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Abstract

In isolated populations underdominance leads to bistable evolutionary dynamics: below a certain mutant allele frequency
the wildtype succeeds. Above this point, the potentially underdominant mutant allele fixes. In subdivided populations with
gene flow there can be stable states with coexistence of wildtypes and mutants: polymorphism can be maintained because
of a migration-selection equilibrium, i.e., selection against rare recent immigrant alleles that tend to be heterozygous. We
focus on the stochastic evolutionary dynamics of systems where demographic fluctuations in the coupled populations are
the main source of internal noise. We discuss the influence of fitness, migration rate, and the relative sizes of two interacting
populations on the mean extinction times of a group of potentially underdominant mutant alleles. We classify realistic initial
conditions according to their impact on the stochastic extinction process. Even in small populations, where demographic
fluctuations are large, stability properties predicted from deterministic dynamics show remarkable robustness. Fixation of
the mutant allele becomes unlikely but the time to its extinction can be long.

Citation: Altrock PM, Traulsen A, Reed FA (2011) Stability Properties of Underdominance in Finite Subdivided Populations. PLoS Comput Biol 7(11): e1002260.
doi:10.1371/journal.pcbi.1002260

Editor: Philip Gerlee, University of Gothenburg, Sweden

Received May 23, 2011; Accepted September 17, 2011; Published November 3, 2011

Copyright: � 2011 Altrock et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PMA and AT acknowledge financial support from the Deutsche Forschungsgemeinschaft and the Max-Planck-Society. FAR acknowledges support by
funds from the University of Hawai’i at Manoa, the Deutsche Forschungsgemeinschaft RE-3062/2-1, and funds from the Max Planck Society. All funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: altrock@evolbio.mpg.de

Introduction

A population can evolve due to differences in relative

reproductive success over a life cycle. Fitness, in an evolutionary

genetic sense, is defined as the relative expected number of

descendants in the next generation based on an individual’s

genotype. In diploid organisms, two alleles can result in three

genotype combinations, two homozygous genotypes with two

copies of the same allele, and one heterozygote type with one

copy of each allelic type. Heterozygote disadvantage in

reproductive success is termed underdominance: Heterozygous

individuals have a lower relative fitness than both homozygotes.

The fundamental properties of underdominance in large

populations with deterministic dynamics are well known [1,2,3].

Underdominance acts as an evolutionarily bi-stable switch. A

mutant allele that is in underdominance with the wildtype is

expected to be lost if its initial frequency is below a certain

threshold. However, if the initial frequency is above this threshold

frequency, it can also proceed to fixation. The threshold

frequency is determined by the fitness values of the genotypes

involved [4,5]. The evolutionary dynamics induced by under-

dominance are similar to those in a coordination game, such as

the stag hunt [6,7,8,9,10].

Under natural conditions underdominance can be caused by

chromosomal rearrangements [11]. These rearrangements can

accumulate between closely related species [12,13], despite an

exceedingly small predicted probability of becoming established

[14,15]. Individuals that are heterozygotes for a reciprocal

translocation suffer from reduced fertility compared to homozy-

gotes. This is due to a disrupted number of gene copies in the

affected chromosomal region (i.e. segmental aneuploidy) [16].

We focus on the dynamics of a single locus with underdominant

alleles of large fitness effects, such as those expected with natural

reciprocal translocations. There has also been research into

multiple loci of weaker individual effects, which can have

interesting self-organizing properties [17,18]. Alternatively, ‘engi-

neered underdominance’ approaches based on reciprocal sup-

pression of toxic constructs have also been proposed, which have

much lower thresholds for a population transformation than

typically expected [19,20]. Finally, frequency dependent interac-

tions can have underdominant-like properties, such as maternal-

effect chiral dynamics in snails [21], and the Rh factor in humans

[22]. However, details of these additional cases are beyond the

scope of the work described here. Our results apply to classical

single locus underdominance with large fitness effects.

As an artificial genetic construct, underdominance has been

proposed as a method to stably establish linked alleles with

desirable properties in the wild; for example, rendering insect

populations resistant to diseases that otherwise can be transferred

to humans (or other species), such as malaria or Dengue fever [23].

The bi-stable nature of the evolutionary dynamics suggests that a

sufficient release of transformed individuals will ultimately result in

complete fixation of the transformed allele in the population.

Additionally, the system is reversible: A release of a sufficient

number of wildtypes can bring the population back to its original

state.

Underdominant polymorphism is eventually lost or completely

fixed in single populations. However, it is known that it can
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become stable at mixed frequencies due to a migration-selection

equilibrium in large subdivided populations that exchange a

fraction of migrants [24,25,26]. An underdominant polymorphism

can be maintained if the migration rate is below a bifurcation

point, which depends on the genotypic fitness values [26]. Higher

migration rates result in sufficient mixing, such that the two

population system effectively reduces to a single population and

the polymorphic state is lost.

Initial testing of genetic pest management systems is likely to

take place on more isolated physical or ecological islands

[27,28,29]. Furthermore, there are potential conservation appli-

cations of this type of technology in many island species [30].

