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Abstract

High-resolution HLA typing plays a central role in many areas of immunology, such as in identifying immunogenetic risk
factors for disease, in studying how the genomes of pathogens evolve in response to immune selection pressures, and also
in vaccine design, where identification of HLA-restricted epitopes may be used to guide the selection of vaccine
immunogens. Perhaps one of the most immediate applications is in direct medical decisions concerning the matching of
stem cell transplant donors to unrelated recipients. However, high-resolution HLA typing is frequently unavailable due to its
high cost or the inability to re-type historical data. In this paper, we introduce and evaluate a method for statistical, in silico
refinement of ambiguous and/or low-resolution HLA data. Our method, which requires an independent, high-resolution
training data set drawn from the same population as the data to be refined, uses linkage disequilibrium in HLA haplotypes
as well as four-digit allele frequency data to probabilistically refine HLA typings. Central to our approach is the use of
haplotype inference. We introduce new methodology to this area, improving upon the Expectation-Maximization (EM)-
based approaches currently used within the HLA community. Our improvements are achieved by using a parsimonious
parameterization for haplotype distributions and by smoothing the maximum likelihood (ML) solution. These improvements
make it possible to scale the refinement to a larger number of alleles and loci in a more computationally efficient and stable
manner. We also show how to augment our method in order to incorporate ethnicity information (as HLA allele
distributions vary widely according to race/ethnicity as well as geographic area), and demonstrate the potential utility of
this experimentally. A tool based on our approach is freely available for research purposes at http://microsoft.com/science.
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Introduction

The Major Histocompatibility Complex (MHC), located on the

short arm of chromosome 6, encodes the Human Leukocyte

Antigen (HLA) class I and II genes, whose protein products play an

essential role in the adaptive immune response. The HLA class I

and class II proteins bind antigenic, pathogen-derived peptides

(called epitopes) and display them on the cell surface for recognition

by CD8+ or CD4+ T-lymphocytes, respectively, thus activating the

cellular immune response and mediating pathogen clearance.

Critically, each HLA protein can bind only a limited range of

peptides (as dictated by HLA-specific binding motifs), and

individuals express different (and multiple) HLA class I and class

II proteins with different peptide specificities. In addition, the HLA

class I and II genes represent the most polymorphic set of genes in

the human genome; extensive MHC/HLA genetic diversity on

both an individual as well as a population level ensures that the

human immune response will be equipped to target a diverse range

of pathogens. To date, more than 600, 900, and 300 different alleles

have been identified, respectively, for the class I HLA-A,-B and -C-

loci, whereas more than 600 alleles have been identified at the class

II HLA-DRB1 locus; new alleles are routinely being discovered [1].

In addition, due to their location within the MHC region on

chromosome 6, HLA alleles are in tight linkage disequilibrium, and

thus can be thought of in terms of a haplotype [2].

High-resolution HLA typing (meaning the determination of the

specific HLA alleles which an individual expresses at each of the

class I and/or class II loci) is an essential tool for basic as well as

clinical immunology research. For example, HLA typing has been

used to identify immunogenetic risk factors for human diseases

[3,4,5] and more recently has been used to investigate how

pathogens (such as HIV (e.g., [6,7]) and, more recently Hepatitis C

Virus [8,9,10]) evolve in response to HLA-restricted immune

selective pressures. In addition, HLA typing is essential for vaccine

research: the identification and mapping of HLA-restricted T-cell

epitopes in the proteomes of different pathogens (e.g., [11]), could

help inform the selection of potential immunogens in a T-cell

based vaccine design. Clinically, high-resolution HLA typing is

routinely required in the context of modern transplantation

medicine, such as for hematopoietic stem cell transplants: in order

to minimize risk of rejection, donors and unrelated recipients must

be matched with respect to HLA alleles expressed [12].

Historically, HLA typing was performed using low-resolution,

antibody-based serological tests. However, higher-resolution HLA
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typing is now achievable using more modern, molecular (DNA-

based) methods. Molecular methods for HLA typing include

hybridization with sequence-specific oligonucleotide probes

(SSOP), PCR amplification with sequence-specific primers

(PCR-SSP), and more recently, DNA sequence-based methods.

Generally, DNA sequence-based methods involve locus-specific

PCR amplification of exons 2 and 3 (for HLA Class I genes), or

exon 2 only (for HLA class II), followed by ‘‘bulk’’ DNA

sequencing of the amplified product (i.e., sequencing of products

derived from both HLA haplotypes). Sequencing is restricted to

exons 2 and/or 3 because these regions are the major

determinants of HLA peptide-binding specificity and thus contain

enough information to discriminate between most allele combi-

nations. If an individual is heterozygous (i.e., possesses two

different alleles) at any locus, direct sequencing of an amplified

PCR product will yield nucleotide mixtures at positions in which

the two alleles differ in sequence. Consequently, there are two

reasons why modern sequence-based typing methods may yield

ambiguous typing results: first, if the differences between the two

alleles are located outside the genotyped region (in most cases,

exons 2 and/or 3), and secondly, if two or more allele

combinations yield the exact same pattern of heterozygous

nucleotide mixtures when combined into a ‘‘bulk’’ sequence.

Because of the great (and ever-increasing) number of HLA

alleles (and thus growing list of ambiguous combinations),

unambiguous HLA typing is costly, laborious, and limited to

laboratories specializing in this work. For the purposes of scientific

research, HLA types are not always unambiguously determined;

rather, they are only determined up to some ‘‘resolution’’ (i.e.,

level of ambiguity). Additionally, because the number of HLA

alleles is constantly increasing, sequence-based, SSOP and SSP

based typing results, which depend on the list of known alleles,

require constant re-interpretation in light of newly discovered

alleles. This re-interpretation can result in more ambiguity than

originally thought [13]. Perhaps even more importantly, it is often

impossible to re-type historic samples that may have been typed

using lower-resolution approaches.

The practical consequence of these issues is that there is a large

incongruence between the high-resolution HLA typing required

for scientific investigations and the HLA data that is widely

available. As such, any method which can help to increase

resolution of HLA data, post-hoc and at low cost, will provide a

greatly needed service to the scientific and clinical communities. In

this paper, we introduce and evaluate a method for statistical, in

silico refinement of ambiguous HLA types. Our method uses

information available from inferred HLA haplotypes to probabi-

listically refine HLA data. Our method, which relies upon

haplotype inference from unphased data, introduces new meth-

odology to this area which improves upon the most commonly

used approach within the HLA community (i.e., multinomial

parameterization trained with an EM—Expectation-Maximiza-

tion—algorithm).

Our improvements are achieved by using a parsimonious

parameterization, and by smoothing the maximum likelihood

(ML) solution. These improvements make it possible to scale the

refinement to a larger number of alleles and loci in a more

computationally efficient and stable manner. We also show how to

augment our method in order to make use of data arising from

different ethnic backgrounds, and show the potential use of this

experimentally. Our method is evaluated using data from various

sources, and from various ethnicities, as described in the

Experimental section. Additionally, an implementation of our

method is available for community-wide use.

HLA Nomenclature and Typing Ambiguity
HLA nomenclature is closely tied to the levels of possible HLA

ambiguity. Each HLA allele is assigned a letter (or letters) which

designate the locus (e.g., A, B, and C for class I; DRA, DRB1,

DRB2-9, DQA1, DQB1, DPA1, DPB1, for class II.) This letter is

followed by a sequence of numbers, such as A*0301, for one allele

at the A locus. The first two digits describe the allele type; in most

cases the first two digits correspond to the historical serological

antigen groupings. Low resolution HLA typing refers to alleles which

are reported at this two-digit level (e.g., A*03).

