within the

healthy population is shown. The coefficients for each state were

consolidated and transformed by the cube root, to accommodate

the large scale and preserve the sign information of the coefficients.

For all states, .99.9% of the coefficients fall below a value of 10,

but in a few important cases high sensitivity to perturbations is

observed. These individuals are relatively more vulnerable and less

robust than the bulk of the population.

Establishing aggregation-prone neuron models
For each model of a healthy neuron, we established a

corresponding aggregation-prone model. The two models are

coupled through the microtubule binding and release parameters.

Synthesis, degradation, and phosphorylation and dephosphoryla-

tion were re-estimated because these activities are known to be

altered in neurons containing tau aggregates. In addition,

parameters associated with the chaperone and degradation

machinery were estimated.

The objective function that quantifies the behavior of an

aggregation-prone neuron is based on the data from several

experiments. Quantification of tau in adult human brains affected

by Alzheimer’s was compared to that in control and showed that

normal tau concentration was unaltered, but total tau concentra-

tion was 4–8 times normal tau; the increase is in the form of

aberrant tau [40]. The critical concentration for aggregation is

reported to be 0.2 mM [34]; necessarily, ubiquitinated tau

approaches this concentration in an aggregation-prone neuron.

The results of two silencing experiments were used to finalize the

construction of the cost function corresponding to the aggregation-

prone population [43]. In these experiments, silencing RNA was

used to reduce the levels of Hsp70 and Hsp90 in COS-1 cells over-

expressing human tau and the resulting effect on cytosolic

(unbound) and microtubule-bound tau was assessed. A 50%

reduction in Hsp70 resulted in a 5% decrease in unbound tau and

a 75% decrease in bound tau, while a 75% reduction in Hsp90

resulted in a 10% decrease in unbound tau and a 70% decrease in

bound tau [43]. The objective function was constructed as

previously, resulting in the minimization of a function that is the

sum of squared percent differences. For the ‘‘fuzzy’’ objectives, no

Figure 3. Ultrasensitivity in the populations. The cube root of the median sensitivity coefficients for each state across all parameters is shown
with coefficients exceeding a 10-fold change in a state compared to the parameter perturbation highlighted. The ultrasensitive coefficients, which are
denoted by the red and blue circled markers in the healthy and aggregation-prone populations, represent multiple individuals.
doi:10.1371/journal.pcbi.1000997.g003
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cost was assigned if the model simulated a result in the allowable

range of values.

Each result from the tuning of a neuron to healthy behavior was

used to seed an optimization run designed to generate aggrega-

tion-prone behavior. For each run, the model was initialized to the

steady-state concentrations achieved by the corresponding model

of a healthy neuron. The simulation was run until quasi-steady-

state was achieved and evaluated against the objective function to

find parameters that instantiate an aggregation-prone model

(Text S1).

In general, a single primary route to establish the aggregation-

prone behavior was not obvious. Rather, the nature of the changes

required to establish aggregation-prone neurons was multifacto-

rial, although definite trends were observed in a small subset of the

parameters (Figure 4). Confidence intervals (95%) were calculated

and show just three identifiable trends; synthesis of 4R tau is

generally increased while chaperone-independent degradation of

normal 4R tau decreased, and the relative rate at which

microtubule-bound, normal 4R tau was phosphorylated was

elevated. Relative rate is a more meaningful measure of the

change in phosphorylation and dephosphorylation processes and

thus the metric on which we focus. The consistency with which

these effects were observed suggests such behavior is likely to play

a key role in initiating the pathological changes seen in vivo. As this

result is consistent with the known increase in tau levels and

decrease in proteasomal activity, and increased kinase that occurs

in affected neurons, it provides a measure of validation for the

model and encourages efforts to test the subsequent conclusions

drawn from its behavior. In all cases, multiple perturbations in the

rates of synthesis, degradation, and phosphorylation and dephos-

phorylation were required to induce an aggregation prone state.

