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Abstract

Rapidly identifying the features of a covert release of an agent such as anthrax could help to inform the planning of public
health mitigation strategies. Previous studies have sought to estimate the time and size of a bioterror attack based on the
symptomatic onset dates of early cases. We extend the scope of these methods by proposing a method for characterizing
the time, strength, and also the location of an aerosolized pathogen release. A back-calculation method is developed
allowing the characterization of the release based on the data on the first few observed cases of the subsequent outbreak,
meteorological data, population densities, and data on population travel patterns. We evaluate this method on small
simulated anthrax outbreaks (about 25–35 cases) and show that it could date and localize a release after a few cases have
been observed, although misspecifications of the spore dispersion model, or the within-host dynamics model, on which the
method relies can bias the estimates. Our method could also provide an estimate of the outbreak’s geographical extent and,
as a consequence, could help to identify populations at risk and, therefore, requiring prophylactic treatment. Our analysis
demonstrates that while estimates based on the first ten or 15 observed cases were more accurate and less sensitive to
model misspecifications than those based on five cases, overall mortality is minimized by targeting prophylactic treatment
early on the basis of estimates made using data on the first five cases. The method we propose could provide early
estimates of the time, strength, and location of an aerosolized anthrax release and the geographical extent of the
subsequent outbreak. In addition, estimates of release features could be used to parameterize more detailed models
allowing the simulation of control strategies and intervention logistics.
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Introduction

If clinical cases of anthrax were detected, public health decision

makers would want to estimate as soon as possible the features of

the exposure event leading to the outbreak in order to determine

who has potentially been exposed and should receive prophylaxis

[1]. Relevant variables include the date of exposure and the

geographical extent of the outbreak. For example, data from the

US anthrax outbreak of 2001 have been retrospectively explored

to estimate the date of exposure of cases and how large the

outbreak would have been if exposed individuals had not been

treated [2,3]. Later, Walden and Kaplan proposed an alternative

method to estimate the time and size of an anthrax outbreak a few

days after the occurrence of the first case and tested it on simulated

data [4].

While the 2001 anthrax cases had been exposed through the US

postal service [1], if the exposure was due to an outdoor airborne

release other information such as the release location and the

potential exposed area might be inferred from the data on

observed cases. The methods discussed above do not allow the

release location or the geographical extent of exposure to be

estimated as they do not consider the localization of cases or the

size of potentially exposed populations. More recently, Hogan et

al. proposed the Bayesian Aerosol Release Detector (BARD)

allowing the estimation of posterior distributions of the location,

strength and date of a release based on pre-diagnostic (syndromic)

medical surveillance data and meteorological data [5]. They

evaluated the ability of the method to detect anthrax outbreaks

with syndromic surveillance data and showed that it was able to

detect simulated outbreaks with over 900 pre-diagnosed cases but

performed poorly for smaller outbreaks. So far, the ability of the

BARD to characterize a detected release has not been evaluated.

In this paper, we develop and evaluate the performance of a

back-calculation method to characterize a release from the

observation of the first few cases, population densities, meteoro-

logical conditions and population movements such as commuting

data. We considered that the causative agent would have been

identified from the first few cases and that the incubation period

distribution of the disease would be known. We also explore the

potential of our tool to inform the planning of mitigation strategies.

As a case study, we investigate a simulated release of Bacillus

anthracis (the causative agent of anthrax), given its prominence on

risk lists of pathogens and potential to be used in aerosolized

biological weapons [1,6].
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Methods

Probabilistic anthrax model
We developed a probabilistic model for an inhalational anthrax

outbreak following an instantaneous point source release. This

model has three components: 1) the dispersion of anthrax spores in

the atmosphere; 2) the within-host dynamics of anthrax spores; 3)

the spatio-temporal population dynamics. We did not take into

account cutaneous or gastrointestinal forms of anthrax.

The airborne dispersion of anthrax spores following an

instantaneous point source release was modeled using a puff

model weighted by the viability of spore concentration [7,8]; this

quantifies the average spore concentration at any location and

time. However, for practical reason, we assumed that the average

spore concentration was uniform over relatively small distances

that characterize the spatial unit of our back-calculation method,

i.e. Great Britain (GB) administrative wards, and equal to the

concentration given by the puff model at the ward centroid. For

each individual, the inhaled dose depends on the breathing rate

and the spore concentration at his/her work place (from 9 am to 7

pm) and his/her residence (from 7 pm to 9 am). Other parameters

such as the size of particles [1] would impact the inhaled dose but

were not taken into account in our analysis for the sake of

simplicity.