However, smaller insect population sizes on islands may not be

well approximated by deterministic dynamics based on an infinite

population assumption. Here, we extend the understanding of the

evolutionary dynamics of underdominance in two demes to

include stochastic effects in finite populations.

Generations are overlapping in species that do not strictly follow

discrete time reproductive patterns. Hence, we concentrate on

Moran models describing the stochastic invasion and fixation of

transformed or mutant alleles in a system of coupled populations.

A Moran process considers a single reproductive event in one time

step such that after n time steps in a population of fixed size n, each

individual has reproduced once on average. If the timescales are

small enough that further mutations can be excluded, loss or

fixation of a given allele are the only possible outcomes. As a

simplification to our stochastic model, we assume that the two

populations exchange migrants at the same rate. How likely are

extinction or fixation of a certain number (release) of genetically

transformed mutant alleles? A release strategy can be defined by

number of released individuals and the release fractions in each

sub-population. How long can we expect a successfully trans-

formed local population to maintain the modified allele? How

robust is the notion of stability from the deterministic system in the

presence of fluctuations? We are also interested in population size

asymmetry, where a simplified island-continent model can be

appropriate.

The manuscript is organized in the following way. The next

part of this section briefly repeats aspects of evolutionary dynamics

in two infinitely large populations coupled by migration. Then,

we introduce our model based on a Moran process for two

populations with migration. The section ends with the introduc-

tion of a one-dimensional island continent model, which directly

follows as a solvable limit case. In the Models section we first give

the precise formulation of the discrete stochastic dynamics in two

dimensions and argue how to access its properties by simulations.

Secondly, we derive the island-continent model, which allows a

prediction for the mean extinction times of the mutant allele in a

small island population. In the last section, all results are discussed,

followed by a concluding summary.

Replicator dynamics
With B we denote the wildtype allele, whereas A represents a

transformed (or mutant) allele. Given a single locus two allele

model of diploid organisms, there are three genotypes possible:

BB, AB, and AA. We set the average allelic fitness of wildtypes

(BB) to 1, the fitness of heterozygote genotype (AB) to v, and the

fitness of homozygous mutants (AA) to n. The fitness ordering

vvnƒ1 leads to underdominance. Under random mating, we

can describe the population by the frequencies of the alleles (i.e.,

random union of gametes predicts the relative abundance of initial

zygotic genotypes in the population before applying selection). For

allele A with relative abundance p in a single population, the

average fitness is then given by fA~n pzv(1{p). Likewise, for

the wildtype allele B we have fB~(1{p)zv p. In general, for

overlapping generations, a replicator equation describes the

change in allele frequency in an infinitely large (well mixed)

population in continuous time,

_pp~ fA{�ff
� �

p

~ fA{fBð Þ 1{pð Þ p:
ð1Þ

Here, _pp~dp=dt denotes the temporal derivative and f ~p fA

z(1{p)fB is the average fitness of the population. The roots of

Eq. 1 give the fixed points p̂p. In the case of underdominance,

vvnƒ1, we have the stable fixed points p̂p~0 and p̂p~1 as well as

the unstable fixed point p̂p~(1{v)=(1zn{2v).

For two local populations that exchange migrants we introduce

the rate of migration m as a macroscopic parameter. In a small

time interval dt, the fraction of immigrants is m dt. Hence,

(1{m)dt is the fraction of non-migrant individuals. Let pj be the

frequency of allele A in population j~1,2. With the flow of alleles

from the other population due to migration, the frequencies that

contribute to the change in pj over time are ~ppj~(1{m)pjzm pk,

where k=j, in both populations. The total average fitness in either

population is fj~~ppj fA(~ppj)z(1{~ppj) fB(~ppj). Hence, the replicator

equation for the coupled system (j,k~1,2, k=j) reads

_ppj~ fA ~ppj

� �
{fB ~ppj

� �� �
1{~ppj

� �
~ppj

{m pj{pk

� �
�ff j :

ð2Þ

These dynamic equations follow from Eq. 1, _ppj~fA(~ppj) ~ppj{pj fj

[26]. The number of fixed points and their stability properties

depend on the rate of migration. The points (0,0) and (1,1) are

always stable. Migration has no effect on the diagonal p1~p2.

Exchanging alleles between populations at equal frequencies

results in no change in either of them. The point p1~p2~

(1{v)=(1zn{2v) on the diagonal is an unstable fixed point,

Author Summary

Underdominance is a component of natural evolution:
homozygotes – of either wildtypes or mutants – are
advantageous. This can play a role in speciation and as a
method to establish artificial genetic constructs in wild
populations. The polymorphic state of wildtype and
mutant alleles is unstable. However, in subdivided
populations limited gene flow can counterbalance this
effect. The maintenance of polymorphism sensitively
depends on the amount of gene flow. In populations of
finite size, the polymorphism is ultimately lost due to
stochastic fluctuations, but there are long intermediate
periods of polymorphism persistence. We analyze a simple
population genetic model to characterize and explore the
polymorphic phases depending on population size and
genotypic fitness values. Even for large fluctuations (small
population size), long periods of neither extinction nor
fixation are possible. Since underdominance has been
proposed as a genetic strategy in the pest management of
disease vectors, it is important to understand the basic
features of this system precisely, especially with a focus on
gene flow between ecological patches. We assess different
release strategies of potentially underdominant mutants,
where one seeks to minimize the probability of fixation of
the introduced allele but maximize the time to its
extinction.