Sensitivity of the aggregation-prone population
The median sensitivity of the aggregation-prone population was

calculated and the 95% confidence interval of the coefficients was

used to determine their identifiability (Figures S6, S7, S8). As in

the healthy population, synthesis and degradation are important

processes with respect to tau distribution. Microtubule binding and

phosphorylation and dephosphorylation are relatively less impor-

tant in this population, although particularly for 3R tau a number

of reactions in these processes are sensitive to tau distribution.

Chaperone system reactions, on the other hand, do affect the

behavior of the aggregation-prone population. Interestingly, the

sensitivity to the aggregation reactions is only evident for

aggregates; if the toxic moiety is actually soluble, aberrant tau,

as it is increasingly thought, and not the aggregates then this has

important ramifications for the selection of drug targets as the

aggregation reactions have little effect on soluble tau.

To compare the aggregation-prone and healthy populations, the

ratios between the sensitivity coefficients in each pair of matched

individuals was calculated and the medians are shown in Figure 5.

The aggregation-prone population exceeds twice the sensitivity of

the healthy population 26% of the time and the magnitude of 46%

of the median coefficients it is 2 fold lower. Notably, in nearly 24%

of cases, the sign of the median sensitivity coefficient changes. This

sign change is a striking and important phenomenon, as it suggests

that the fundamental nature of the system’s behavior changes

during the transition from a healthy to an aggregation-prone state.

It also suggests that the effect of changing conditions in the cell,

due to drug treatment, for instance, depends on the state of the

system. For example, the sensitivity of free and bound abnormal

4R tau species to phosphorylation shows a sign change; therefore,

the efficacy of a treatment designed to influence phosphorylation

reactions may depend upon the state of the system when treatment

is initiated.

Evaluation of the distribution of the coefficients revealed subset

of individuals with very large magnitude sensitivities to changing

parameters, or ultrasensitivity (Figure 3). As with the healthy

population, .99% of individuals were more moderately impacted

by parameter perturbations, but the ultrasensitive individuals were

of a much higher magnitude in this population. Additionally, this

feature of ultrasensitivity was sharp and occurred after the

Figure 4. Parameter ratios. For parameters allowed to vary, the log2 ratios of the values in the aggregation-prone vs. the healthy population are
given. The confidence intervals, maximum, and minimum for the population are also plotted.
doi:10.1371/journal.pcbi.1000997.g004

Vulnerabilities in the Tau Network
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accumulation of tau aggregates began. Systems such as this

represent large obstacles to treatment; although sensitivity is

required of a suitable drug target, the complex nature of the

system’s behavior in combination with ultrasensitivity is a

challenging control problem and will make it difficult to re-

establish homeostasis in these individuals. Disease progression

independent of treatment is also significantly impacted by

ultrasensitivity; cognitive decline is likely to be faster due to the

fragile nature of this kind of network.

Discussion

The in silico model developed to describe tau pathophysiology

displays the very features of robustness and fragility that exist in

real biological systems and these concepts are key to our

understanding of the tauopathies. Indeed, the concept of

robustness provides a framework in which disease can be

understood as the inevitable consequence of a breakdown in the

systems that normally maintain functionality [44]. Because these

systems are complex, highly coupled, and nonlinear, their

behavior is difficult to predict and systems-level approaches are

required to understand and treat disease [45].

