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Abstract

Oligonucleotide usage in archaeal and bacterial genomes can be linked to a number of properties, including codon usage
(trinucleotides), DNA base-stacking energy (dinucleotides), and DNA structural conformation (di- to tetranucleotides). We
wanted to assess the statistical information potential of different DNA ‘word-sizes’ and explore how oligonucleotide
frequencies differ in coding and non-coding regions. In addition, we used oligonucleotide frequencies to investigate DNA
composition and how DNA sequence patterns change within and between prokaryotic organisms. Among the results found
was that prokaryotic chromosomes can be described by hexanucleotide frequencies, suggesting that prokaryotic DNA is
predominantly short range correlated, i.e., information in prokaryotic genomes is encoded in short oligonucleotides.
Oligonucleotide usage varied more within AT-rich and host-associated genomes than in GC-rich and free-living genomes,
and this variation was mainly located in non-coding regions. Bias (selectional pressure) in tetranucleotide usage correlated
with GC content, and coding regions were more biased than non-coding regions. Non-coding regions were also found to be
approximately 5.5% more AT-rich than coding regions, on average, in the 402 chromosomes examined. Pronounced DNA
compositional differences were found both within and between AT-rich and GC-rich genomes. GC-rich genomes were more
similar and biased in terms of tetranucleotide usage in non-coding regions than AT-rich genomes. The differences found
between AT-rich and GC-rich genomes may possibly be attributed to lifestyle, since tetranucleotide usage within host-
associated bacteria was, on average, more dissimilar and less biased than free-living archaea and bacteria.
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Introduction

Prokaryotic DNA can be considered as a long chain of

overlapping oligonucleotides, and frequencies of differently sized

oligonucleotides can reveal different properties and patterns of

bacterial and archaeal genomes. On average, roughly 86% of

prokaryotic DNA codes for proteins [1] and thus a considerable

amount of information is held in trinucleotide (codon) frequencies.

Additional information however, can be found by studying other

oligonucleotide sizes. Dinucleotide distributions, or nearest

neighbor frequencies, are used to calculate base-stacking energies

[2], while DNA structural properties can be calculated using di- to

tetranucleotide frequencies [2–5]. In addition, the structures of A,

B and Z type DNA helices are largely determined by 11-, 10- and

12-mers, respectively [2,6]. Another advantage of considering

genomic DNA as a set of fixed-sized oligonucleotide frequencies is

that bias and pattern preference, i.e. the randomness inherent or

lack thereof, in the complete DNA sequence can be detected [3].

Alternatively, DNA patterns can be investigated by examining

occurrences of individual nucleotides [7,8].

Oligonucleotide frequencies are very much influenced by codon

distributions which, in turn, are correlated with GC-content [9].

Since GC content is correlated with the environment of

prokaryotes [9,10], so are oligonucleotide distributions [11]. The

distributions of oligonucleotide frequencies can reveal other

properties as well. GC skews, i.e. increased cytosine compared

with guanine content on the leading strand, can be used to

determine DNA replication start and stop positions in bacteria

[12]. However, many archaeal and slow replicating bacterial

genomes do not have pronounced GC skews (or AT skews) on

leading and lagging strands, but replication start and stop positions

can be detected with increased precision by examining oligonu-

cleotide frequency skews with progressively larger oligonucleotide

sizes [13].

In addition to the properties described above, transcription and

regulation sites are also coded by certain oligonucleotide patterns

[14]. Such oligonucleotides are therefore thought to be severely

under- or overrepresented compared with what is expected from

mean genomic GC content or compared to oligonucleotide

frequencies found in other closely related species [14].

The examples above illustrate some of the properties that can be

extracted from DNA sequences by examining oligonucleotide

usage variance. This motivated us to explore how oligonucleotide

distributions change within and between prokaryotes in coding

and non-coding regions, how biased oligonucleotide frequencies

are, and whether any particular trends could be detected. In order

to do this a series of statistical tests were performed on all

sequenced bacterial and archaeal chromosomes (up to September

2006). We found that tetranucleotide frequencies carried consid-

erable genomic information potential, and were therefore used in
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all statistical tests based on oligonucleotide usage. The statistical

tests included oligonucleotide usage deviation from mean (OUD, a

measure of oligonucleotide frequency variations in genomes), and

oligonucleotide usage variance from expected (OUV, a measure of

randomness or bias [3]). These tests were used to examine how

tetranucleotide frequencies fluctuated within chromosomes

(OUD), and how tetranucleotide distributions differed from

random tetranucleotide frequencies calculated by mean genomic

nucleotide frequencies (OUV). OUV measures GC content both

globally and locally in chromosomes with a 40 kbp non-

overlapping sliding window and was used to calculate expected

tetranucleotide frequencies as well as GC content in coding and

non-coding sequences for each chromosome tested. These tests

were performed for all sequenced 402 prokaryotic chromosomes at

the time, and their corresponding open reading frames. The first

test, however, was concerned with statistical information potential

in different oligonucleotide sizes using a different approach than

[3].