Underdominance in Finite Subdivided Populations
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reflecting the inner unstable point of the single population

case. For symmetric underdominance, n~1, and mƒmc~(3{ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5z4 v
p

)=4, there are two stable states in the interior of the joined

allele frequency space, i.e. where A is neither fixed, nor lost. These

stable fixed points of the dynamics are located on the symmetry

axis, p2~1{p1. For general fitness values nƒ1, this symmetry is

broken, but such internal stable equilibria can still exist below a

critical migration rate mc [26].

Moran process
We focus on a Moran model with fixed population sizes. Our

main assumption is that mate choice is random. In this case

individuals in the population can be thought of as passing through

the Hardy-Weinberg expectations at some point in life-cycle

before selection. Hence, we can consider the system as if individual

alleles (i.e. gametes) reproduce and die. Reproduction is

proportional to fitness and death is random. Such discrete

stochastic birth-death processes are typically used to describe the

(transient) microscopic evolutionary dynamics in single uncoupled

populations of finite size [31,32,33,34,35,36]. From the micro-

scopic dynamics, one is interested in macroscopic quantities such

as the probability of extinction, and the associated extinction

times.

Our two populations are of size n1 and n2. The number of

individual copies of the mutant allele A (type A) in each

population are i1 and i2, jointly defining the state. Thus, type B

has frequencies n1{i1, n2{i2, respectively. As we are concerned

with diploid organisms the total number of alleles in each

population is nj~2Nj , where Nj is the number of organisms in

population j. Time is scaled in units of half the time between

organismal reproduction events, i.e. the time between individual

allele reproduction events. For convenience we introduce the

fractions x1~i1=n1 and x2~i2=n2. The average allelic fitness

functions are

fA(xj) ~n xjzv 1{xj

� �
, ð3Þ

fB(xj) ~ 1{xj

� �
zv xj : ð4Þ

For a consistent stochastic model several events have to be

considered independently in one time step of the Moran process.

First, with probability a a reproductive event occurs in

population 1. With probability 1{a a reproductive event occurs

in population 2. We exclude simultaneous reproductive events in

both populations and treat the two population system as one

Markov chain with the two absorbing states (0,0), and (n1,n2).
One population may change more rapidly than the other (i.e.

more events occur in the larger population per unit time). If a is

the relative reproductive rate under neutrality (v~n~1), we have

a!n1=(n1zn2), and thus 1{a!n2=(n1zn2). Hence, for the

study of two populations of comparable size, it is convenient to set

a~0:5. The choice of a does not change the migration-selection

equilibria predicted by the replicator system Eq. 2, compare Fig. 1.

Only the rates of change between fixed points are increased in

larger populations.

Secondly, in population j, the number of alleles of either type

increases with a probability proportional to the average fitness of

the allele. In such an event, however, we have to consider that with

probability m, the parent individual allele is from the other

population (i.e., an immigrant). Hence, type A produces an

identical offspring with probability proportional to ½(1{m)xjz

m xk�|fA((1{m)xjzm xk). A similar probability holds for type

B offspring, ½(1{m)(1{xj)zm(1{xk)�|fB((1{m)xjzm xk).

Thirdly, in each population, the total number of alleles is held

constant. This implies that for each birth event, there is an

independent death event: a randomly chosen individual allele is

removed from the population. A type A allele is removed with

probability xj , a type B allele is removed with probability 1{xj .

Overall, given the state (i1,i2), there are five events possible.

Four of them involve a change in allele frequency i1, or i2. Hence,

we have to define four transition probabilities in each state,

fP+
1 (i1,i2),P+

2 (i1,i2)g, such that migration and selection only

contribute to birth and not to random death. In general, fixation

Figure 1. Direction of selection in the two population system with migration. We show a phase portrait of the gradient of selection with
n1,2~1000. The arrows (length rescaled) indicate the most likely direction of selection given by Eqs. 6–9. The shading indicates the average speed of
selection: The darker she shading, the faster the system is expected to leave the given state. Stable fixed points of the replicator dynamics are given
by filled disks. Unstable fixed points and saddles are denoted by empty disks. Left panel: The migration rate is below the critical value mc&0:06,
such that the replicator dynamics has internal stable fixed points. The number of alleles changes equally fast in both populations a~0:5. Central
panel: For the same migration rate, but with one population changing three times as fast compared to the other (a~0:75), the selection pattern
changes. However, the fixed points of the replicator dynamics Eq. 2 remain the same. Right panel: The stability of the fixed points of the replicator
dynamics changes critically with the migration rate m. For sufficiently high migration rate, mwmc , the system proceeds fast to fixation or loss of the
mutant allele.
doi:10.1371/journal.pcbi.1002260.g001

Underdominance in Finite Subdivided Populations
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or loss in both populations are the only absorbing states, i.e.

P+
j (n1,n2)~P+

j (0,0)~0. Due to migration, there is a non-

vanishing flow perpendicular to the boundaries in state space.