The population of healthy neurons is considered to be robust in

several ways. The model generates healthy behavior in a relatively

large domain of parameter space, a necessary property to maintain

a phenotype given the inherent variation and noise in all biological

systems. Likewise, the healthy population is robust and demands a

vectorial assault to become pathological, as a multitude of

perturbations to synthesis, degradation, and phosphorylation and

dephosphorylation are required to generate a corresponding

population of aggregation-prone neurons. In contrast, the

aggregation-prone population is generally more sensitive to

perturbations than the healthy population, as might be expected

for a pathological phenotype (Figure 3). Moreover, the change in

sign of a quarter of the sensitivity coefficients suggests that the

fundamental behavior of this nonlinear system changes during the

transition from healthy to aggregation-prone conditions. This

change has implications for the drug discovery process; targeting

such parts of the network is likely to be ineffective unless the timing

is carefully considered. The case study shown in Figure 6 illustrates

this point. In this individual, the binding of normally phosphor-

ylated, 3R tau to microtubules was perturbed 5-fold and the

concentration of microtubule bound, unphosphorylated 4R tau

monitored in both the healthy and aggregation-prone states; the

parameter perturbation is an in silico means of simulating drug

treatment. Not only is an inverse response observed in each

condition, but the qualitative response of the healthy neuron is in

direct opposition to that of the aggregation-prone neuron. As the

healthy and aggregation-prone neurons circumscribe the range of

behaviors expected as a tauopathy advances, it logically follows

that the sensitivity of relevant proteins to parameter perturbations

switches at some point during disease progression. Such

phenomenon may play an important role in the effectiveness of

any particular drug, whose impact may be exactly the opposite of

that intended and indeed even validated in experimental models.

Therefore the identification of potential drug targets could be

guided both by the identification of the perturbations that

contribute to generate the diseased state and by the analysis of

the parameter sensitivities in the healthy and diseased states. To

minimize undesirable system-dependent effects, we suggest to

target parameters for which the sign of the sensitivity coefficients

does not change between the healthy and aggregation-prone

states. Having identified synthesis, degradation, phosphorylation/

dephosphorylation as keys to disease progression, the sensitivity

coefficient associated synthesis and degradation reactions ap-

peared to have a minimal number of changes of sign compared to

Figure 5. Sensitivity ratios. The ratio of the relative, median sensitivity coefficient for the aggregation prone population to the healthy population
is shown for each state (protein concentration) and parameter (rate constant) pair.
doi:10.1371/journal.pcbi.1000997.g005

Vulnerabilities in the Tau Network

PLoS Computational Biology | www.ploscompbiol.org 7 November 2010 | Volume 6 | Issue 11 | e1000997



the ones of phosphorylation/dephosphorylation reactions

(Figure 5). From that point of view, synthesis and degradation

appear to be preferential drug targets within the tau network.

A subset of the aggregation-prone population displays extreme

fragility (Figure 3). This ultrasensitivity arises in the models of

aggregation-prone neurons, and thus has implications for disease

progression; the typical delay in diagnosing neurodegenerative

diseases makes this phenomena potentially important with respect

to treatment. While it is important to develop drugs that target

sensitive points in biological networks, the widespread ultrasensi-

tivity and nonlinearity observed in a subset of the population are

likely to make the response of these systems difficult to predict or

control, and they are likely to be highly resistant to rescue.

The robustness of the tau network and the multifactorial nature

of its vulnerability to pathological change presents a challenge to

the selection of drug targets, and for a subset of patients the disease

is likely to be nearly impossible to reverse after the network

becomes ultrasensitive. The model analysis also suggests that

stalling or reversing tau pathophysiology will be further compli-

cated by the timing at which the intervention is begun; a treatment

may have an opposite effect on the system than is expected due to

the sign inversion observed for some sensitivity coefficients.

The systems biology approach we have taken here has

highlighted the complex, nonlinear behavior that cellular networks

can display and suggests the difficulties the pharmaceutical and

biotechnology industries will face in attempting to treat diseases

associated with their aberrant functioning. By modeling both the

physiological and the pathological functioning of the network

governing tau function, we have shown that the biological

response to a perturbation is dependent on the condition of the

network and that, therefore, the time at which a compensatory

perturbation is made is potentially significant. This implication is

particularly relevant in therapeutic treatment timing and ap-

proach. The population-based analyses we have completed also

highlights the importance of variability in the study and treatment

of disease and the need to characterize the variability of the

network components, such as reaction rates, to more fully

elucidate its nature. Such variations are distinct from stochastic

variation and the extent of the variability is likely dependent on the

biological network and the particular network component. From a

modeling perspective, in silico populations can be created for any

model in a straightforward manner, by retaining not just a single

optimization result but a number of results that fit the data almost

equally well. As new experimental data is generated, the variation

within the in silico populations will become more constrained and

approach that seen in vivo. With respect to the optimization results,

they suggest an approach that considers fitting matched measure-

ments from the same individuals, for example if data was collected

from individual animals over time, rather than taking a

conglomerated value over measurements from multiple individu-

als. The computational, model-based approach to exploring

cellular networks demonstrates a new paradigm for understanding

disease that is likely to become increasingly effective as high-

throughput and sequencing technologies quickly generate large

databases of experimental data from which progressively more

detailed, accurate models can be built.