The third and fourth digits are used to designate the allele

subtypes, wherein alleles are assigned numbers from 01–99

roughly according to their order of discovery. A minimum of four

digits thus uniquely defines any allele: by definition, any two alleles

which differ in their four-digit number, differ by at least one amino

acid. For example, A*0301 and A*0302 do not encode the same

protein sequence. Because two-digit names are exhausted after 99

alleles, there are a few oddities in the nomenclature. For example,

A*02 and A*92 belong to the same two-digit class as do B*15 and

B*95 [14].) See http://www.anthonynolan.org.uk/HIG/lists/no-

menlist.html and [2] for more nomenclature details. Sometimes

more than four digits are used to designate an allele: the fifth and

sixth digits are used to distinguish alleles which differ only by

synonymous substitutions (i.e., do not change the amino acid

sequence of the protein), while the seventh and eighth digits

distinguish alleles which differ in sequence in the non-coding

regions of the gene (i.e., the introns or the 59 or 39 untranslated

regions). For the purpose of our work, we omit this level of detail

and limit our analysis to the four-digit level only. In any case, there

is not enough data available at the six-to eight- digit resolution

level to do any substantial statistical modeling.

Assuming that HLA resolution beyond four digits are ignored,

there are still various levels of ambiguity that can arise from

molecular (DNA)-based HLA typing methods. For example,

rather than knowing unambiguously which two A alleles a person

has, one may instead know only a list of possibilities; for example,

A*0301-A*3001 or A*0320-A*3001 or A*0326-A*3001. Such

intermediate resolution types may result from sequence-specific PCR

(SSP) based typing where testing with the initial set of PCR

Author Summary

At the core of the human adaptive immune response is the
train-to-kill mechanism in which specialized immune cells
are sensitized to recognize small peptides from foreign
sources (e.g., from HIV or bacteria). Following this
sensitization, these immune cells are then activated to kill
other cells which display this same peptide (and which
contain this same foreign peptide). However, in order for
sensitization and killing to occur, the foreign peptide must
be ‘‘paired up’’ with one of the infected person’s other
specialized immune molecules—an HLA molecule. The
way in which peptides interact with these HLA molecules
defines if and how an immune response will be generated.
There is a huge repertoire of such HLA molecules, with
almost no two people having the same set. Furthermore, a
person’s HLA type can determine their susceptibility to
disease, or the success of a transplant, for example.
However, obtaining high quality HLA data for patients is
often difficult because of the great cost and specialized
laboratories required, or because the data are historical
and cannot be retyped with modern methods. Therefore,
we introduce a statistical model which can make use of
existing high-quality HLA data, to infer higher-quality HLA
data from lower-quality data.

Statistical Modeling of T Cell Responses
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primers will yield a list of possible genotypes that a particular

person might have (which may require further testing with

additional combinations of allele-specific primers and/or cloning

and sequencing of clones before an unambiguous type is achieved).

As previously mentioned, even modern sequence-based methods

may result in ambiguous allele combinations (if sequenced alleles

differ outside the genotyped region, or if different possible allele

combinations result in the same pattern of observed nucleotide

mixtures). Depending on the clinical and/or research purpose of

the HLA typing, additional laboratory testing required for

achieving high-level (i.e., four-digit) resolution are often not

performed for reasons relating to time and cost. In many cases,

intermediate-level resolution data are truncated to two-digit

resolution; in the previous example, this individual would be

reported as having HLA alleles A*03 and A*30.

Although related but different HLA alleles (for example, those

alleles which share the same first two digits) sometimes share

immunogenic properties, higher resolution data allows for more

precise and informative downstream use (e.g., [15]). We are thus

motivated to develop low-cost techniques for improving resolution,

such as the statistical method introduced here.

The input to our statistical HLA refinement method consists of

two data sets. The first is data of interest that have not been typed

unambiguously to a four-digit resolution, but for which we would

like to increase the resolution as much as possible. The second

input is a set of training data consisting of four-digit resolution

HLA types for individual people, where the population is drawn

from one that is the same (or, in practice, as similar as possible) to

the population of interest for which we wish to refine HLA types.

First we train our model on the training data. Then we apply this

trained model to our limited-resolution data of interest. For

example, if a patient in our data set of interest was typed

ambiguously at the A locus as having either (1) A*0243, A*0101,

or (2) A*0243, A*0122, then our statistical model assigns a

probability to each of these two possibilities. More generally, our

model assigns a probability to any number of possibilities (not just

two), and over many loci. To date, we have used our method,

without computational difficulty, to refine up to four loci with 20–

130 alleles at each locus, and, on data sets with up to half a million

possible haplotypes.

To be precise about what kind of HLA typing ambiguities our

approach can tackle, we emphasize that in principle, our approach

can handle any kind of ambiguity, so long as that ambiguity has

been resolved in the training data set, and so long as the ambiguity

can be defined as an allele or set of alleles, taking on some number

of clearly defined possibilities. Two common ambiguities that are

of interest to researchers are i) molecular allele ambiguities, in which

we know that one allele, specified unambiguously (e.g., A*02) is

actually one of several possibilities (i.e., A*0201, A*0202, A*0203,

etc), and ii) genotype ambiguities, in which ambiguity arising when

various combinations of alleles from both chromosomes produce

the same patterns of heterozygous nucleotides in the chromato-

gram). In this paper, we focus our experiments on the first type of

ambiguity, although our approach should work on the second kind

as well. It may also be of interest to predict high-resolution HLA

types from serological data. So long as it is known which

serological types map to which molecular types, our model can, in

principle, tackle these types of data.

Related Work
At the core of our HLA typing refinement model is the ability to

infer and predict haplotype structure of HLA alleles across

multiple loci (from unphased data, since this is the data that is

widely available). If certain alleles tend to be inherited together

because of linkage disequilibrium between them, then clearly this

information can help us to disambiguate HLA types—and far

more so than using only the most common allele at any particular

locus. We derive a method for disambiguating HLA types from

this haplotype model.

Existing methods for haplotype modeling fall into three main

categories: ad hoc methods, such as Clark’s parsimony algorithm

[16] which agglomerates haplotypes starting with those uniquely

defined by homozygous alleles; EM-based maximum likelihood

methods, such as those belonging to the family introduced by

Excoffier and Slatkin, and Hawley and Kidd [17,18], which are

related to the so-called gene-counting method [19]; and full Bayesian

approaches, such as those introduced by Stephens et al. [20], with

more recent advances by others (e.g., [21,22]). Clark’s method is

no longer used, as it is outperformed by other methods. The full

Bayesian methods are more principled than the EM-based

methods because they average over all uncertainty including

uncertainty about the parameters. However, full Bayesian

methods are generally much slower than EM-based methods,

and their convergence is generally more difficult to assess [23],

making them less attractive for widespread use.

The haplotype modeling part of our approach is most closely

related to the EM-based maximum-likelihood methods, although

it differs in several crucial respects. To our knowledge, all

implementations of EM-based maximum likelihood haplotype

models use a full (unconstrained) joint probability distribution over

all haplotypes (i.e., over all possible alleles, at all possible loci) with

the exception of the partition-ligation algorithms noted below.

Furthermore, because they are maximum-likelihood based, they

do not smooth the parameter estimates, thereby allowing for

unstable (i.e., high variance) estimates of rare haplotypes.

Together, these two issues make existing methods difficult to scale

to a large number of loci or to a large number of alleles per locus.

This scalability problem is widely known (e.g., [17,24,25]), and

several attempts to alleviate it have been suggested, such as

eliminating posterior states which can never have non-zero

probability [24], or using a heuristic divide-and-conquer strategy,

called partition-ligation [26,23] in which the joint probability

distribution over haplotypes is factored into independent blocks of

contiguous loci, and the solutions to each block are then

combined. Although these approaches do help alleviate the

problems of scalability, the former does so in a fairly minimal

way, and the latter places heuristic constraints on the nature of the

solution (through use of the blocks). Furthermore, these methods

do not address scaling in the number of alleles, which is the larger

concern for HLA typing. In addition, these methods do not

address the stability of the statistical estimation procedure. Our

EM-based approach tackles the issues of scalability by using a

parsimonious haplotype parameterization. This especially helps

for scaling up to the large number of alleles in HLA data. Our

approach also addresses stability by using MAP (maximum a

posteriori) parameter estimation rather than an ML estimate.