When the mutant allele A is lost or fixed in only one population,

immigrants can drive the system back into the interior, where A is

present in both populations, compare Fig. 1 and Fig. 2.

Limiting cases
Let us first consider an island and continent situation. On the

large continent, migrants from the small island introduce A at a

very low frequency. The wildtype allele is fixed and allele A cannot

invade by migration. However, there is a non-vanishing fitness

contribution due to migration to the island, which receives

wildtype immigrants from, and loses migrants of any type to the

continent. This can be described by the limit case of the two

population system where one population becomes infinite and the

other remains finite. Given the fitness functions Eqs. 3 and 4, an

equivalent limit case is x2~i2=n2?0. Applying this limit to the

transition rates fP+
j (i1,i2)g, the single stochastic variable becomes

i~i1, and time can be rescaled such that a drops out. This yields a

one-dimensional birth-death process on i~0,1, . . . ,n{1,n. The

one-dimensional transition probabilities are Tz
i ~ limn2?? Pz

1

(i,i2) and T{
i ~ limn2?? P{

1 (i,i2). Here, limi2?0 fX ((1{m)i1z
m i2)~(1{m)fX (i)zm fX (0), (X~A,B), where fA(0)~v, and

fB(0)~1. The continent can only contribute to the birth of

wildtype homozygotes. Thus, T+
0 ~Tz

n ~0, and T{
n w0.

In the Models section we show how the moments tr
i of

the extinction times associated with the extinction process on the

island starting with i mutant alleles can be determined. The

probability that allele A ultimately vanishes in the island

population is t0
i ~1. For rw0, the rth moment follows recursively

from

tr
i ~
Xi

j~1

Xn{j

k~0

tr{1
n{k

T{
n{k
P
n{j

l~kz1

Tz
n{l

T{
n{l

: ð5Þ

Of most interest is typically the mean life time, or mean extinction

time, of the allele A, t1
i .

Another case that leads to one-dimensional evolutionary

dynamics is the limit of high migration rate, such that the two

populations become genetically indistinguishable. This yields

slightly different dynamics in a population of 2n individuals,

namely a one-dimensional Markov chain with two absorbing

boundaries. For such processes the extinction/fixation times are

formally well understood [31,37]. The expression for the mean

extinction time of a mutant allele at frequency 1{1=(2n) is similar

to Eq. 5 with r~1, t0
i ƒ1 [33].

Models

Moran process for two coupled populations
With migration the number of A alleles in each population

is ~xx1~(1{m)x1zm x2, and ~xx2~(1{m)x2zm x1. Here,

x1~i1=n1, and x2~i2=n2. The transition probabilities are given

by

Pz
1 (i1,i2)~a ~xx1

fA(~xx1)

F1
(1{x1), ð6Þ

P{
1 (i1,i2)~a(1{~xx1)

fB(~xx1)

F1
x1, ð7Þ

Pz
2 (i1,i2)~(1{a)~xx2

fA(~xx1)

F2

(1{x2), ð8Þ

P{
2 (i1,i2)~(1{a)(1{~xx2)

fB(~xx2)

F2
x2, ð9Þ

where F1~~xx1fA(~xx1)z(1{~xx1)fB(~xx1), and the equivalent F2, are

the average fitness values in each population. The probability that

the state (i1,i2) does not change (e.g. when a type A dies and

another type A is born) is thus given by P0(i1,i2)~1{

Pz
1 (i1,i2){P{

1 (i1,i2){Pz
2 (i1,i2){P{

2 (i1,i2). The only trivial

boundary conditions are P+
j (0,0)~0, and P+

j (n1,n2)~0 for

Figure 2. Stochastic evolution of the mutant allele in two coupled populations. Typical trajectories for the loss of the mutant allele
(extinction process) in a system of two populations of the same size, n1~n2 . We show different realizations of the two dimensional Markov chain. The
initial condition is the unstable equilibrium near the center i1,2&n1,2(1{v=(1zn{2v)), the final state is (0,0) in all three cases. The shading indicates
the sojourn time (total time spent in a particular state, including waiting times). The brighter the shading, the more often the respective state has
been visited, white states were not visited. Left panel: Typically, the process spends long times near the (0,n2),(n1,0) corners, where the waiting
times are highest. Center panel: The process proceeds fast to extinction of the mutant allele, but slows down near (0,0). Right panel: The process
spends most of the time in the (n1,0) corner. Once it proceeds to extinction, it moves fast along a boundary of the allele frequency space, i.e. the
mutant allele does not invade the other population again.
doi:10.1371/journal.pcbi.1002260.g002
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j~1,2. To assess the dynamics of the system, we directly simulate

the stochastic process described by Eqs. 6–9.

Lifetime in an island population close to a continent
The average allelic fitness values in the island population of size

n are

gA(i)~ vz
i

n
(1{m)(n{v), ð10Þ

gB(i)~ 1{
i

n
(1{m)(1{v): ð11Þ

Note here that for the rescaled allele frequency q~(1{m) i=n, we

just have gA(i)~fA(q), as well as gB(i)~fB(q), compare Eqs. 3 and

4. The transition probabilities of the one-dimensional Moran

process are

Tz
i ~ (1{m) i

gA(i)

G(i)

n{i

n
, ð12Þ

T{
i ~ (1{m)(n{i)zm nð Þ gB(i)

G(i)

i

n
, ð13Þ

where the normalization (total fitness) is given by G(i)~(1{m)
i gA(i)z((1{m)(n{i)zm n)gB(i).