Results/Discussion

Information Potential in Oligonucleotides
We measured the statistical information carried by the

differently sized oligonucleotides from di- to octanucleotides in

prokaryotes with GC contents between 47% and 53%. From

Figure 1, it can be observed that the largest increase in information

was obtained by going from nucleotide frequency approximation

of dinucleotides to trinucleotide usage approximations based on

dinucleotide frequencies and GC content (details can be found in

Materials and Methods). A more careful investigation of Figure 1

revealed that progressively less information was gained from usage

approximations of tetranucleotides up to heptanucleotides, and

practically no additional information appeared to be present in

Author Summary

There are potentially many factors responsible for how
archaeal and bacterial genomes are composed. Recent
advances in DNA sequencing have made it possible to use
computational and statistical methods to examine the
interplay between evolution and genomic composition.
We wished to see whether particular properties could be
extracted that would provide clues on how prokaryotic
DNA is composed. For instance, we wondered whether or
not protein coding regions carried a greater information
potential than non-coding regions, if there is a link
between genome size and GC content, whether GC
content is different in coding and non-coding regions,
and possible associations between DNA composition and
environment. Our results indicated that genomic nucleo-
tide frequencies are a determinant of many DNA
compositional properties, but also that other influences
are at work. For instance, bacteria are known to frequently
exchange DNA with the environment and other organisms.
Acquired DNA can therefore have different compositional
properties than host DNA, and since pathogenicity and
antibiotic resistance in bacteria is often associated with
foreign DNA, advancing the knowledge of DNA composi-
tion is of great importance.

Figure 1. Statistical information potential in differently sized oligonucleotides. Cumulative information potential is measured in di- to
octanucleotide frequencies in prokaryotic genomes with GC content between 47% and 53%. These genomes were selected because of the increased
sensitivity of the Pearson correlation measure for chromosomes with similar AT/GC content. The archaeal and bacterial chromosomes are represented
along the horizontal axis, sorted by increasing GC content from left to right, with corresponding correlation scores between observed n-mer words
and approximated n-mer words on the vertical axis. The n-mer words were approximated by observed (n–1)-mer words and genomic nucleotide
frequencies. High correlation scores indicate increased similarity between observed and approximated oligonucleotide usage.
doi:10.1371/journal.pcbi.1000057.g001
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approximated octanucleotide frequencies. Thus, oligonucleotide

sizes larger than hexanucleotides possess little additional informa-

tion potential, if any, in prokaryotic DNA.

GC Content in Coding and Non-Coding Regions
GC content was measured in coding and non-coding regions

(see Materials and Methods for more detail) and it was found that

non-coding regions were, on average, roughly ,5.5% more AT

rich (,5.3% and ,5.5%, for AT and GC rich chromosomes

respectively) than coding regions, with the assumption that 14%,

on average, of each chromosome was non-coding DNA [1].

Why non-coding regions are ,5.5% more AT rich than coding

regions may be related to the DNA curvature in promoter regions,

and possibly termination sites [15], and to lower stacking energies

found in AT rich DNA patterns compared with GC rich [2].

Increased AT content in non-coding regions suggest less energy is

required to split the double helix for transcription [2].

GC Content and Genome Size
Although the link between GC content and genome size has been

debated [16,17], we obtained significant (P,0.001) correlation with

r= 0.47 (Spearman’s rho) between chromosome size and GC

content (see Figure 2). The following regression equation was fitted:

Ysize ~ exp 0:15 z 1:92XGCð Þ

with the assumption of linear variance. Ysize gives the size of the

chromosomes (response) in mbp and XGC is global GC content

(predictor, P,0.001).