We note that within the HLA community, even recently,

haplotype inference seems to be exclusively performed with the

most basic EM-based algorithm of Excoffier and Slatkin, and

Hawley and Kidd [17,18] (e.g., [27,28,29,30,31,32,33]). In fact, in

one of the most recently available publications, Maiers et al. were

unable to perform haplotype inference for more than three HLA

loci, resorting to more heuristic techniques beyond this number.

With our approach, such limitations are not reached. In addition,

as we shall see, our approach is more accurate.

There are two pieces of work which tackle the allele refinement

problem using haplotype information: that of Gourraud et al. in

the HLA domain [12], and that of Jung et al. in the SNP (single

Statistical Modeling of T Cell Responses
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nucleotide polymorphism) domain [34]. Although Gourraud et al.

indirectly tackle the HLA refinement problem, their focus is on

phasing of HLA data in the presence of ambiguous HLA alleles,

and their experimental evaluation is restricted to the phasing task.

Additionally, they use the standard, multinomial, EM-based

haplotype inference approach, which we show to be inferior for

the task of HLA refinement. Also, they do not investigate

population-specific effects as we do here. Jung et al., strictly

speaking, don’t refine their data. Rather, they impute it—that is,

they fill in data that is completely missing. The SNP domain is quite

different from the HLA domain—the problem of SNP haplotype

inference often involves hundreds or thousands of loci, and there are

usually only two alleles at each locus (and at most four). HLA

haplotype inference, in contrast, involves only a handful of loci with

possibly hundreds of alleles at each locus (because we define a locus

on an HLA level, not a nucleotide level—although one could do

HLA haplotype inference in the nucleotide domain).

Thus, issues of scalability and the specific nature of haplotypic

patterns are substantially different between these two domains. With

respect to methodology, Jung et al. perform imputation in a sub-

optimal way. First, they apply an EM-based haplotype inference

algorithm ([23]) to obtain a single best phasing of their data (i.e., a

ML point estimate). Next, using the statistically phased data, they

compute linkage disequilibrium in the inferred haplotypes using the

standard measure of Lewontin’s linkage disequilibrium. Thus, they

ignore the uncertainty over phases which is available from the EM

algorithm. Also, they choose only the single best imputed value,

ignoring the uncertainty there as well. Our approach incorporates

both types of uncertainty. Lastly, the haplotype inference algorithm

used by Jung et al. does not account for population-specific effects.

Consequently, they do not investigate this area experimentally, as

we do here, showing its potential benefits.

One other study touches on statistical HLA refinement [31]. In

order to estimate haplotype frequencies on serologically-derived

HLA data, Muller et al. modify the standard EM-based haplotype

inference approach to be able to use donors with unsplit serological

HLA types. However, their main purpose is to estimate haplotype

frequencies (at a two-digit serological level) rather than to perform

HLA refinement; and their experiments focus on this former task.

Materials and Methods

Before explaining our model in detail, we first explain the

standard EM-based model and training algorithm used for

haplotype inference [17,18]. Without loss of generality, suppose

that we are performing haplotype inference over three loci, l1, l2,

and l3, with Li i[f1,2,3gð Þ alleles at each locus. Then, in the

standard EM-based approach, the probability of a haplotype is

parameterized by a multinomial table which gives the probability

of every possible haplotype,

p(l1,l2,l3)~pl1l2 l3 : ð1Þ

In this case, there would be L~Pi Li possible haplotypes,

requiring L parameters, pl1l2 l3 . EM is a general algorithm for

solving ML/MAP parameter estimates in the presence of missing

data/hidden variables [35,36] (which, here, are the phases). In the

present context, EM reduces to iterating between two simple steps:

1. Given the current parameter estimates (for fpl1l2 l3g), find the

distribution of phases for each observed genotype. This is the

E-step, where the expectation over haplotypes/hidden states is

computed.

2. Given the distribution over haplotypes/hidden states for each

observed genotype, compute the maximum likelihood param-

eter estimates (in this case, the multinomial parameters). This is

the M-step, where the parameters are maximized with respect

to the expected complete log likelihood, where the expectation is

taken with respect to the posterior over hidden states, and the

complete log likelihood is the likelihood in which the missing

information (the phase) has been probabilistically completed

proportionally to the posterior distribution over phases.

Note that in both of these steps, it is assumed that the

probability of an individual’s genotype data having a particular

phasing is the product of the probability of each of the two

haplotypes defined by the phasing. Thus this approach assumes

Hardy-Weinberg equilibrium (HWE).

As mentioned earlier, there are two main problems with this

modeling approach. The first is that the number of parameters, L,

scales badly with the number of loci and with the number of alleles

at each locus. This creates two practical problems which quickly

come into play —computational limitations on the number of

loci/alleles which can be handled by the algorithm [27], and, poor

stability with respect to the parameter estimation because the

number of parameters tends to be very large relative to the

number of data typically available. We alleviate both of these

problems using several modifications, and show experimentally the

benefits that these modifications provide.

ASoftmax-Based Haplotype Model
First, we describe a model for p(l1,l2,l3,) that uses far fewer

parameters than the full table. Using the chain rule of probability,

we can write

p(l1,l2,l3)~p(l1)p(l2jl1)p(l3j,l1,l2): ð2Þ

Equation 2 does not introduce any conditional independencies. If

we were to use a (conditional) probability table for each of these

three local distributions, then this model would capture exactly the

same information as Equation 1 and would not reduce the number

of parameters. However, instead of using conditional probability

tables, we use softmax regression functions (also known as multilogit

regression) [37,38]. A softmax regression function is an extension of

logistic regression to more than two target classes. Using a softmax

regression function to parameterize p(l3~akjl1,l2), the probability

that the allele at the third locus is the kth allele, conditioned on the

alleles at the other two loci, l1, l2, we have

p(l3~kjl1,l2)~
exp(wk

1 l1zwk
2 l2zwk

0)PL3

j~1 exp(w
j
1l1zw

j
2l2zw

j
0)

, ð3Þ

where wj~(w
j
0,w

j
1,w

j
2) are parameter vectors of the softmax

regression—one for each possible allele, j, at the third locus. Thus,

the softmax regression function takes a linear combination of the

input features, w
j
1l1zw

j
2l2, plus a constant term, w

j
0, to model each

class, which produces a real-valued number for each class. Then,

this real-value is exponentiated, and normalized relative to all of the

other classes, to yield the probability of interest.

Similarly, the softmax regression function for p(l2jl1) in

Equation 2 is written as

p(l2~kjl1)~
exp(vkl1zvk

0)PL2

j~1 exp(v
j
1l1zv

j
0)

,
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and for p(l1), trivially, as

p(l1~k)~
exp(qk

0)PL1

j~1 exp(q
j
0)

,

with respective parameters, vj~(v
j
0,v

j
1) and q

j
0. Because the alleles

at each locus are discrete in nature, we use a binarized version of the

inputs. That is, we use a one-hot encoding, wherein each discrete input,

li = k is represented by a binary vector of length Li that contains all

zeros, except at the kth position, which contains a one. Correspond-

ingly, the parameter vectors are augmented in length to match this

dimensionality. Thus, in this binary representation, the length of

each wk would be L1+L2+1, and the total number of scalar

parameters required to represent p(l1,l2,l3,) would be

M = L3(L1+L2+1)+L2(L1+1)+L1(1). Note that M grows much more

slowly here as compared to L for the multinomial tables. In

particular, L grows exponentially in the number of loci and alleles,

whereas M grows only linearly. Use of full tables versus the softmax

regression function relates to the well known bias–variance trade-off

[37] which states that the more flexible a model, the more variance

one will have in estimating its parameters. To reduce variance, one

can decrease the flexibility of the model (as we have done by using

softmax regression rather than multinomial parameterizations),

thereby increasing the bias of the learned model (because the family

of possible models is more restricted). Whether one has chosen a

suitable bias-variance trade-off is normally assessed empirically. In

the experimental section, we show that the use of the softmax

regression function improves the accuracy of the HLA refinement

task over use of a multinomial parameterization.