The parameter transition from high to low migration leads to a

change of the local gradient of selection Tz
i {T{

i , Eqs. 12 and 13.

The boundary i~0 is absorbing, while i~n is reflecting,

T{
n ~

m(m(1{v)zv)

m(m(n{2vz1){2(n{v))zn
: ð14Þ

Note that T{
n does not depend on the size of the island population.

Furthermore, Tz
i {T{

i ~0 has the trivial solution i~0, and can

have two non-trivial solutions i+~n~xx+, given by

~xx+~
(3{m)v{(1{m)n{2

2(m{1)(n{2vz1)

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n (1{m)2n{4m
� �

z(1zm)2v2{2(1{m)2nv
q

2(m{1)(n{2vz1)
,

ð15Þ

which is real valued if n (1{m)2n{4m
� �

z(1zm)2v2
§2(1{m)2

nv. Hence for

mv

n(nz2){2nv{v2+2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(1zn{2v) n{v2ð Þ

p
(n{v)2

ð16Þ

the deterministic one-dimensional dynamics has a stable fixed

point at ~xx{, and an unstable one at ~xxz.

Let fl,k(t) be the probability that the process moves from state k
to state l in exactly t time steps. For this probability function the

backward master equation

fl,i(tz1){fl,i(t)

~Tz
i fl,iz1(t)zT{

i fl,i{1(t){ Tz
i zT{

i

� �
fl,i(t)

ð17Þ

holds, for which we can compute the conditional moments in the

following way. The only absorbing state is i~0, as i~n is

reflecting, Tz
n ~0, T{

n =0 for mw0. We call tr
i the rth moment of

the life time of the process starting from any i~1,2, . . . n. For these

moments, the following moment generating recursions hold

[31,33,38]:

r tr{1
i ~ Tz

i zT{
i

� �
tr

i {Tz
i tr

i{1{T{
i tr

i{1, ð18Þ

where for the zeroth moment we have t0
i ~w0

i ~1, which is the

probability that the system fixes at i~0 after an arbitrary number

of (but at least i) steps. Hence, for the mean life time, ti~t1
i , i.e.

the first moment of the process, we find

1~ Tz
i zT{

i

� �
ti{Tz

i ti{1{T{
i ti{1, ð19Þ

which we can solve recursively. Introducing vi~ti{ti{1, we get

vi~Tz
i =T{

i viz1z1=T{
i , ð20Þ

which, respecting the boundary condition and starting from

vn~1=T{
n , solves to

vn{j~
Xj

k~0

1=T{
n{kP

j

l~kz1
Tz

n{l=T{
n{l :

ð21Þ

Changing n{j to j (and the upper limits of sum and product

accordingly), we see that
Pi

j~1 vj~ti, such that the mean life

time, starting from any iw0, fulfills

ti~
Xi

j~1

Xn{j

k~0

1

T{
n{k
P
n{j

l~kz1

Tz
n{l

T{
n{l

: ð22Þ

Similarly, all moments follow from Eq. 18, leading to Eq. 5 [33].

Results/Discussion

Extinction events in two populations of comparable size
First, we address the ratio of fixation to loss in the system of two

coupled sub-populations of equal size. An ideal case for a locally

controlled genetic pest management strategy emerges when the

resistant allele (A) is at high frequency in one local population and

at very low frequency in another. Given the situation of almost-all

A in one population, and almost-no A in the other, what is the

probability of the allele A to become extinct in both populations,

w0
i1,i2

, relative to the probability to reach (typically undesired)

complete fixation, wn
i1,i2

? The answer is given in Fig. 3 (a) showing

the ratio wn
n1{1,1=w0

n1{1,1, for 40 alleles in each population, as a

function of increasing fitness asymmetry 1{n, with heterozygote

fitness kept constant v~0:5. The ratio of fixation to loss of A
approaches zero with decreasing fitness of homozygote mutants n.

The rate of decay decreases with increasing migration rate, as for

low values of m the system spends long times in the interior,

compare to the histogram in Fig. 4. In addition, the frequency

distribution becomes broader with increasing m, see Fig. 3 (b).

The replicator dynamics for two populations shows a maximum

of nine fixed points and an associated bifurcation pattern

depending on the migration rates, see Fig. 1 and compare to

[26]. A stable interior equilibrium at migration-selection balance

can be disturbed by the demographic fluctuations and will

ultimately result in fixation or loss of one of the alleles, despite

the stability of the original situation. Hence, one is interested in the

Underdominance in Finite Subdivided Populations
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average extinction time under various parameter configurations.

To grasp an idea of how the system behaves in a single realization,

we show three typical stochastic trajectories, Fig. 2. Naively, one

would expect the system to spend more time near interior stable

equilibria. However, the process spends most of its time in the

adjacent edges and corners of the joint allele frequency space,

where waiting times are long. The system exits the regions around

stable points (e.g., near the (n1,0) corner) via the edge rather than

on internal trajectories, see Fig. 2, because the demographic noise

is proportional to xi(1{xi) [31]. Hence, in the non-absorbing

corners there is little noise and thus we expect long waiting times.