Bias in Tetranucleotide Usage
We measured how tetranucleotide usage varied in genomes

compared with expected tetranucleotide usage. This expected

tetranucleotide usage was calculated from mean genomic GC

content, and implicitly assumes that each nucleotide in every

tetranucleotide, and therefore also the whole chromosome, is

independent of its neighbors. In other words, the more similar

observed and expected tetranucleotide frequencies are, the more

random (i.e. less biased) are the observed tetranucleotide

frequencies, and thus the genomic DNA composition. Figure 3

shows how OUV varied between genomes compared to genomic

GC content. Significant correlation was found between GC

content and OUV values using the following regression equation:

YOUV ~ exp {11:2 { 10:1XGC z 12:4X 2
GC

� �
,

R2 ~ 0:33, P v 0:001

YOUV designates genomic OUV values (response) while the

predictor, XGC, represents GC content. Our results showed that

GC rich archaea and bacteria tended to have a less random DNA

composition than AT rich. The reason for this is not known, but it

has been argued [3] that thermodynamic properties of tetranu-

cleotides may be important, i.e. base stacking energy and

curvature. Tetranucleotide usage variance in coding regions was

found to be even more strongly correlated with global GC content:

Y c
OUV

~ exp {10:9 { 10:3XGC z 12:7X 2
GC

� �
,

R2 ~ 0:41, P v 0:001:

Figure 2. Prokaryotic genome size versus GC content. Prokaryotic chromosomes are sorted by increasing GC content from left to right on the
horizontal axis. The vertical axis represents chromosome size in mbp.
doi:10.1371/journal.pcbi.1000057.g002
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YC
OUV designates OUV values in coding regions (response), while

XGC is global GC content (predictor).

Thus, bias in tetranucleotide usage in non-coding regions was

less affected by global GC content than coding regions.

Preliminary tests on a set of sequenced genomes involving

randomization by increasing AT/GC content similarly to non-

coding % size produced significantly larger differences in

tetranucleotide usage bias than what was observed for non-coding

regions. This indicates that non-coding regions do carry information

and are exposed to selectional pressures and bias although

considerably less than coding regions. This can be seen from

Figure 3 where bias in tetranucleotide usage in coding regions

increased more with GC content than tetranucleotide usage in non-

coding regions. It should be noted that the above analysis is based on

average values from concatenated DNA sequences, and nothing is

stated about how OUV values vary within chromosomes and coding

regions. Preliminary tests indicate that OUV values vary consider-

ably within archaeal and bacterial chromosomes.

Tetranucleotide Usage Variation Within Genomes
OUD gives a measure of how homogeneous or heterogeneous

genomes are in terms of DNA composition. The OUD (but not

OUV) measure can also detect to what extent tetranucleotide

patterns are distributed throughout the genome. Low OUD values

thus indicate increased similarity and not increased randomness.

In contrast to OUV, the OUD measure is calculated as the

average variance of oligonucleotide occurrences within the

chromosome based on oligonucleotide frequencies from a non-

overlapping 40 kbp sliding window compared with mean genomic

oligonucleotide frequencies.

From Figure 4 it can be observed that OUD scores were lower

in coding regions (blue line) than in chromosomes containing both

coding and non-coding regions (red line). Genomic OUD scores

were progressively decreasing with increasing GC content

indicating that tetranucleotide patterns in non-coding regions

become progressively more similar with growing GC content. The

following regression equations were obtained:

YOUD ~ exp {11:3 { 12:22XGC z 11:1X 2
GC

� �
, R2 ~ 0:28,

P v 0:001

Y C
OUD ~ exp {13:7 { 6:1XGC z 6:6X 2

GC

� �
, R2 ~ 0:11,

P v 0:001:

The response-functions YOUD and YC
OUD represent OUD scores in

genomes and coding regions, respectively, while the predictor XGC

is GC content.

Difference in tetranucleotide usage within genomes was

supported by a ratio test where observed tetranucleotide usage

variance within genomes was divided by expected tetranucleotide

variance approximated by nucleotide frequencies. From Figure 5 it

can be observed that considerably less variation was detected in

the coding regions (blue line) compared with chromosomes

Figure 3. Tetranucleotide usage variance measures of 402 archaeal and bacterial chromosomes. Prokaryotic chromosomes are sorted by
increasing GC content from left to right (vertical axis), with red and blue regression lines representing OUV values (horizontal axis) for chromosomes
and coding regions, respectively. Larger values imply more bias, or stronger selectional pressure, in genomic tetranucleotide usage. The surrounding
dotted lines indicate 99% prediction intervals.
doi:10.1371/journal.pcbi.1000057.g003
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containing both coding and non-coding regions (red line) with the

following regression equations:

YO E ~ exp 0:09 z 1:44XGCð Þ, R2 ~ 0:38, P v 0:001

Y C
O E ~ exp 0:83 z 0:55XGCð Þ, R2 ~ 0:07, P v 0:001

YO_E and YC
O_E (response) are the ratios of observed divided by

expected OUD values for genomes and coding regions respec-

tively, while XGC represents mean global GC content (predictor).