The within-host dynamics model describes the biological

processes of clearance, germination and growth of anthrax spores

within a host and was adapted from published models [3,9,10].

However, the model we developed considers continuous exposure

rather than just instantaneous exposure. Once anthrax spores are

inhaled into the lung, they are ingested by macrophages and can

be destroyed. Surviving spores may germinate and then replicate

[1]. Assuming that symptoms occur when the number of

germinated spores exceeds a given threshold [10], the probability

of developing disease can be written as the convolution of the

cumulative distribution function of the time from exposure to first

germination F1 and the density function of the time from first

germination to symptoms.

Finally, the dispersion model and the within-host dynamics

model are integrated with population density and movement data

to model the spatio-temporal dynamics of the outbreak. Full

details of the model are provided in Text S1.

Characterizing an anthrax release
We used a Markov Chain Monte Carlo sampling algorithm [11]

to estimate the time T, height H, strength (log10(S) where S is the

number of released spores) and location W of the release. The

posterior distribution of the parameters is detailed in Text S1.

Given the rapid decline of spore concentration over time, we

considered that an individual’s entire dose was inhaled at the time

of the release rather than continuously from this date. Following

[12,13,14], we relied on the profile likelihood of the 3-dimension

parameter space T ,H,Sf g:

lp T ,H,Sf gjYð Þ~L T ,H,S,ŴW T ,H,Sð Þ
� ���Y
� �

where L(.) is the likelihood function and Y are the observed data

(dates of symptoms onset, residences and workplaces), both of

which are presented in Text S1. ŴW T ,H,Sð Þ maximizes

L T ,H,S,Wf gjYð Þ with respect to W and the parameter space

T ,H,Sf g was explored with a standard Metropolis-Hastings

algorithm.

Evaluation of the method
To study the performance of our back-calculation method, we

simulated 40 anthrax outbreaks due to a release at time T = 0 of

strength S = 1010 spores in ward W = W0 at height H = 100 m,

using the probabilistic model described above. We used population

and commuting data from the 1991 GB census for the 10,515

wards provided by the Office for National Statistics (see Text S1),

the same meteorological stability conditions as Wein and

colleagues used in a simulation study on the response planning

to an anthrax attack [15], and parameter values provided in

Table 1 [16]. Assuming that public health responses would ideally

be initiated after only a few cases have been detected, the first 5, 10

or 15 cases developing symptoms were considered to have been

observed. We then estimated the four parameters of the model

characterizing the release (T, log10(S), W, H). The other

parameters of the spore dispersion model and the within-host

dynamics model embedded within the back-calculation were set at

the literature-derived values used to generate the simulated data

(see Table 1).

We used medians of posterior distributions for height and

strength estimates. The posterior distribution of the time was

sometimes multimodal with local minima for night periods (we

simulated a release during the day) and the median could fall into

one of those local minima. Hence, to conserve the day/night

information provided by the posterior distribution, instead of the

time median, we discretized its posterior distribution into day/

night classes and chose the middle time of the mode class as the

point estimate. To estimate the release location, we also used the

mode of the posterior distribution. Root mean square errors

(RMSE) were used to summarize the quality of estimates (see

definitions in Text S1).

In order to understand how misspecification of aspects of the

model would impact estimation accuracy, we reproduced the

estimation procedure but deliberately misspecified either param-

eter values, data or the model structure. We examined 5 scenarios

(see Table 2):

Author Summary

Releasing highly pathogenic organisms into an urban
population is a form of bioterrorism that could result in a
large number of casualties. The first indication that a
covert open-air release has occurred is quite likely to be
individuals reporting for medical attention. If such an
attack is suspected, then public health authorities would
attempt to identify those individuals who have been
infected in order to provide rapid treatment with the aim
of reducing the possibility of disease and potential death.
Aiming treatment at too small an area might miss
individuals infected further down and/or up wind, whereas
issues surrounding both treatment resources and serious
side effects may rule out mass treatment campaigns of
large sections of the population. Our work provides
scientific robustness to firstly estimate where and when
an aerosolized release has occurred and secondly identify
the most critically affected geographic areas. In order to
use this statistical tool during an outbreak, public health
workers would only need to collect the time of symptom-
atic onset and the home and work locations of early cases;
recent weather information would also be required.
Although the accuracy of the estimates is likely to improve
as more cases appear, treating individuals based on early
estimates might prove more beneficial since time would
be of the essence.