Between corners and especially in the interior away from the edges

the dynamics are relatively fast. An example histogram of

extinction events is given in Fig. 4 (a). For instance, the mean

extinction time in a system with n1~n2~40 alleles is &1:4|104

time steps for small m. The extinction process spends most of its

time near the (n1,0) or (0,n2) corner. For a very long time the

mutant allele is essentially fixed in one population and lost in the

other. However, if migration rates become larger, the length of this

quasi-stable period decreases (mc&0:06 for n1,2~40), compare to

Fig. 5.

The impact of system size in two equally large populations can

now be quantified in terms of the average extinction time of type

A. The extinction time diverges with increasing population size.

Fig. 4 indicates that for lower migration rates, this effect is

stronger. Low migration, m~0:035, gives an average extinction

time of approximately 30000 time steps, which amounts to

approximately 375 generations in a populations of 80 alleles. For

high migration, m~0:15, we obtain an average of approximately

2500 time steps (approximately 31 generations). This number of

generations is consistent with the expectation that the two

populations become panmictic for high migration: In a panmictic

Figure 3. Fixation becomes unlikely with decreasing fitness of
mutant homozygotes, variance in allele frequency increases
with migration rate. a) The ratio of fixation to loss of the mutant
allele in a system of two populations of sizes n1,2~40 is shown as a
function of the difference of homozygote fitness values 1{n, with initial
condition i1~n1{1, i2~1. Results are obtained from 5|105 indepen-
dent realizations with a heterozygote fitness of v~0:5. As n approaches
v, the probability of fixation in both patches goes to zero. b) For four
different scenarios of homozygote fitness n and migration rate m we
show the quasi-stationary distribution of the number of mutant alleles
in population 1 (n1,2~40, 105 independent realizations with initial
conditions (n1{1,1)). The average number of mutants in population 1
is denoted by Si1T, the standard deviation by s1 . As homozygotes
become less fit, the distribution does not change significantly. However,
s1 increases with migration rate.
doi:10.1371/journal.pcbi.1002260.g003

Figure 4. Mutant allele’s extinction is delayed for small but
non-vanishing migration rates. (a) Histogram of the extinction
process and the according extinction times as functions of the
migration rate in systems of two equally large populations (n1,2~n,
n~0:9, v~0:5, a~0:5). This histogram can be obtained by averaging
over sample trajectories such as those shown in Fig. 2. The initial
condit ion is the unstable equi l ibr ium near the center
i1,2&n1,2(1{v=(1zn{2v)), the outcomes are conditioned on extinc-
tion (final state (0,0)). Histogram across the entire state space, n~40,
m~0:025 (106 realizations). For each state we give a record of the time
spent. Black states are never visited, colored states are visited at least
once. The brighter the color, the more often the respective state has
been visited, which is characterized by a sojourn time in that state. (b)
The mean extinction time rescaled by n1,2 , for three different system
sizes as a function of m, in a double logarithmic plot. Symbols refer to
n1,2~20 (squares), n1,2~40 (circles), n1,2~80 (triangles) (105 realiza-
tions).
doi:10.1371/journal.pcbi.1002260.g004
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population of 160 alleles, the standard literature on Moran models

[33,39] yields an average extinction time of approximately 2500

time steps (approximately 16 generations).

Analyzing the extinction times as a function of migration rate

reveals the transition from one power law to another in the region

around the critical migration rate predicted by the replicator system;

We can identify two regimes. In the first regime, mv0:05, the

extinction time scales as !m{c1 , with c1&2:5. In the second regime,

mw0:1, the extinction time scales as !m{c2 , with c2&0:25. The

two power law regimes for n1~n2~40 are given in Fig. 5 for a

realistic choice of genotypic fitness values n~0:9 and v~0:5. For this

parameter configuration the replicator equation 2 yields a critical

value of mc&0:06 [26]. Fig. 5 analyzes this transition for n1,2~40.

The initial condition is chosen such that i1~i2 are at or close to the

selection-migration equilibria, i1,2~n1,2(1{v)=(1zn{2v), which

is near the most efficient release strategy in terms of minimal release

numbers (discussed below).

Temporary maintenance of polymorphism in an island
population

The transition of one population approaching infinite size, while

the other remains relatively small, leads to stochastic evolutionary

dynamics in one dimension. A benefit in using a Moran model is

that in one dimensional systems we can obtain exact analytical

results for the hierarchy of moments of extinction/fixation times

[31,33,38,39]: We can solve the recursions for the moments, Eq. 18.

In Fig. 6 we present the convergence of the limit n1~n, n2??
(i1~i, i2?0) and show histograms from simulations of the one-

dimensional island model, Eqs. 12 and 13. The distribution of

extinction times changes substantially with m. In our example, for

very low migration rates the mutant allele is expected to be

maintained in the system for more than 900 generations, when

starting from i~n. With a fixed population ratio, we average over

the change of the Moran process in the island population to obtain a

measure tisland, discarding changes in the continent population. As

the ratio n2=n1 increases, this average converges to the average

extinction time tn: The simulations start from i1~n1, i2~0, and

with increasing n2, fluctuations in the continent population

decrease, tisland?tn. Only for a continent population which is

roughly a hundred times larger than the island population, we enter

the regime of a quasi one-dimensional system with a static continent

of wildtypes. The limit case is not approached monotonically, but

depends on the migration rate m in a non-trivial way.