This softmax-based model can be easily extended, by direct

analogy, to more than three loci, and far more efficiently than can

the multinomial-based model. We note that the additive nature of

the softmax regression functions leads to the property that similar

haplotypes have similar joint probabilities. Coalescent priors used

in some Bayesian approaches also have this property, whereas full

tables do not.

Training the Model with EM
We use the EM algorithm to train our model—that is, to choose

good settings of the softmax parameters (w j, v j, and q j ) given

observed genotype data. The way in which EM operates for our

model is very similar to the way in which it works for the

multinomial-based models. Again, we iterate between an E-step,

where the posterior over possible phases is computed, followed by

an M-step, where the parameters of the model are computed

based on the posterior computations from the E-step. The

difference, of course, is that the posterior uses our softmax model

to compute the posterior, and our M-step estimates softmax-

regression parameters rather than multinomial parameters.

Formally, let gd be the observed genotype/HLA data for the d th

person in our data set. For example, if we have data for three

loci, HLA-A, HLA-B, and HLA-C, then we would have

unphased data for each chromosome, for each locus,

gd~(gd
A1,gd

A2,gd
B1,gd

B2,gd
C1,gd

C2). There are 2number of loci21 possible

unique phase states, hi
d, that this data can take on (assuming no

ordering of the chromosomes):

hd
1~f(gd

A1,gd
B1,gd

C1),(gd
A2,gd

B2,gd
C2)g

hd
2~f(gd

A1,gd
B2,gd

C1),(gd
A2,gd

B1,gd
C2)g

hd
3~f(gd

A1,gd
B1,gd

C2),(gd
A2,gd

B2,gd
C1)g

hd
4~f(gd

A1,gd
B2,gd

C2),(gd
A2,gd

B1,gd
C1)g:

For the E-step, we compute p(hd
i jgd ) for each data point, for each

possible phase. This computation is easily accomplished by

determining the likelihood of the data in each possible phase

state, and then renormalizing these within each person so thatP
i p(hd

i jgd )~1. Here, we assume that each phasing is a priori

equiprobable. The likelihood of one datum in a particular phase

state, li
d is given by the product of the likelihood under our

haplotype model, for each of the two chromosomes. For example,

the likelihood for the dth genotype to be in phase state 2 is given by

ld
2 ~p(gd

A1,gd
B2,gd

C1)p(gd
A2,gd

B1,gd
C2), ð4Þ

and renormalization of these likelihoods gives us the posterior over

phase states for a single individual,

p(hd
i jgd )~

ld
iP
j ld

j

:

For the M-step, we use the E-step posteriors to compute the

parameter estimates. As mentioned, we use MAP parameter

estimates which are generally more stable. For the prior

distribution of each parameter, we use a zero-centered Gaussian

distribution. The use of this parameter prior is sometimes referred

to as L2 smoothing or L2 regularization, because its use is equivalent to

adding a penalty term to the log likelihood that consists of the

square of the L2 norm of the parameter vectors. Thus, whereas in

a maximum likelihood setting we would, in the M-step, maximize

the quantity

LC~
X

d

X
i

logp(hd
i jgd )ld

i ,

which is the expected complete log likelihood, with respect to the

softmax parameters, w j, v j, and q j, we instead maximize the

quantity

LC
L2~LC{l1

XL1

j~1
jjwj jj2{l2

XL2

j~1
jjvj jj2{l2

XL3

j~1
jjqj jj2,

where jjxjj denotes the L2 norm of vector x. This quantity is the

regularized expected complete log likelihood. The regularization

parameters, l= (l1,l2,l3,), which are (inversely) related to the

variance of the Gaussian prior, are set empirically using a hold out

set. Because this MAP estimation problem is embedded inside of an

M-step, the regularization parameters are theoretically not

independent (except for l1 because it does not depend on the

phasing of the data), and hence must be adjusted jointly. We

describe how we do so in the experimental section.

The use of other parameters priors is possible. One commonly

used alternative is the Laplacian prior or, equivalently, L1

regularization. In experiments not reported here, we have found

L2 and L1 regularization to provide comparable performance on

our task.

By iterating between the E-step and the M-step from some

chosen parameter initialization (or, some posterior initialization),

we are guaranteed to locally maximize the log posterior of the

data, L, (keeping the lj fixed),

L(l)~
X

person d

log
X

phase i

ld
i

" #
{l1

XL1

j~1

jjwj jj2{l2

XL2

j~1

jjvj jj2{l2

XL3

j~1

jjqj jj2:
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We note that one can smooth/regularize the parameters of the

multinomial table using a Dirichlet prior. This smoothing has the

effect of adding pseudo-counts to the observed counts of the data

when computing the ML estimate during the M-step. In our

experiments, we compare our model against both the traditional

multinomial haplotype model and a Dirichlet regularized

multinomial model.

The ML (and L2-regularized MAP) softmax regression

parameter estimation problem within a single M-step is a convex

problem, and hence not subject to local minima. In contrast, L(l)

is not convex due to unobserved phase and is subject to local

minima. Nonetheless, in our experiments, we did not find local

minima to be a large problem, and leave further discussion of this

to the Experimental section.

As with the traditional algorithm used in the HLA community,

our EM algorithm assumes random mating. In the discussion, we

propose one way to remove this assumption.

Using the Model for Statistical HLA Refinement
As discussed, we first train our model using the EM algorithm

on a data set consisting of four-digit resolution HLA data from a

population similar to that of our data of interest. We then use the

model to probabilistically refine our lower-resolution data set. To

do so, we refine each person’s HLA type independently of the

others. The way we do so, is to exhaustively write out a list of all

possible unique four-digit phasings that are consistent with each

person’s observed genotype data. We do so by first writing out all

possible (mixed resolution) phases, and then expanding each of

these to all possible four-digit phases. For example, if one person’s

observed genotype in the data set of interest was

gd~(A � 30,A � 3002,B � 57,B � 0801,Cw � 0401,Cw � 1502),
then we obtain

hd
1~f(A � 30,B � 57,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g

hd
2~f(A � 30,B � 0801,Cw � 0401),(A � 3002,B � 57,Cw � 1502)g

hd
3~f(A � 30,B � 57,Cw � 1502),(A � 3002,B � 0801,Cw � 0401)g

hd
4~f(A � 30,B � 0801,Cw � 1502),(A � 3002,B � 57,Cw � 0401)g:

Expanding Equation 5, for example, we then obtain,

hd
1 (1)~f(A � 3001,B � 5701,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g

hd
1 (2)~f(A � 3002,B � 5701,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g

..

.

hd
1 (j)~f(A � 3030,B � 5701,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g

hd
1 (jz1)~f(A � 3001,B � 5702,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g

..

.

hd
1 (jzk)~f(A � 3030,B � 5702,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g

..

.

hd
1 (J1)~f(A � 3030,B � 5713,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g,

Similarly, we expand each of Equations 6–8 to obtain an

additional J2, J3, and J4 possible four-digit phasings. The total

number of possible four-digit phasings consistent with this person’s

observed genotype is thus J = J1+J2+J3+J4. Alternatively, if our

data set of interest contains genotype-ambiguity (in the form of

possible pairs of alleles), then we expand the data in all possible

ways consistent with those pairs.

If our desired endpoint is a statistical estimate of phased four-

digit data, then we need only compute and renormalize the

likelihood of each member of the list (to get the posterior

probability of each pair of four-digit haplotypes). However, usually

we are interested in a probability distribution over the possible

four-digit genotypes. To obtain this distribution, we sum the

posterior probabilities of those members of the list that are

consistent with each observed genotype. For example,

f(A � 3030,B � 5713,Cw � 0401),(A � 3002,B � 0801,Cw � 1502)g and

f(A � 3002,B � 5713,Cw � 0401),(A � 3030,B � 0801,Cw � 1502)g
would give rise to the same observed genotype: (A*3030, A*3002,

B*5713, B*0801, Cw*0401, Cw*1502), and so their posterior

probabilities would be summed together (along with any other

entries in the list which mapped to the same observed genotype) to

obtain the posterior probability of that genotype.