Characterizing an Anthrax Release
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A) Reference scenario dataset used, but the precision of the

symptoms onset date was 0.5 days rather than one hour. We

considered that the symptoms onset hour of patients

developing symptoms between 9AM and 9PM would be

registered as 9AM, and 9PM for patients developing

symptoms between 9 PM and 9 AM.

B) Reference scenario dataset used, but median delay between

germination and symptoms of 5 days assumed in the back-

calculation model rather than the 2 days used to generate the

data.

In scenarios C to E, we simulated 40 outbreaks with three

modified versions of our model and then used the reference

scenario back-calculation model to fit these data:

C) Modification of the within-host dynamics model. Datasets

were generated using the reference scenario model but with

the within-host dynamics component replaced by the model

proposed by Brookmeyer et al for a low dose exposure [9]: the

attack rate was computed as lim F1 tð Þ
t??

and the cumulative

distribution function of the incubation period was

F� tð Þ~1z he{gt{ge{ht

g{h with g = 0.346 days21 corresponding

to a median delay between germination and symptoms of 2

days.

D) Modification of the spore dispersion model. Datasets were

generated using the reference scenario model but with the

puff model of airborne dispersion replaced by the Hazard

Prediction and Assessment Capability (HPAC) model [17].

The cumulative distribution function of the incubation

period was the same as in the reference scenario but

assumed an instantaneous exposure (see Text S1) and an

attack rate given by lim F1 tð Þ
t??

.

E) Modification of population movement assumptions. Instead

of considering only commuting data, we considered that due

to non-commuter travel, 10% of individuals could be

exposed during the day in wards different from the ward

where they would otherwise work. We considered that the

pattern of these occasional movements was similar to the

pattern of commuting movements. Hence, for 10% of cases,

we considered that the original workplace was actually an

occasional destination. The workplace of each of these cases

was then drawn from the distribution of workplaces of people

Table 1. Parameter Description and Values in the Reference Scenario.

Param. Description Units Value in the ref. scenario Ref

c Decay rate /sec 1.6761024 [7]

l Germination rate /day 161025 [9]

h Clearance rate /day 0.109 [9]

r Growth rate /day 11.7 *

b Breathing rate m3/min 0.03 [7]

k Threshold for the number of bacilli before symptoms bacilli 1010 [16]

Median period between germination and symptoms days 2 [9]

Wind direction BNG (1,0)

u Wind speed m/s 5.0 [15]

T Date of the release days 0

S Number of released spores spores 1010

H Height of the release m 100 [15]

W Source - W0

BNG: British National Grid System.
*The growth rate was calibrated in order to have a median period between first germination and symptoms of 2 days according to equation (1.5) in Text S1.
doi:10.1371/journal.pcbi.1000356.t001

Table 2. Description of Scenarios.

Scenario Modified model/data Misspecification type Description

A Symptoms onset dates
of the simulated sample

Uncertainty on data Onset dates precision = 0.5 days rather than 1 hour .
For cases developing symptoms between 9AM and
9PM the registered time is 9 AM. For other cases the
registered time is 9 PM.

B Estimation Parameter value of the within-host
dynamics model

Median delay between germination and
symptoms = 5 days rather than 2 days

C Simulation Within-host dynamics model Incubation period for low doses given by [9]
Instantaneous exposure

D Simulation Spore diffusion model Spore concentration given by HPAC model [17]
Instantaneous exposure

E Simulation Population movements Occasional movements added to daily commuting
data

doi:10.1371/journal.pcbi.1000356.t002

Characterizing an Anthrax Release
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living in the individual’s ward of residence. With this dataset,

we also tested a modified version of the reference scenario

back-calculation model by considering that people would

have a small probability per day (set at 0.1) to travel away

from their working place, with destinations being chosen

based on ward sizes and distance to usual workplace (see

Text S1 for details).