This variance is, however, connected to larger fluctuations in

GC content within genomes in AT rich prokaryotes. See the below

section on variance in GC content within genomes for more detail.

No correlation was found between OUD values and genome size.

Variation of GC Content Within Genomes
Predicted tetranucleotide usage based on genomic nucleotide

frequencies was used to estimate variance in GC content within

genomes (Figure 6). Since intrinsic tetranucleotide usage variance

predictions were only based on nucleotide frequencies, these

values were directly associated with fluctuations in local GC

content obtained by comparing 40 kbp sliding windows with

global (mean) GC content. We therefore wanted to investigate if

fluctuations of intrinsic GC content showed any relation to

global GC content, and whether there was a difference between

coding and non-coding sections. Using regression analysis,

significant correlation was found between global GC content

and expected tetranucleotide usage variance, with the following

equation:

YE OUV ~ exp {10:7 { 16:7XGC z 14:3X 2
GC

� �
,

R2 ~ 0:35, P v 0:001

YE_OUV (response) represents expected OUV usage and XGC GC

content (predictor).

This result showed that there was significant correlation

between global GC content and how GC content varied locally

within genomes. The obtained correlation was also higher than

what was observed for the OUD measure (R2 = 0.28), which

means that variance in tetranucleotide frequencies within genomes

is less sensitive to mean genomic GC content than variance in

nucleotide frequencies.

Restricting the test to coding sections, correlation was found

between global GC content and expected tetranucleotide usage

variance, using the following equation:

Y C
E OUV ~ exp {13:6 { 10:6XGC z 10:6X 2

GC

� �
,

R2 ~ 0:10, P v 0:001

YC
E_OUV represents expected OUV values in concatenated coding

regions (response), and the predictor, XGC , global GC content.

Thus, only weak correlation was found between fluctuations in

intrinsic nucleotide frequencies and global GC content in coding

regions. Since roughly 86% of prokaryotic DNA codes for

Figure 4. Average oligonucleotide usage deviance within prokaryotic chromosomes (OUD). Each archaeal and bacterial chromosome is
sorted on the horizontal axis with increasing GC content from left to right, with corresponding OUD values on the vertical axis. The red and blue lines
represent OUD scores for whole chromosomes and coding regions, respectively. Smaller OUD values mean more homogeneous chromosomes in
terms of tetranucleotide usage. The surrounding dotted lines indicate 99% prediction intervals.
doi:10.1371/journal.pcbi.1000057.g004
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proteins, on average, [1] the above result suggest that the GC

content of non-coding regions within prokaryotes vary consider-

ably, and that the rate of this variation within genomes is

negatively correlated with mean genomic GC content. Hence, our

results show that, on average, the more GC rich a genome is, the

less variation of nucleotide frequencies are found in the non-

coding regions, while the opposite is true for AT rich genomes, i.e.

the more AT rich an archaeon or bacterium is the more varied are

the nucleotide frequencies of the non-coding sections.

Evolutionary Implications
Although a link was established between genomic GC content

and OUV, (R2 = 0.33, see above section) AT rich bacteria with

high OUV values and GC rich bacteria with low OUV values

were also observed. High and low scores mean here being ranked

among the 100 highest or lowest OUV scoring chromosomes of

the 402 tested, respectively. In general, a larger number of AT rich

bacteria were found with high variance scores than GC rich

bacteria with low OUV scores. Closely related bacteria were also

found at the opposite ends of the OUV score list. For instance, we

found that ‘‘Candidatus Blochmannia floridanus’’ obtained an

OUV value five times that of Buchnera aphidicola subsp. SG (ranked

#28 and #356, respectively). Additional details can be found in

Dataset S1. Both species are thought to have undergone genome

reduction as they adopt a symbiotic lifestyle and have small

genome size of comparable GC content [18]. Since low OUV

scores imply high genomic mutation rates, different mechanisms

may be responsible for the different tetranucleotide distributions in

these genomes, with Bl. floridanus having a more mutated genome

than B. aphidicola. Thus, different evolutionary mechanisms may

still result in similar lifestyles. Both Bl. floridanus and B. aphidicola

obtained similarly high OUD scores (respectively ranked #387

and #346), which means that they both rank among the

prokaryotes with the most heterogeneous chromosomes. Host

associated (including pathogenic) bacteria, in general, had the

most heterogeneous genomes, while free living bacteria were the

most homogeneous (see Dataset S1). It should also be added that

no correlation was found between OUV values and genome size,

thereby removing any link between random genome composition

and genome size.