Leveraged Population Models
Because haplotype patterns are often population (ethnicity)-

specific, a natural approach is to use separate models for each

population, when the populations are known. For example, if the

low-resolution data of interest pertained primarily to individuals

of European descent, then one would train a model using data

from a European population. Or, if the low-resolution data

consisted of both European and Amerindian populations, then one

would train a model on European and Amerindian populations

separately, and then refine the data of interest using the

appropriate model.

Nonetheless, it is likely that some haplotype patterns are

population-specific whereas others are not, or far less so.

Consequently, it would be useful to combine data across

populations, so that as much data as possible is available for

parameter estimation. The challenge of course is how to combine

data when appropriate, to maintain population-specific training

data when appropriate, and to make good choices automatically.

One way to achieve this goal is to augment the feature space

(which so far consists of binary encodings of HLA alleles) with

population features. We can, for example, include a one-hot

encoding of the population labels in our features. Alternatively or

in addition, we can add features that correspond to conjunctions of

the one-hot encodings of allele and population label. Whereas the

first type of augmentation, which we refer to as simple, allows us to

weight the importance of a haplotype by a linear combination of

populations, the second type of augmentation, which we call

conjunctive, allows us to model specific haplotype–population

interactions. In the evaluation section, we shall see that such

leveraged population models can improve performance. Furthermore,

we shall see that the first type of augmentation provides a winning

effect over training populations separately and that adding the

second type of augmentation leads to no additional improvement

in the data set examined.

The idea of leveraging information across multiple populations

is closely related to some of our previous work on epitope

prediction in which we show how to leverage information across

HLA alleles [39], and is an instance of what is sometimes called

multi-task learning [40]. Xing et al. use a hierarchical Bayesian

model to achieve a similar approach when inferring SNP

haplotypes [22].

Why Require an Independent Training Data Set?
One could imagine using a mixed-resolution data set of interest

(which contains some four-digit HLA types) as its own training

data since EM naturally handles incomplete data. If the data that

are missing four-digit resolution information are ignorable, then

such an approach is straightforward [41]. By definition, data that

(8)

(5)

(7)

(6)
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are ignorable have the property that the probability that a

particular datum is missing (in this case, does not have a four-digit

HLA type) is independent of the true, underlying value of the

missing datum (in this case, the four-digit HLA type). Of course, if

the data are not ignorable, then such a procedure can produce

large errors. Unfortunately, missing high-resolution HLA data are

not likely to be ignorable, and hence we require an independent

data set with no missing data.

Statistical Significance
To assess statistical significance of the difference of the

performance of two models (e.g., softmax compared to multino-

mial), either in terms of the number of correct MAP predictions,

or, in terms of the test log likelihood, we used a non-parametric,

permutation-based, paired test, wherein the null hypothesis is that

the average of the pair wise difference in scores is zero.

Suppose the test set contains D individuals, 1,,D, and that each

model, m, assigns a score, sm
d , to each individual (where again, this

score is either the log probability of the correct assignment, or the

number of correct MAP predictions). Then to compare two

models, m1 and m2, we do the following:

N Compute the average difference between paired scores, in
each algorithm,

Dreal~
1

D

P
d (sm1

d {sm2

d )

.

N For permutation, k = 1,,K (we use K = 10,000), permute the
data in a pair wise fashion to obtain data from the null
distribution, and then compute the average difference
between paired scores in this permuted data. That is, for
each permutation, k,

– For each datum, d, swap the value of sm1

d with sm2

d with

probability one half. Call the resulting permuted data

vectors, rm1 with rm2 , which are the permuted equivalents of

sm1 with sm2 .

– Compute the average difference between paired, permuted

scores,

Dk~
1

D

P
d (rm1

d {rm2

d )

.

N Then the two-sided p-value for method m1 being statisti-
cally different from m2 is given by the proportion of times
that the average difference observed on permutated data
matched, or exceeded that observed on the real data.
Formally,

p~
1zjjfDkjabs(Dk)§abs(Dreal)gjj

K
,

N where jjxjj denotes the size of the set x, and abs(x) denotes
the absolute value of x. The addition of one to the
numerator smoothes the estimate of p so as to take into
account the number of random permutations performed.
Without this smoothing, one could easily achieve results of
p = 0 by using too few random permutations. This induces a
conservative bias (reducing the type I error, and increasing
type II error), which diminishes as the number of
permutations increases.

Data Sets
We used data sets from two main sources, and denote the

number of individuals in each by N. The first data set is a

collection of private data derived from a large collection of disease

cohorts and controls that were all typed in the laboratory of Mary

Carrington. This data set comprises data from four populations,

across three loci, as summarized in Table 1. Note that most of the

African data are derived from African-American individuals, with

a small proportion from outside the United States (N = 776). The

Hispanic and European data are solely US-based, while the Asian

data originated in Asia. Because alleles C17, C18 and A74 were

almost never fully resolved to four digits in this data set, we left

these as two digit designations. All but 0.1% of HLA alleles in the

private data set represented common and well-defined alleles (as

classified in [42]). Because these large data sets comprise numerous

smaller data sets (and sub-populations), we tested each data set, at

each locus, for deviance from Hardy-Weinberg Proportions

(HWP) using the conventional MCMC approximation to the

exact test [43]. The number of MCMC samples was chosen to

ensure that the estimated p-value was within 0.01 of the true one

with 99% confidence. Alleles deviating from HWE at a level

p = 0.1 or stronger (lower p-values) were: European HLA-C locus

(p = 0.003), African HLA-C (p = 0.0001), Asian HLA-A, -B, C

(p = 0, p = 0, p = 0.0004). In all of these cases, except for the Asian

HLA-C locus, the deviation was toward homozygosity. EM

algorithms for haplotype frequency estimation have been shown

to be robust against deviations toward homozygosity, with the

explanation that increased homozygosity reduces the amount of

missing phase information that the EM algorithm must overcome

[25]. In any case, our experimental results demonstrate that this

issue is not of such great concern as to invalidate our approach.

Class I genotyping: Genomic DNA was amplified using locus-

specific primers flanking exons 2 and 3. The PCR products were

blotted on nylon membranes and hybridized with a panel of

sequence-specific oligonucleotide (SS0) probes (see http://www.

ihwg.org/protocols/protocol.htm). Alleles were assigned by the

Table 1. Summary of Private Data

ethnicity N # unique A alleles # unique B alleles # unique C alleles

North American European 7526 81 129 48

North American African 3545 60 106 42

Asian 1318 43 76 30

North American Hispanic 881 47 106 35

doi:10.1371/journal.pcbi.1000016.t001
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reaction patterns of the SSO probes. Ambiguous SSOP typing

results were resolved by sequencing analysis. Only exons 2 and 3

were examined during HLA typing. Any subtypes determined by

sequences outside these exons were not distinguished. In these

cases the earliest recognized alleles were assigned, normally the

ones of the smallest digit in their names (e.g., B*5801 instead of

B*5811).

The second data set was taken from the publically available

dbMHC database (http://www.ncbi.nlm.nih.gov/mhc/), which

we used to test our population-augmented model [44,45,46,47,48],

and also for use of our model on four-loci data [49]. These data

are summarized in Table 2.

Results

In order to evaluate our model, and also to compare how it

performs to a multinomial-based model, we use data sets consisting

of four-digit resolution HLA data from individuals. Then we

synthetically mask the known four-digit allele designation for some

loci and some individuals, at random. In this way, ground truth is

available for quantitative assessment. Specifically, we use the

following set-up:

1. Start with a four-digit HLA resolution data set, D.

2. Randomly partition D into 80% for training (Dtrain) and 20%

for testing (Dtest).

3. To learn good settings of the regularization parameters,

randomly partition Dtrain into 80% for a regularization training

set (Strain) and 20% for a regularization hold out set (Shold).

Train a model on Strain, for each value of the regularization

parameters, and then test its performance on Shold. Select the

regularization parameters which perform best.

4. Using the best regularization parameters, train the model on

Dtrain, and then test its performance on Dtest).