Comparison with other back-calculation methods
Past studies [4,18,19] have sought to characterize an anthrax

outbreak and, although they were not designed to estimate the

release location, it is possible to compare the exposure date and

outbreak size estimates they provide with our estimates. We ran

our own versions of the Walden and Kaplan method [4] and the

algorithm proposed by Ray et al [18] on the datasets generated

with the reference scenario and scenarios C and D using the same

incubation period distribution as in our algorithm. As the Walden

and Kaplan method [4] assumes that the incubation period is not

dose dependent, we used a low dose exposure (10 spores) although

it should be noted that order of magnitude increases in the dose

made little difference to the estimates (results not shown).

Implication for mitigation policies
In terms of helping to plan mitigation strategies, the first issue

we examined was whether our estimates would allow the

prediction of the outbreak extent from data on the first few cases.

We also examined whether the model could accurately infer the

geographical extent of the outbreak, i.e. where and how many

people had been exposed. Indeed, this could help to target

interventions (such as prophylaxis and decontamination) at the

most exposed populations for mitigation strategies and to assess the

scale of effort (e.g. numbers of antibiotic courses) required. We

considered a mitigation strategy whereby people living or working

in a ward with a risk of being clinically infected greater than a

given threshold (from 1025 to 1028) would be targeted for

prophylactic treatment. The risk attributed to each ward was

defined as the risk of developing disease following an exposure in

this ward at the release time. We compared the model-inferred risk

estimates (using risk posterior distribution medians) with the

model-inferred risk values calculated with the real parameter

values. To explore further the effectiveness of a targeted mitigation

strategy based on the back-calculation model estimates, we

determined how many cases would be prevented if all individuals

exposed to a given risk according to our estimates received a 100%

effective prophylactic treatment. We considered that the treatment

would be administered 4 days after the 5th, 10th or 15th case had

occurred to allow for a lag time between symptomatic onset of the

last observed case and diagnosis, estimation, planning and

implementation of interventions. In addition, treatment was

assumed to prevent disease for all symptom-free individuals.

Finally, we compared the efficiency of the strategy described

above with a ‘‘ring strategy’’ not requiring sophisticated analytical

and computational methods. For this ‘‘ring strategy’’, the wards

considered at risk were located in the neighborhood of wards

where the greatest number of cases had been detected (workplaces

and residences were included). We selected as neighbors all wards

having its centroid within a given distance of at least one of the

centroids of the J most affected wards.

Results

Although we simulated outbreaks following a release in a

populated area, the set of parameters we used lead to relatively

small simulated outbreaks (average size = 27, range = 19–39, see

the risk map in Figure 1 and the description of the simulated

outbreaks in Text S1).

Characterizing anthrax releases
Figure 2 (reference scenario) shows that we were able to localize

and date the release with accuracy when using 10 cases. As shown

in Text S1, using the median as date point estimates rather than

the centre of the mode class gave similar results. Although

decreasing the number of observed cases to 5 lowered the ability of

the method to localize the release (real source identified in 17/40

outbreaks versus 32/40 with 10 observed cases), it was still able to

date the release with accuracy (error,10 hours for 33/40

simulated outbreaks). Furthermore, the distance from the

estimated source to the real source did not exceed 7.4 km with

5 observed cases and 3.8 km with 10 observed cases (average

Figure 1. Map of the risk of anthrax infection (attack rates) in
each ward for all scenarios except scenario D. The cross on the
main map represents the location of all simulated releases. The inset
map represents population-weighted ward centroids (crosses) and their
Voronoi diagram (polygons).
doi:10.1371/journal.pcbi.1000356.g001

Characterizing an Anthrax Release
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distance between workplace of cases ranges 3.7–14.0 km). The