Summary
Considering prokaryotic genomes from an oligonucleotide

perspective, there seemed to be little increase in information

potential in oligonucleotide sizes larger than hexanucleotides.

Comparing observed to expected tetranucleotide usage (OUV),

we found that coding regions are, in general, more biased than

non-coding regions, and more homogeneous according to the

OUD test. GC rich genomes were also found to have more biased

tetranucleotide frequencies than AT rich genomes. Although AT

content increased in non-coding regions in both AT rich and GC

rich genomes, it did not appear to be a consequence of

tetranucleotide preference. OUD was found to decrease with

increasing mean genomic GC content, indicating that GC rich

genomes have a more homogeneous DNA composition, especially

in non-coding regions. This result was additionally supported by a

Figure 5. Ratio of observed divided by expected OUD values. The vertical axis shows the ratio of observed divided by expected OUD values
for each chromosome sorted with respect to genomic GC content from left to right on the horizontal axis. The ratio test measures how observed
oligonucleotide usage varies within chromosomes (red line) and coding regions (blue line) compared with expected based on GC content. Rising
ratio values above 1 (vertical axis) means increased observed variance compared with expected. The dotted lines represent 99% prediction intervals.
doi:10.1371/journal.pcbi.1000057.g005
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ratio test based on observed and expected OUD scores indicating

that coding regions varied similarly for AT and GC rich genomes

alike, while non-coding regions varied more within AT rich

genomes. No correlation was found between OUV and OUD

scores, implying that bias in tetranucleotide usage is not connected

to intra-chromosomal homogeneity in prokaryotes.

Materials and Methods

All sequenced archaea and bacteria available up to September

2006, (402 chromosomes and corresponding open reading frames,

from 366 genomes in total) were downloaded from NCBI

Genbank [19]. The different statistical tests were carried out with

computer programs made according to the procedures described

below. The free statistical package R [20] was used for

visualization of results, regression analysis and curve-fitting. All

analyses of DNA sequences were carried out in the 59R39

direction. Analysis of genomic coding regions was performed by

concatenating every open reading frame for each chromosome

into one large DNA sequence.

Notation and Formulas
For notation we let Fz(.) designate frequency with respect to a

DNA sequence z of an independent variable consisting of a

nucleotide (AT-content, Fz(w), w is any nucleotide or Fz(A), Fz(G),

Fz(C) and Fz(T)) or an oligonucleotide (Fz(w1w2…wn), where

w1w2…wn are nucleotides making up a DNA word consisting of

n nucleotides. Correlation between frequencies of DNA words was

performed with the standard Pearson correlation formula:

PN
i

xi { �xxð Þ yi { �yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j

xj { �xx
� �2PN

k

yk { �yyð Þ2
s ð1Þ

xi = Fi
x(w1w2…wn) represents DNA word frequency for word i and

x̄ is the average frequency for all possible combinations of DNA

words consisting of n nucleotides (see below). The sums are taken

for all possible oligonucleotide combinations, i.e. N = 4n

Average values are found using the equation:

�xx ~
1

N

XN

i

xi ð2Þ

Methods
The statistical information potential of the different oligonucle-

otide sizes was estimated by comparing frequency functions

Fx(w1…wn) to Fx(w1…wn–1)Fx(wn) using Formula 1 for genomes

with AT content between 47% and 53%. Genomes with AT

content in that range were chosen due to the increased sensitivity

of the Pearson correlation method for chromosomes with similar

AT/GC content. By leaving one nucleotide ‘‘free’’ the cumulative

Figure 6. Variation of GC content within genomes. The vertical axis shows the variance of nucleotide frequencies within chromosomes (red
line) and coding regions (blue line) compared with corresponding mean genomic GC content on the horizontal axis. Lower average nucleotide
variance scores (vertical axis) means more similar distributions of GC content within chromosomes (and vice versa).
doi:10.1371/journal.pcbi.1000057.g006
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information in the different oligonucleotide sizes, i.e. combined

information of all smaller oligonucleotides, could be measured.