Methods

Current knowledge about the molecular biology of tau protein

was integrated into a deterministic, kinetic model that was realized

as a set of 45 ordinary differential equations (ODE’s) (Tables S1

and S2) and implemented in MATLAB (Mathworks, Cambridge,

UK). For each species, a differential equation was constructed

from the rate equations for all reactions in which the species is

involved; the reactions were modeled with mass action and

Michaelis-Menten type kinetics. For example, a representative

equation for the time-evolution of unphosphorylated tau is given

Figure 6. Time-dependent response to perturbations. A 5-fold increase in the parameter associated with the binding of normally
phosphorylated, 3R tau to microtubules was applied and the response of unphosphorylated, microtubule bound 4R tau was monitored with respect
to the basal concentration of this species. The perturbation results in a decrease in concentration with respect to basal in the healthy neuron, while in
the aggregation-prone neuron, an increase in protein concentration is observed.
doi:10.1371/journal.pcbi.1000997.g006
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by Eq. S1 (Text S1), which describes the change in concentration

of unphosphorylated tau due to its synthesis, degradation, a

conformational change that precedes microtubule binding, the

restoration of the original protein conformation, phosphorylation,

and dephosphorylation.

To validate the model construction effort, we used the method of

Jacquez and Greif [46] to evaluate the a priori identifiability of the

model and extended it to develop a suitable substitute for structural

identifiability, as direct methods for evaluating structural identifia-

bility are not feasible for large, nonlinear models such as this. In the

traditional approach to a priori identifiability analyses, an iterative

process of estimation and identifiability analysis is employed,

reducing the number of parameters in the model after each

iteration until the model is entirely identifiable [47]. We used a

pseudo-global extension of this approach to diminish the parameter

dependence of the results. First, Sobol’ Low Discrepancy Sequences

were used to generate 1024 points in parameter space. For each

point, an in silico experiment in which tau was allowed to equilibrate

for 2 hours after being induced in a tau-free system was simulated.

We assumed all states were measurable and measured at 30-minute

intervals during the 2 hour experiment. In addition, the local

parametric sensitivity of the system was evaluated. From these

simulated data, the correlation matrix Mc that establishes a priori

identifiability was calculated according to Eq. S3 (Text S1).

Identifiable systems have correlations strictly , |1|. Here, the

average correlation matrix is used to ascertain the identifiability

of the system. Because the parameter sets were randomly

generated, the resulting systems do not necessarily display

biologically relevant behavior; therefore, the optimization objec-

tive function was calculated at each point in parameter space and

used as weighting factors in calculating the average correlation.

Given the model structure we established and the bounds on the

parameter ranges, we can conclude that the model is a priori

identifiable, but the high correlations between some parameters

suggest that they might be difficult to estimate and therefore one

parameter in each pair with a correlation .|0.95| was removed

from the optimization and fixed to its nominal value.

Using this framework, that reduces parametric dependence and

assumes all states are experimentally measurable, a priori

identifiability is an acceptable proxy for structural identifiability.

However the converse is not true and no conclusions can be drawn

from a non-a priori identifiable system, as different experiments

could reveal that the system is indeed structurally identifiable.

The model parameters were numerically fit using a hybrid

stochastic-deterministic global optimization method [48,49] that is

based on well-established scatter search methods and implemented

as a set of MATLAB functions, which are freely available on the

authors’ website and require only a single function call in MATLAB

to implement. In brief, the method iterates between a global scatter

search and local refinement of the solution using traditional

methods; in this case we used MATLAB’s fmincon, which is

gradient-based technique, to perform this refinement. Although

some experimentally derived kinetic data was available, it originated

from heterogeneous sources including in vitro and in vivo platforms

and under different experimental conditions. Therefore, generous

bounds were used to define and explore parameter space.