height of the release was more difficult to characterize and was

correlated with the strength of the release (correlation of 0.78 on

average). Bias could reach more than twice the real height and

posterior distributions estimated with 5 observed cases were often

flat (95% credible interval width was up to 1220 meters). An

example of the 4 parameters posterior distributions estimated with

data from 5, 10 or 15 observed cases is shown in Text S1. When

comparing the estimated expected number of cases with the real

expected number of cases, the root mean square relative error (see

Figure 2. Histograms of the release location (left column) and date (right column) estimates for the 40 simulated outbreaks with
Reference scenario (Ref.) and scenarios A to E. The release location is represented by the distance to the real source. For the date estimates,
breaks were set at 9 AM and 7 PM and counts are represented by bar heights rather than bar surfaces. For two outbreaks of scenario D, the source
location estimated with 5 observed cases was further than 12 kilometers (14.3 and 18.2 km). For scenario E, the source location estimated with 5
observed cases was further than 35 kilometers for two outbreaks (57 and 68 km), the source location estimated with 10 observed cases was further
than 35 kilometers for one outbreak (57 km), the source location estimated with 15 observed cases was further than 35 kilometers for two outbreaks
(45 km and 117 km).
doi:10.1371/journal.pcbi.1000356.g002

Characterizing an Anthrax Release
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definition in Text S1) decreased from 70% for estimates based on

5 cases to 45% for estimates based on 10 cases (see Table 3).

Sensitivity analysis
With scenario A, although estimates of the timing of release

were slightly modified (for estimates based on 5 cases, difference

ranged 0–2 days), the bias was below 10 hours for 80% of the

simulated outbreaks. The accuracy of the source location estimates

was not affected (see Figure 2).

Similarly, increasing the median delay between spore germina-

tion and symptoms from 2 to 5 days in the estimation algorithm

(scenario B) modified estimates of the time of release by 71 hours

on average (compared to the reference scenario estimates) but it

did not modify the performance of the method to characterize the

release location. Misspecifying further the within-host dynamics

model (scenario C) by simulating symptomatic onset dates with the

incubation period distribution for low doses proposed by

Brookmeyer and colleagues [9] affected the precision of the

release date estimates (RMSE about 24 hours with scenario C

versus 12 hours with the reference scenario) but the estimates of

Figure 3. Comparison of the estimates based on the standard model (M1) with estimates based on the model allowing for
occasional movements during the day (M2). Estimates of the height (A), strength (B) and location (C) of the source for outbreaks simulated with
Scenario E, based on the first 5 (blue), 10 (red), 15 (green) observed cases. (D) Ratio of the number of individuals inaccurately targeted (IC) by the
mitigation strategy for a risk threshold of 1/100,000 relative to the theoretical number of individuals at risk (%). Triangles indicate estimates for
simulations in which there is no observed case infected during an occasional movement. Rectangles indicate estimates for simulations in which there
is at least one observed case infected during an occasional movement. The horizontal and vertical lines indicate the true values. The third line is the
bisector.
doi:10.1371/journal.pcbi.1000356.g003

Table 3. Performance of the Back-calculation Method to Fit
the Expected Outbreak Size.

Coverage* (%) RMSE1 (%) Error range**

# observed
cases 5 10 15 5 10 15 5 10 15

Reference 95 95 95 71 45 32 0–215 1–137 3–83

A{ 80 95 95 103 50 33 2–237 0–143 2–102

B{ 95 95 95 71 45 32 0–212 1–141 2–83

C{ 90 97.5 100 89 32 22 4–478 1–82 1–72

D{ 80 87.5 85 141 72 54 2–427 1–232 3–201

E{ 87.5 90 90 90 52 35 2–412 1–189 1–119

RMSE1 = Relative root mean square error (see definition in Text S1).
*The coverage is defined as the probability that the real value falls in the (2.5th,
97.5th) percentiles interval of the posterior distribution.

**Range of the absolute relative error (%).
{See Table 2 and Methods for description of scenarios A to E.
doi:10.1371/journal.pcbi.1000356.t003

Characterizing an Anthrax Release
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the other release features (location, height and strength) remained

accurate (see Figure 2 and Text S1) .

When we used a different spore dispersion model (HPAC) to

simulate outbreaks (scenario D), the source location estimates

based on 5, 10 and 15 observed cases were somewhat (though not

catastrophically) impaired (RMSE = 4.6, 1.2, 0.6 km respectively

versus 2.0, 0.9, 0.7 km with the reference scenario). Release height

and strength estimates were also biased (see Text S1) but the

release date estimates remained accurate. Increasing the number

of observed cases from 10 to 15 increased substantially the quality

of the source location estimates whereas this wasn’t the case for the

reference scenario and scenarios A to C for which the RMSE of

the source location estimates based on 10 observed cases were less

than 1 km.