Release strategies and probability of long term
transformation

Assuming migration is low enough such that it can be locally

counteracted by selection, how likely is a mutant allele to fix or be

Figure 5. Transition from rapid to slow extinction as migration
rate decreases. The mean extinction time as a function of the
migration rate (105 realizations) for n1,2~40, in a double logarithmic
plot for mutant homozygote fitness n~0:9 and heterozygote fitness
v~0:5. The initial condition is near the deterministic unstable
equilibrium i1,2&n1,2(1{v)=(1zn{2v). The arrow indicates the value
of critical migration rate of the deterministic replicator dynamics, Eq. 2,
mc&0:06. Values for the probability of extinction for the same
parameters are 0:67 (m~0:015) and 0:53 (m~0:15).
doi:10.1371/journal.pcbi.1002260.g005

Figure 6. Maintenance of polymorphism in a small island
population. a) Histograms of the extinction time on an island
population, Eqs. 12,13, for different migration rates in a log-linear plot.
Population size is n~n1~20, fitness of mutant homozygotes is n~0:85,
fitness of heterozygotes is v~0:5. The histograms stem from 107

independent realizations with initial condition i~n. Each arrow
indicates the mean extinction time tn , Eq. 22 (r~1). The values from
simulation and the exact formula are in excellent agreement. With
decreasing migration rate, the distribution of extinction times broadens
significantly. b) For the same set of parameters we show how the
(conditional) average extinction time of the mutant allele in a small
population converges to the analytical result of the continent-island
approximation with n1~20 and variable n2 (106 independent realiza-
tions).
doi:10.1371/journal.pcbi.1002260.g006
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removed depending on the initial transformation? Here, we give a

characterization of the two population system in terms of complete

loss or fixation in both, or temporary reciprocal fixation and loss.

In principle, a release strategy is based on two parameters. First,

the amount of new mutant alleles added to the system, Rw1,

relative to the size of each population. Second, a fraction f is

released into one, and the remainder 1{f into the other

population. Maintaining the populations at a constant size implies

that

n1
f R

f Rz1
,n2

(1{f )R

(1{f )Rz1

� �
ð23Þ

is the set of initial release points, where f ranges from 0 to 1. For a

given R, this defines a curve in the joint allele frequency space,

which is depicted in Fig. 7 for different values of f . Also in Fig. 7

the probabilities of first visiting a corner of the system for a fixed

release size R~2:75 and various fractions f are summarized as a

function of the population sizes n1,2. In accordance with Fig. 3, the

system loses the mutant allele entirely with a high probability for a

wide range of chosen release strategies.

Fig. 7 illustrates some less intuitive properties that are

informative in terms of release strategies. For a given number of

genetically modified individuals R, it might seem that releasing all

of the individuals into a single target population would maximize

the chance of successfully transforming the population. However,

in this case, simultaneously releasing some individuals into the

neighboring population is more likely to result in a successful local

transformation. This proportion is dependent on the population

size, f&0:85 for n1,2~200 to f&0:7 for n1,2~2000 or higher. To

understand this dependency, note that the basin of attraction of

the local transformation is a smaller proportion of the local space

near the central unstable equilibrium. Since the demographic

noise in finite populations is proportional to xj(1{xj)=nj , the

basin of interest comprises a smaller proportion of states where

selection can be counterbalanced by local migration. In the

illustrative example in Fig. 7 it can also be seen that a simultaneous

equal release into both populations (f ~0:5) maximizes the

chances of transforming both. Attempting to transform one

population at a time in a stepwise strategy does not lead to

complete fixation immediately. However, once a single population

is successfully transformed, it is much easier to transform the

neighboring population, if desired. This only requires an

additional release of less than a single population size, Rv1.

Summary and conclusions
We have proposed a simple model to analyze the influence of

small system size and system size asymmetry on the evolutionary

dynamics of an underdominant system in a structured population.

The population structure itself is chosen to be as simple as possible:

We consider two sub-populations that exchange migrants at a

given rate. This allows a direct comparison with findings in

infinitely large populations [24,26]. Our simplifying assumptions

then permit a statistical characterization of the migration-selection

equilibrium in finite populations by means of simulations. Other

stochastic descriptions of the evolutionary dynamics, e.g., the

Wright-Fisher process, have very similar properties when it comes

to extinction probabilities and times [31,40,41]. However, we stick

to a Moran model which has the benefit that limit cases have exact

solutions for all fitness values and population sizes that do not rely

on further approximations.

We review previous findings in infinitely large populations in the

introduction and use them as a basis to examine the influence of

demographic fluctuations in small populations. We argue that the

transient dynamics are important, as the influence of noise may

alter the outcome of the evolutionary dynamics in this regime.