To test the performance as mentioned above, we randomly

mask 30% of the four-digit HLA types (on an individual and

independent allele basis) in the test/hold-out set. That is, we

truncate the last two digits of their four-digit designation. We then

use our HLA refinement to obtain a probability distribution for all

four-digit HLA types which are consistent with the masked values.

Then we assess the prediction in two ways. One, we take the four-

digit type with the highest probability as the single, best answer,

and then count how many of these are correct. We refer to this

criterion as the percentage of correct MAP predictions. Two, we compute

the log probability of the correct four-digit resolution HLA type

under our predictive distribution. We refer to this as the test log

likelihood. If we divide this quantity by the number of masked alleles

and then exponentiate, we obtain the geometric mean probability

of the correct four-digit allele under our learned model (which is

more intuitive than the test log likelihood). We refer to this

criterion as the geometric mean probability. The first criterion (%

correct MAP) is intuitive but informal and coarse. It allows us to

easily get a handle on the performance, but throws away valuable

information concerning the probabilities generated by the model

which may be useful in downstream analyses of the data. In our

experiments, we report performance according to both types of

criteria. Note that these values should be compared only within a

given test set.

Although we mask the HLA types at random, this is likely not

the same process that is responsible for the true, observed,

experimental process that results in masking. Nonetheless, we feel

that it is a reasonable proxy, because it focuses on how well

haplotype patterns have been learned, how strong these patterns

are, and how much they can be used to refine HLA data, which is

the question of interest. Additionally, we measure performance

under a 100% masking, and also a locus-by-locus masking, for

broader testing of the performance of our model.

In addition to experimenting with our softmax-based model,

and the multinomial (with and without regularization), we also

compare performance to a baseline model of allele marginals. In

this baseline model, the probability over four-digit HLA types is

proportional to the frequency of that allele in the training set,

regardless of the HLA data at other loci. This model, by

construction, cannot capture haplotype structure. As we shall

see, this model does not perform well.

For the softmax-based model, we first learned the best value for

l1 (i.e., for the first locus) since it is independent of the others.

Then, fixing the value of l1 at its best value, we set all other

li = 0.1. For each of the other loci, i, one at a time, we next found

the best value of li conditioned on the fixed values of the other

regularization parameters. We iterated through the loci in this

manner until no changes were made. In our experiments, this

process reached convergence after only two or three cycles

through the loci, indicating that, in practice, the parameters flig
are largely independent of one another. We optimized a single

parameter by searching a grid of possible values. The grid used in

our softmax-based model experiments was 50;10;5;1;0.5;

0.1;0.05;0.01;0.001. For the multinomial-based model, we used

the grid 1;5;10;50;100;500;1000;5000;10,000;50,000 for the

equivalent sample size of the Dirichlet distributions.

Lastly, to determine if there is a statistically significant difference

between our methods (in terms of either test log likelihood, or

number of correct MAP predictions), we use a permutation-based,

Table 2. Summary of dbMHC Data

ethnicity N # unique A alleles # unique B alleles # unique C alleles
# unique DRB1
alleles

Irish 1000 26 49 23 33

North American Asian 393 34 66 24 NA

North American European 287 28 48 21 NA

North American Black 251 28 49 23 NA

North American Hispanic 240 35 62 25 NA

North American Amerindian 229 27 55 22 NA

All except Irish 1400 48 102 31 NA

doi:10.1371/journal.pcbi.1000016.t002
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non-parametric, paired test in which the null hypothesis is that the

average of the pair wise difference in scores is zero. Because

10,000 permutations were used, the smallest p-value that could be

obtained was
1

10,000
~1|10{4.

EM Sensitivity to Initialization
Because the objective function we use, the penalized likelihood,

is not convex, our parameter estimation and hence HLA

refinement can be sensitive to the initial parameter setting. (Note

that by parameters, we mean wj, vj, and qj within the multi-logit

functions, and not the regularization parameters, li, nor the

phasings, hi.) To assess the sensitivity of performance to the initial

parameters, we initialized the parameters randomly between 0 and

1 five different times. We performed this assessment on our

Hispanic-labeled private data because this set corresponds to one

of the smaller ethnicity-specific data sets, and because this ethnic

label is less well defined than others. Both factors (small data sets,

and ethnicities that are not well-defined) tend to produce greater

sensitivity to parameter initialization.

When training our softmax-based model, the geometric mean

probability across the five initializations was aways 0.5255. (A larger

geometric mean probability is better.) In all five runs, 262 of the 306

masked alleles were correctly predicted, indicating little sensitivity to

parameter initialization. Similarly, for the regularized multinomial-

based model, the geometric mean probabilities across the five

initializations was always 0.4180. In all five runs, 262 of the 306

masked alleles were correctly predicted, again indicating little

sensitivity. For the unregularized multinomial-based model, the

geometric mean probabilities across the five initializations were:

0.0077, 0.0117, 0.0126, 0.0092, and 0.0105. Of the 306 masked

alleles, 260, 265, 260, 266, and 262 were correctly predicted across

the five runs, indicating a far greater sensitivity to initial parameters.

The geometric mean probability was best for the softmax-based

model, followed by the regularized multinomial, followed by the

unregularized multinomial model (which does poorly due to its

inability to make stable estimates for the huge number of

parameters it requires). This is a pattern we shall see throughout

our experiments.

The sensitivity we see here will allow us to gauge how important

observed differences are in the remainder of the experiments,

where we always initialize the parameters to be all zero. Of course,

when deploying this method in a real setting, it would be wise to

try several parameter initializations, and then to choose the one

that yields the highest likelihoods on hold-out data. Also note that,

for the unregularized multinomial model, we regularize it with an

equivalent sample size of 1610216 so that negative infinities do not

appear when haplotypes not seen in the training sample appear in

the test set.

Large Scale Data Set Comparison
Next we used our large, private data set to measure the

refinement performance of the various models we have discussed.

We trained and tested within each ethnic population separately.

The results are summarized in Figure 1.

The softmax model has the best performance overall and can

correctly resolve a substantial number of ambiguous alleles. In

terms of both criteria, the softmax model is significantly better

than the other methods (see Table 3 for p-values). The allele

marginal model consistently has the worst performance in terms of

number of correct MAP predictions, presumably because it does

not make use of linkage disequilibrium. In contrast, it significantly

outperforms the unregularized multinomial model in test log

likelihood (p = 161024), because the allele marginals are naturally

regularized due to the small number of parameters.

When Training and Test Set Are Not Identically
Distributed

In realistic settings where our algorithm will be deployed, it is

likely that the data set of interest is not drawn from exactly the

same distribution as the training data. To get a sense of how robust

our approach is to deviations from this idealized setting, we have

European African Asian Hispanic
0

0.2

0.4

0.6

0.8

1
Geometric Mean Probability of Correct Answer

European African Asian Hispanic
60
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Percent Correct MAP Predictions

Figure 1. Results on private data, separately for each ethnicity.
Each set of grouped bars represents the four different modeling
approaches. From darkest to lightest: softmax, regularized multinomial,
unregularized multinomial, allele marginal. The number of masked
alleles, respectively, in the European, African, Asian, and Hispanic data
sets was 2669, 1287, 477, and 306, respectively.
doi:10.1371/journal.pcbi.1000016.g001

Table 3. Statistical Significance Results on Private Data, Separately for Each Ethnicity.

Method 1 Method 2 log likelihood p-value # correct MAP p-value

softmax* regularized mult. p = 1024 p = 2.861023

softmax* non-reg. mult. p = 1024 p = 861024

softmax* allele marginals p = 1024 p = 1024

regularized mult.* non-reg. mult. p = 1024 p = 0.51

non-reg. mult.* allele marginals* p = 1024 p = 1024

*Denotes the method that performed better (except for the last row, where the allele marginals perform better than the unregularized multinomial on the log
likelihood, but worse on the number of correct MAP predictions.

doi:10.1371/journal.pcbi.1000016.t003
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performed several experiments more closely mimicking a realistic

setting. In particular, we evaluated our refinement accuracy when

the training and test distributions were drawn from different

populations.