Finally, if some of the observed cases had been exposed during an

occasional stay in a ward different from their home (for night

release) or workplace (for day release) as in scenario E, our back-

calculation method could fail to identify the actual source location.

The release date estimates remained accurate (RMSE was about

9 hours for T) but the quality of the height and strength estimates

was impaired (for estimates based on 5 cases, RMSE was 320 m for

H and 0.97 for log10(S) versus 85 m and 0.46 respectively for the

reference scenario). Indeed, for several simulations, one or more

cases did not live or work within the exposed area but to encompass

these cases in the estimated exposed area, the release location

estimates were chosen upwind of the real location, also affecting the

height and strength estimates (see Text S1). Increasing the number

of observed cases did not necessarily improve the quality of

estimates as it increased the probability to observe cases infected

during an occasional stay in a ward different from their home or

workplace. To avoid this issue, we modified the model embedded in

the back-calculation; for simulations where at least one case had

been infected during an occasional movement, location estimates

derived from this modified model were much improved (Figure 3).

Overall, with this later model, the quality of estimates improved

with the number of observed cases (see Text S1) though the distance

to the real source RMSE was greater when estimates were based on

10 rather than 5 observed cases.

Comparison with other back-calculation methods
The comparison of the release date and outbreak size estimates

provided by previously published methods with our results shows

that performance of the three methods were similar (see Text S1).

Implication for mitigation policies
Figure 4 shows that outbreak size estimates were accurate up to

an order of magnitude but that relative bias for the reference

scenario was up to 120% with estimates based on the first 5 cases

and up to 70% with estimates based on 10 cases.

Regarding mitigation policies, key is how many people might be

missed by a risk-targeted strategy guided by the model estimates,

and how many would be inaccurately considered at risk. Both of

these numbers varied substantially from one simulated outbreak to

another (see Figure 5). For a risk threshold of 1 case per 100,000

inhabitants and estimates based on 5 observed cases, the median

proportion of at-risk individuals missed by targeting was less than

8%, for any scenario, with 3rd quartiles under 20% for all scenarios

(see Figure 5a). The location of those exposed wards missed by the

targeting strategy and those wards inaccurately considered at risk

is shown in Text S1. For any scenario other than E and estimates

based on 10 or 15 observed cases, the median number of

individuals inaccurately considered at risk was about 5–8% of

those actually at risk (see Figure 5b) but was larger when the

simulated outbreaks included local occasional movements (see

scenario E, estimates based on 15 cases). Most of the wards

inaccurately considered as exposed with scenario E estimates are

in the west of the exposed area (see Text S1). Figure 5c shows the

actual numbers at risk as a function of the risk threshold used. For

Scenario E, using a model which took account of occasional

movements decreased the number of individuals inaccurately

considered at risk (see Figure 3d).

On average, the impact of the targeting strategy on outbreak

size was greater when applied after the 5 first cases have occurred

(see Figure 5d). With the reference scenario and estimates based on

5 cases, 221,000 to 642,000 individuals were treated and 1 to 21

cases were avoided (median = 12.5 cases). With the release features

we used for the simulation, using a risk threshold of 1/100,000

Figure 4. Performance of the back-calculation method to predict the outbreak size with Reference scenario (R) and scenarios A to E.
Each box-plot represents the distribution (minimum, maximum, percentiles 2.5,25,50,75,97.5) of the predicted outbreak size relative bias based on
the 5, 10 and 15 first cases on 40 simulated outbreaks per scenario.
doi:10.1371/journal.pcbi.1000356.g004

Characterizing an Anthrax Release
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seemed efficient: a higher threshold decreased the number of lives

saved while a lower threshold did not save significantly more lives

but required substantially larger numbers to be treated (see Text

S1).

As shown in Text S1, on average, the strategy based on our

estimates seems to be more efficient than a ‘‘ring strategy’’ around

the 3 most affected wards (J = 3) which could require more

antibiotic courses to prevent an equivalent number of cases. With

Scenario E, our back-calculation method embedding the model

taking into account local occasional movements seemed to be the

most efficient.