Our main results can be summarized as follows. First, for fitness

asymmetry, extinction rather than total fixation of the potentially

underdominant allele is the most likely outcome, even if this allele

is initially at high frequency in one of the populations. In a

migration-selection equilibrium the (quasi-stationary) variance in

allele frequencies is low. High migration disrupts this dynamic

equilibrium such that extinction is facilitated and the variance in

frequency increases.

Second, we find that migration rate has a strong impact on

the extinction process. We identify a threshold below which

the mutant allele can be maintained for a long time, which

corresponds to a bifurcation point in the deterministic system. For

example, if mutant homozygotes suffer from a 10% fitness loss and

heterozygotes from a 50% fitness loss (compared to wildtypes),

extinction is significantly delayed for migration values below 5%.

With increasing population sizes, the extinction times tend to

diverge rapidly with decreasing migration in this regime. Even in

small populations, disruptive effects from demographic fluctua-

tions can be counterbalanced by small, but finite numbers of

migrants.

Third, we evaluate the consequences for release strategies. For

conservative estimates of a release of potentially underdominant

mutants into wildtype populations, we can give a statistical

evaluation that can be tested in vivo, as well as in situ. If migration

between patches is low enough, a release division of 75% mutants

into a target population, and thus 25% into a neighboring

population, can be optimal and lead to a local polymorphism that

is expected to be maintained for a long time.

Fourth, the limit case of one population becoming very large

reveals that the potentially underdominant allele can be kept in the

small population for long times. A small population with incoming

migrants from a large wildtype reservoir is well described by a one-

dimensional process if the reservoir is about 100 times larger. This

also refers to the desired situation in which one is interested in the

local establishment of disease resistance (caused by an effector

gene), driven by underdominance.

Results from infinite population assumptions may, in some

cases, be misleading when observing finite allele frequencies.

Under demographic fluctuations the stochastic evolutionary

dynamics slow down near corners and along edges: In the vicinity

of equilibrium points the flow induced by selection can become

squeezed between boundary and equilibrium. High flow density

means low flow velocity, which also affects the transition rates.

Due to this nature we may observe large waiting times near the

corners and along edges which happen to be near internal

equilibria. However, under neutral evolution, the system also slows

down near corners and edges.

If selection is strong, underdominance and sufficiently low

migration can maintain a polymorphic state for many generations

even in small populations. This bodes well for using under-

dominance to control initial testing of genetically modified insects

in isolated settings so that the natural species remains untrans-

formed in its broader range. The system can be stable for so long

that additional factors are likely to be more important in ultimately

disrupting the system. Such additional factors can be the

occurrence of new mutations and/or behavioral changes

[42,43,44].

The stability properties of underdominance in small finite

populations may have particular value both in initial testing of

genetically modified vectors and in species conservation applica-

tions. For example, Culex quinquefasciatus mosquitoes have spread
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from a native range in the southeastern United States to several

islands in the Pacific due to human activities. Most of these islands

are of substantial conservation value, e.g., the Galápagos [45] and

Hawaiian archipelagoes [30]. The mosquitoes are vectors of avian

malaria, Plasmodium relictum, which is a major factor in past

extinctions and current endangerment of many Hawaiian forest

birds [30]. Island populations of C. quinquefasciatus can be

genetically modified to be refractory to avian malaria to break

the cycle of infection, e.g., [46,47]. Linking this refractoriness to

underdominance could prevent the genetic modifications from

spreading back into the native range of C. quinquefasciatus. This

would allow the native range mosquitoes to be protected in a

wildtype state. Furthermore, it may also be possible to leave a

fraction of the island populations stably untransformed to allow

the evolution of natural resistance in the threatened bird species

(see, e.g., [48]).

Genetically modified chromosomes are typically less fit than

wildtypes as homozygotes, see [49] and references therein. This

homozygote fitness asymmetry provides a degree of failsafe into

the system. If stability is lost, the system is much more likely to

Figure 7. Searching for an optimal release strategy. The upper left panel illustrates the deterministic basins of attraction for m~0:055, n~0:9,
and v~0:5. The blue line illustrates possible starting points for a release of size R~2:75 for all possible values of the release fraction, f , into
population 1. Blue disks correspond to points of illustration in the five following panels. The arrow streams represent example trajectories of
deterministic dynamics. The following five panels are labeled according to the release fraction f . Symbols correspond to the probability of reaching
the correspondingly labeled corners (in the upper left panel) and indicate how they change with n1,2. Although complete fixation or loss are the only
possible long term events, there is a probability that the neighborhood of, e.g., i1=n1~1, i2=n2~0 is reached first, which we refer to here by triangles.
In particular, note that the probability ranks interchange at certain population size for f ~0:65 and f ~0:75. The three bottom panels, labeled with
the respective system sizes, show the corner probabilities as a function of f . A release strategy with f ~0:5 maximizes the likelihood of transforming
both populations. In contrast to that, f&0:7, . . . ,0:8, maximizes the likelihood of transforming only a target local population. Higher values of f then
proceed to an increasing likelihood of rapid loss in both populations. All results are obtained from 105 independent realizations.
doi:10.1371/journal.pcbi.1002260.g007
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result in a return to a natural wildtype state, rather than reaching

fixation of an artificial genetic modification across populations.
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