First, we split the dbMHC Irish data set (HLA-A, HLA-B,

HLA-C alleles) into 80% training data and 20% test and masked

30% of the test alleles to two digits. Then we trained a model using

the training data, and tested on the test data. Next, we used the

model we had previously trained on the ‘private North American

European’ data, and used this model to predict the same masked,

Irish alleles. Of the 200 people in the Irish test set, there was one

person who contained one allele never observed in the European

data (B*2409, which is actually a null allele, B*2409N, for which

the typing of the private data was not capable of finding). After

removal of this person, we then compared the performance when

using the dbMHC Irish data set itself for traning, as compared to

using our much broader private European data set for training.

The resulting test geometric mean probabilities of the test set were

0.8851 when training with the dbMHC Irish, and 0.8891 with the

private European. This difference was not significant (p = 0.44).

Next, we used the model trained on the private Asian data to

predict a 30% masking of 279 dbMHC Canton Chinese

individuals [50] with HLA-A,-B, -C data (we randomly chose this

population among the Asian dbMHC populations available). Nine

of these individuals had alleles not appearing in the training data

(A*0210, B*1505, B*1803, B*3508, B*3520, B*4010, B*5801,

B*7802), and after their removal, we achieved a prediction

accuracy of 441/487 = 91%, roughly equal to the 90% achieved

when testing on the private

Asian data set itself. Because this dbMHC data set was not large

enough to partition into a training and test set, we were not able to

measure accuracy achieved when training on itself. This is true for

the next three dbMHC data sets as well, in which we perform

similar experimentation.

Next we used a model trained on the private North American

African data set, to predict masked alleles in 251 dbMHC African

American individuals, of which five individuals contained alleles

not matching the training data (A*6804, B*1502, B*1515,

B*5802). After removal of these individuals, 321/373 = 86% of

masked alleles were correctly predicted, which is lower than the

90% accuracy achieved when testing on the private North

American African data itself. Results were comparable when we

first removed individuals from Africa from the training data

(leaving only US-based individuals of Africans descent).

Next, we used a model trained on the private North American

European data set (containig 776 individuals), to predict masked

alleles in 287 dbMHC North American European individuals, of

which three individuals contained alleles not matching the training

data (B*1802, B*4408, B*5202). After removal of these individuals,

478/510 = 94% of masked alleles were correctly predicted,

roughly equal to the 95% accuracy achieved when testing on

the private North American European data set itself.

Finally, we used a model trained on the private North American

Hispanic data set, to predict masked alleles in 240 dbMHC North

American Hispanic individuals, of which 13 individuals contained

alleles not matching the training data (A*0212, A*0213, A*2422,

A*2608, A*3401, A*6805, B*5105, B*3509, B*4406). After

removal of these individuals, 344/400 = 86% of masked alleles

were correctly predicted, comparable to accuracy achieved when

testing on the private North American Hispanic data set itself.

Based on this small set of experiments, we believe it may often

be feasible to use our broadly defined ethnic categories for

resolving ambiguity in other, independently created data sets

falling in to the same broad category, or falling into a much more

specific sub-category. Of course, this may not generally be true,

and in particular, it may be less true for African-derived data.

Additionally, a user of a trained model might have access to some

high-resolution data for their population of interest, and could thus

see how well the trained model works for the subset of their data

(by synthetically masking it) before using the model to resolve

ambiguity in their low-resolution data.

Note that there are two statistical desiderata when using our

method: 1) to use a training data set which mostly closely mimicks

the HLA haplotype distribution of the data set of interest, and 2) to

get as many training data as possible. Critically, these two

desiderata are frequently odds with one another. That is, often a

data set of interest is sub-population specific and therefore difficult

to obtain high resolution data for in large quanitities. However, by

loosening the strictness of the match between training and test

populatations, one can often significantly increase the amount of

data available. Without more data and experimentation, it is

diffult to assess the optimal trade-off between these desiderata.

However, as we see, using broad, even presumably admixed

training data, can lead to useful results.

Sensitivity to Training Data Set Size
To determine whether the availability of more training data

may lead to improved refinements, we examined the sensitivity of

performance to the size of the training set. For the European and

the African private data sets, we iteratively halved the sample size

of training data, where the largest available training data set sizes

were, respectively, 6020 and 2836. The results shown in Figure 2

suggest that more training data would improve the performance

on the African data set, and to a smaller extent, on the European

data set. Note that the African data set is smaller to start with than

the European one, and also known to be more genetically diverse;

both are explanations for the observed trends.

Leveraged Population Models
To determine whether leveraging information across popula-

tions is useful, we compared our leveraged population models to

those built separately on each population. We did so on data from

dbMHC, which contains a diverse set of populations. (We

excluded the Irish population because this population is extremely

homogeneous relative to the others.) Recall that we introduced

two types of leveraging features: simple and conjunctive. We used

our softmax model both with the simple features alone, and with

both the simple and the conjunctive features, as shown in Figure 3.

The performance of the population-augmented models are

significantly better than the softmax model on test log likelihood

(e.g., p = 0.02 when comparing softmax+simple to softmax).

Although ethnicity labels are notoriously unreliable, they clearly

provide beneficial information here. Also, the addition of

conjunctive features lends to no apparent improvement.

Sensitivity to Variable Ordering
Because we use softmax regression functions in our haplotype

model, the order in which we apply the chain rule (Equation 2) to

our loci will have an effect on predictive accuracy. We examined

the sensitivity of performance to variable ordering on three loci

(A,B,C) using the European and Hispanic data sets. The results are

shown in Figure 4 in which a locus order of ‘B A C’ means we used

p(A,B,C)~p(B)p(AjB)p(CjA,B). The experiments labeled ‘30%

mask’ denote the performance using the 30% random masking

procedure we used in our earlier experiments. Additionally, we

systematically masked all (and only) A alleles (‘A mask’), and

separately, all and only B alleles (‘B mask’), and all and only C

alleles (‘C mask’). This procedure allows us to see if the variable
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ordering differentially affects our ability to predict particular loci.

Statistical significance was measured only on the difference in test

log likelihoods.

For the ‘30% mask’ experiments, no statistically significant

(p(0.01) differences were found between variable orderings (and

hence the results of our previous experiments should not have

been effected by this issue). For the locus-specific maskings in the

European data set, only the B alleles showed significant differences

(order 1 vs. 4, p = 0.0002; 1 vs. 6, p = 0.001; 2 vs. 4, p = 0.003; 2

vs. 6, p = 0.004; 3 vs. 4, p = 0.0006; 4 vs. 5, p = 0.006). For the

locus-specific maskings in the Hispanic data set, the A alleles

showed some significant differences (order 1 vs. 2, p = 0.004; 1 vs.

5, p = 0.001; 3 vs. 5, p = 0.004), the B alleles did not show any, and

the C alleles showed one (order 4 vs. 5, p = 0.003).

Note that it is possible to use a parsimonious model which is not

dependent upon variable ordering (a so-called ‘undirected’ model

[51] in the parlance of the graphical models community). In

particular, one can form pair-wise ‘compatibility’ functions

between all pairs of HLA loci so that

p(l1,l2,l3)~
Wl1,l2 Wl2,l3 Wl3,l1P

i

P
j

P
k Wli ,lj Wlj ,lk Wlk ,li

,

where the Wli ,lj are scalar parameters of the model and where the

sum in the denominator is a normalizing constant and sums over

all possible haplotypes, (li,lj,lk,). However, brief experimentation of

this model applied to the current problem did not indicate

increased performance relative to our softmax-based model.

Locus-Specific Predictive Accuracy
In some domains, the ability to predict certain loci is of greater

importance than others. For example, in HIV research, the ability

to predict B alleles is often paramount (e.g., [15]). We measured

locus-specific prediction accuracy for each locus by applying locus-

by-locus masking to all four populations in the private data. Figure 5

shows the results, which do not indicate any particular pattern.