GC-content in non-coding regions was calculated by finding

GC-content in open reading frames and whole chromosomes with

the following formula:

Fnc
x wð Þ~ Fwc

x wð Þ{ cFc
x wð Þ

nc
ð3Þ

where c = coding fraction measured by the sum of open reading

frame sizes divided by corresponding chromosome size. Non-

coding fraction is then nc = 1–c.

The superscripts c, nc, wc designate GC content in coding, non-

coding and whole chromosomes, respectively.

GLM based regression analysis was used to examine the

relationship between global GC content (predictor) and genome

size (response). Because of the highly non-linear nature of the data,

Spearman’s rank based correlation test was additionally used

between genome size and global GC content.

OUV was calculated for each genome with the following

formula:

XN

i

xi { E xið Þð Þ2 ð4Þ

where E is expected frequency for DNA word xi based on

nucleotide frequencies:

E xið Þ~ Fx w1ð ÞFx w2ð Þ . . . Fx Wnð Þ: ð5Þ

The expected value is thus calculated based on the assumption

that each oligonucleotide frequency consists of individual nucle-

otide frequencies independent of each other. Since Formula 5

bases calculations of the expected value only on genomic

nucleotide frequencies it can be considered as a measure of how

‘‘random’’ the genomic composition of the organism is. Low OUV

scores can therefore be interpreted to mean that a high degree of

non-directed mutations has taken place within the genome, or,

alternatively, that the individual nucleotides in each tetranucleo-

tide are more ‘loosely’ tied to each other. High OUV scores may

also be taken to mean that a larger degree of bias, or order, is

present in the genomic oligonucleotide usage. An additional point

of view is that OUV is a measure of information potential, where

low OUV values mean that the DNA sequence in question has

lower statistical potential of carrying information (and vice versa).

OUV was calculated for both whole chromosomes and coding

regions. Regression analysis was then carried out between OUV

values (response), both coding and whole chromosomes, and

global GC content (predictor). The resulting regression equations,

with corresponding coefficient of determination, here denoted by

R2, can be found in the Results/Discussion section together with

the corresponding P values.

The OUD test gives an average estimate of how oligonucleotide

frequencies vary within prokaryotic chromosomes. Variance is

calculated between the oligonucleotide frequencies calculated from

a 40 kbp non-overlapping sliding window and mean genomic

oligonucleotide frequencies with the following formula:

1

M

XM
j

XN

i

z
j
i { mx

� �2

: ð6Þ

Summations are taken over all possible oligonucleotide combina-

tions 1#i#N, and all non-overlapping sliding windows 1#j#M in

DNA sequence x. zj
i = Fi

zj(w1w2…wn) represents the n-word

frequencies for sliding window j, while mx = Fx(w1…wn) is the

mean frequency of word w1…wn in DNA sequence x.

Regression analysis was performed for both whole chromo-

somes and coding regions with OUD as response and global GC

content as predictor. The resulting regression equations with

corresponding coefficient of determination, R2, and P-values can

be found in the Results/Discussion section.

The ratio of observed divided by expected OUD values was

additionally used to test whether any fluctuations in tetranucleo-

tide frequencies could be detected in coding and non-coding

regions. To calculate this, the OUD values obtained for each

chromosome with Formula 6 was divided by the following

equation:

1

M

XM
j

XN

i

E z
j
i

� �
{ E xið Þ

� �2

, ð7Þ

which resulted in the formula:

XM
j

XN

i

z
j
i { mx

E z
j
i

� �
{ E xið Þ

0
@

1
A2

: ð8Þ

In this case, the variance was calculated, for each chromosome,

between expected oligonucleotide frequencies from a 40 kbp

sliding window and expected oligonucleotide frequencies based on

Formula 5.

Variation of nucleotide frequencies within genomes was

calculated for each chromosome similarly to the OUD test, but

expected oligonucleotide frequencies based on Formula 5 were

used instead of observed. This is the same as calculating the

variance between local and global GC content (i.e. GC content)

and Formula 7 was used for this as well.

Regression analysis was performed on values obtained with

Formula 7 and global GC content for both coding and whole

chromosomes. The resulting equations, with the corresponding

coefficients of determination, R2, and significance, can be found in

the Results/Discussion section.

Supporting Information

Dataset S1 Microsoft Excel file consisting of the data used to

generate the results in the manuscript. Each column is labeled

according to the abbreviations used in the text and additionally

explained on a separate sheet.

Found at: doi:10.1371/journal.pcbi.1000057.s001 (0.17 MB XLS)
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