To assess the effect of parameter perturbations on the steady-

state concentrations of protein in the healthy population and

quasi-steady-state (due to the polymerization reaction) concentra-

tion in the aggregation-prone population, the local, relative

sensitivity of this system, given by Eq. S4 (Text S1), was evaluated.

The relative sensitivity coefficient gives the dependence of the

protein concentration, ‘‘xi’’, on a parameter, ‘‘pj’’ and is

normalized with respect to the parameter and state values to

facilitate. The non-normalized coefficients are calculated by

applying the chain rule to Eq. S4 (Text S1), which results in a

set of ordinary differential equations that give all the sensitivity

coefficients associated with this system (Eq. S5, Text S1) by

simultaneous integration of these sensitivity ODE’s and the model

ODE’s in MATLAB. The sensitivity coefficients at steady-state

were collected into a matrix, Sx, of size Nx (number of states) by Np

(number of parameters).

Supporting Information

Table S1 List of states, differential equations governing the time

evolution of the states, and initial conditions for each state.

Found at: doi:10.1371/journal.pcbi.1000997.s001 (0.11 MB PDF)

Table S2 List of reactions and the rate equations for the model

of tau pathophysiology.

Found at: doi:10.1371/journal.pcbi.1000997.s002 (0.18 MB PDF)

Text S1 Supporting equations for the construction of the ODE’s

and objective function and for the calculation of the correlation

matrices and sensitivity coefficients.

Found at: doi:10.1371/journal.pcbi.1000997.s003 (0.03 MB PDF)

Figure S1 Major events in the tau processing network.

Phosphorylated (P) tau reversibly binds microtubules. In degen-

erating neurons, tau becomes abnormally and hyper-phosphory-

lated, misfolds, and is taken up by the chaperone system. Hsc70

mediates a decision between rescue and degradation.

Found at: doi:10.1371/journal.pcbi.1000997.s004 (0.10 MB TIF)

Figure S2 Pseudo-global identifiability for the first stage of

optimization to generate a population of healthy neuron models.

The matrix shows the correlation between all pairs of parameters

estimated during the optimization. A correlation of 1 or -1

indicates a non-identifiable parameter. No parameters were non-

identifiable, but parameters that were highly correlated, i.e. .0.95

(circled), were nonetheless removed to improve the efficiency of

the optimization.

Found at: doi:10.1371/journal.pcbi.1000997.s005 (1.20 MB TIF)

Figure S3 Pseudo-global identifiability for the second stage of

optimization to generate a population of aggregation-prone

neuron models. The matrix shows the correlation between all

pairs of parameters estimated during the optimization. A

correlation of 1 or -1 indicates a non-identifiable parameter. No

parameters were non-identifiable, nor did any parameter pairs

have correlations greater than 0.95.

Found at: doi:10.1371/journal.pcbi.1000997.s006 (1.60 MB TIF)

Figure S4 Identifiability of the median sensitivity coefficients for

the healthy population, as computed from the 95% confidence

intervals.

Found at: doi:10.1371/journal.pcbi.1000997.s007 (0.32 MB TIF)

Figure S5 Distribution of the median sensitivity coefficients,

categorized by their identifiability.

Found at: doi:10.1371/journal.pcbi.1000997.s008 (0.07 MB TIF)

Figure S6 Relative, steady-state sensitivity for the aggregation-

prone population of in silico neuron models. Median sensitivity

coefficient at steady-state is shown for pairs of states (proteins) and

parameters (rate constants). The parameters are grouped accord-

ing to type.

Found at: doi:10.1371/journal.pcbi.1000997.s009 (0.80 MB TIF)

Figure S7 Identifiability of the sensitivity coefficients, as

computed from the 95% confidence intervals. If the confidence

interval spanned 0, the coefficient was labeled unidentifiable.
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Found at: doi:10.1371/journal.pcbi.1000997.s010 (0.74 MB TIF)

Figure S8 Distribution of the median sensitivity coefficients of

the aggregation-prone population according to their identifiability

and magnitude.

Found at: doi:10.1371/journal.pcbi.1000997.s011 (0.08 MB TIF)

Dataset S1 Optimization results.

Found at: doi:10.1371/journal.pcbi.1000997.s012 (8.36 MB

XLSX)
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