Note that the number of possible alleles at each locus has a direct

effect on our ability to predict (as does the linkage between one locus

and the others), and so we might expect, a priori, for the B alleles to

be more difficult to predict, although this does not appear to be the

case.
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Figure 2. Sensitivity to training data set size for the European and African data sets. Top row shows the geometric mean probabilities; the
bottom row shows the percentage of correct MAP predictions.
doi:10.1371/journal.pcbi.1000016.g002
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Figure 3. Results for population-augmented model. Abbrevia-
tions are: SSC = softmax+simple+conjunctive, SS = softmax+simple,
S = simple, RM = regularized multinomial, M = non-regularized multino-
mial, AM = allele marginals, S = separate. The number of masked alleles
in the test set was 514. For all methods, except ‘separate’, a single
model was trained on data from all ethnicities.
doi:10.1371/journal.pcbi.1000016.g003
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Figure 4. Sensitivity to Variable Ordering. Top two rows are for the Hispanic data set; bottom two rows are for the European data set. Within
each of these, the top row is the geometric mean probabilities, and the bottom row shows the percent correct MAP predictions. The number of
masked alleles, respectively, in the Hispanic 30% and loci masks (A,B,C), was 306 and 354. The number of masked alleles, respectively, in the European
30% and loci masks (A,B,C), was 2669 and 3012.
doi:10.1371/journal.pcbi.1000016.g004
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Low Resolution Prediction
Finally, in some instances, only low-resolution data (i.e., two-digit

resolution) is available. Consequently, we investigated the prediction

accuracy of our algorithm in this situation—that is, when 100% of

the alleles were masked to two-digit. The results for the private

African, Asian, and Hispanic data sets are shown in Figure 6.

Because of the large number of allele combinations in the European

data set, it was not possible to perform this experiment in a

reasonable amount of time using the current sequential implemen-

tation of the algorithm. This problem should not be a big concern,

however, as the algorithm can be easily parallelized.

In order to gauge how much haplotype information is being

used in this context, we compare the results to those from the allele

marginal model. In all cases, the softmax model performs

significantly better than the allele marginal model (p = 161024

for all three population comparisons on the test log likelihood).

Thus, a large amount of haplotype information is being used by

our model in this 100% masking context, and prediction of four-

digits from strictly two-digit data is feasible. For comparison,

Figure 6 includes the results presented earlier from the 30%

masking experiments. To make the test log likelihoods compara-

ble, we have normalized them by the number of alleles in the test

set. Interestingly, the performance is comparable across the

different maskings according to both criteria.

Four-Loci Example/Class I and Class II
We compared our methods on data with four loci, spanning the

HLA-A, -B, -C and -DRB1 loci. The four-loci data available to us,

with the largest sample size, was the Irish set in dbMHC. As shown

in Figure 7, we see that the relative performance of the methods is

roughly the same as in earlier experiments. Given that LD may

not be as strong between class I and class II alleles, it is of interest

to determine how well each locus can be predicted. Thus we used

a locus-specific masking, as described earlier. The accuracy at each

of the HLA-A, -B, -C and -DRB1 alleles was respectively 97%,

98%,99%, and 80%. This indicates that there is not sufficient

linkage between the HLA-A, -B, -C loci and the HLA -DRB1

locus to accurately resolve ambiguity at the DRB1 locus. However,

it may be the case that with additional class II loci, refinement of

class II data would be feasible.

Discussion

We have introduced a method for statistical refinement of low or

intermediate resolution HLA data, when a full resolution training

data set from a similar population is available. In doing so, we have

also improved upon the EM-based approach to haplotype estimation

by using a more parsimonious parameterization of the haplotype

distribution. Experimentally, we show both that it is feasible to use
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75
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Figure 5. Locus-Specific Predictive Accuracy. Each set of grouped
bars, from darkest to lightest, represents, respectively, A-masking, B-
masking, and C-masking. The number of masked alleles in each
masking was 3012, 1418, 528, and 354, respectively, for the European,
African, Asian, and Hispanic test sets.
doi:10.1371/journal.pcbi.1000016.g005
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Figure 6. Low Resolution Prediction. Each set of grouped bars
represents, from darkest to lightest, respectively, 100% mask with
softmax model, 100% mask with allele marginals model, 30% mask with
softmax model, 30% mask with allele marginals model. The number of
masked alleles for the 100% mask was 4254, 1429, and 1062, and for the
30% mask, 1287, 477, and 306, in the African, Asian, and Hispanic test
sets, respectively.
doi:10.1371/journal.pcbi.1000016.g006
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Figure 7. Four-loci, dbMHC Irish data. Abbreviations are: S = soft-
max, RM = regularized multinomial, M = non-regularized multinomial,
AM = allele marginals. A total of 468 alleles were masked in the test set.
doi:10.1371/journal.pcbi.1000016.g007
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statistical approaches for HLA refinement, and also that our method

outperforms the standard multinomial-based models used through-

out the HLA community for haplotype estimation. Our HLA

refinement method helps to mitigate the limiting factor of cost in

HLA typing today, and allows for lower/intermediate resolution, or

historical data to be statistically refined when it cannot be refined by

assay. A tool based on our approach is available for research

purposes at http://microsoft.com/science.

Although there is widespread caution about the use of assigned, or

self-defined ethnicity labels [52], we show that the labels associated

with dbMHC data carry useful information. Furthermore, we show

that by augmenting our softmax-based HLA model, we can make

use of these labels to increase the amount of data available while

automatically using it in a population-appropriate manner. Future

work of interest would be to model the data in yet another way: using

a mixture of haplotype models, in which each component of the mixture

represents one well-defined population (either as defined in the

training data, or as uncovered in an unsupervised manner). Then,

when data contain multiple populations without ethnicity labels or

when labeled populations contain mixtures of latent (unknown)

subpopulations, one can use these mixture models to uncover

population structure and appropriate weightings of the different

populations for individuals in a data set of interest.

Because our modeling approach assumes that the training and

testing populations are drawn from the same distribution, one

should take care when trying to use this approach for case-control

studies where case and controls are thought to be drawn from

different distributions. One may also be wary of using this

approach in the domain of transplantation, for similar reasons

(patients requiring transplants likely make up a specific sub-

population). However, since HLA ambiguity resolution is applied

in the area of transplants to potential donors in a registry, rather

than the patients themselves (who are routinely typed at high

resolution), application in this domain should not be problematic.

As with the traditional algorithm used in the HLA community,

our EM algorithm assumes HWE. One could make a small change

to our model which would allow us to circumvent making such an

assumption. In the models discussed so far, the probability of data

in a particular phasing is defined as follows. If a haplotype, h, is

specified by partitioning the genoytpes, gA1,gB1,gC1,gA2,gB2,gC2 into

two sets: f(gA1,gB1,gC1),(gA2,gB2,gC2)g, then the probability of the

data given this phasing is defined as the product of the probability

of each haplotype:

p(hjf(gA1,gB1,gC1),(gA2,gB2,gC2)g)~

p(gA1,gB1,gC1)p(gA2,gB2,gC2)
ð9Þ

where each of the probabilities p(gA1,gB1,gC1) and p(gA2,gB2,gC2) are

specified by a haplotype model (e.g., softmax or multinomial). To cir-

cumvent the assumption of HWE, one could instead define a model

which does not factor this probability into two independent terms:

p(hjf(gA1,gB1,gC1),(gA2,gB2,gC2)g)~

p(gA1,gB1,gC1,gA2,gB2,gC2),
ð10Þ

where now we would not have a haplotype-based model, but instead

a more generic, ordered-genotype model, which could itself be given a

softmax-based parsimonious parameterization. The downside of

such an approach is that we essentially halve the amount of available

data, because we no longer have two independent data samples

from each individual, and hence far more data would be required to

effectively make use of such a model.

Future work in probabilistic HLA refinement may involve

comparing EM-based approaches to full Bayesian approaches.

Also, an interesting, though perhaps computationally difficult

avenue to pursue would be the use of HLA DNA sequences to

better model rare haplotypes, or the use of SNP data to directly

predict HLA types.
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