Discussion

Here we have developed and tested a back-calculation model to

characterize an airborne release of anthrax spores from data on

Figure 5. Impact of the targeting mitigation strategy with Reference scenario (R) and scenarios A to E. (A) Ratio of the number of
individuals missed by the targeting mitigation strategy for a risk threshold of 1/100,000 relative to the theoretical number of individuals at risk. (B)
Ratio of the number of individuals inaccurately targeted by the mitigation strategy for a risk threshold of 1/100 000 relative to the theoretical number
of individuals at risk. (C) Number of individuals at risk according to the model used to generate the data. (D) Impact of administrating treatments to
individuals living or working in a ward exposed to a risk of at least 1/100 ,000 inhabitants: outbreak size when there is no treatment and when
prophylactic treatment compliance and efficacy is 100% prior to the onset of symptoms and administered 4 days after the first 5, 10 or 15 cases
occurred. Each box-plot represents the distribution (minimum, maximum, percentiles 2.5, 25, 50, 75, 97.5) of the total number of cases.
doi:10.1371/journal.pcbi.1000356.g005
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the first observed cases, meteorological conditions, population

density and movement data. Our simulation study shows that this

method could provide accurate results even after only a few cases

of a small outbreak have been observed.

Overall, in the event of an outdoor airborne release, the source

location could accurately be identified although misspecifications

of the spore dispersion model (scenario D) might slightly affect the

quality of the estimates. Indeed, for a given dose, the HPAC model

gave a larger geographical extent of the release than the puff

model (see Figure 5c) affecting source location estimates; these

differences might be partly explained by differences in the

dispersion parameters of the two models. Our results suggest that

increasing the number of observed cases would improve the source

location estimates substantially. Different spore dispersion models

have been proposed [7] and could be tested in further uncertainty

analyses of our back-calculation estimates; if an instantaneous

exposure was still considered a reasonable assumption then the

spore dispersion model component could be easily modified in our

algorithm.

In the spore dispersion model we used, we set the wind direction

and speed at a fixed value both in the outbreak simulations and the

back-calculation algorithms. However, our method could be

refined to integrate more sophisticated datasets allowing the

meteorological conditions to vary with time and to be imperfectly

recorded.

The source location estimate would also probably be affected by

misspecifications of population movements (scenario E). Indeed, if

one or more observed cases had been exposed during local (or

long) distance occasional movements then the quality of estimates

would be impaired. We therefore developed a modified model that

allowed for exposure due to occasional movements. Including this

model in the back-calculation algorithm improved the location

estimates when occasional movements were included in the

simulated data, although the computational time required for

estimation increased markedly. Hence, the standard model could

provide a first set of estimates which could then be refined using

the more elaborate model with occasional movements included.

The release date estimate might be biased if the within-host

dynamics, and consequently the incubation period, were mis-

specified (scenarios B and C): different incubation period

distributions could also be tested in further uncertainty analyses.

Also, the within-host model used here could be extended to deal

with continuous, rather than instantaneous releases, though this

would require further development of the incubation period

models which have been proposed for inhalation anthrax [9,10].

Lastly, the impact of under-reporting of cases remains to be

examined (we assumed a 100% reporting rate) but is likely to only

affect estimates of the overall size of release, and perhaps its timing

(if under-reporting varies through time). On the contrary, a lack of

specificity might bias the source location estimates. Though this

remains to be evaluated, the location estimates provided by the

second model we introduced might be less sensitive to false cases.

Our analysis shows that characterizing an outbreak would help

to predict its final size and to assist in targeting the exposed

population requiring prophylactic treatment. Although the

exposed population cannot be precisely estimated (both the

number of missed individuals and inaccurately targeted individuals

could be substantial), treating the population estimated to be at

risk using our back-calculation method could substantially reduce

the number of symptomatic cases, and therefore deaths. However,

our estimates of the number of cases which might be prevented

represent a best case: we assumed that both compliance with

treatment and its efficacy were 100% prior to the onset of

symptoms. Further analysis should be carried out to take into

account the impact of sub-optimal compliance and lower

treatment efficacy [20]. How other parameters such as the

incubation period distribution or the delay between outbreak

detection and treatment would affect the efficacy of mitigation

strategies and their impact remains to be explored.

A limitation of our method is the assumption of a common

single source outbreak. If the outbreak was due to multiple

releases, the spore dispersion component of our model could be

modified to account for several sources. However, this would

increase the number of parameters to estimate (four for each

source) and could make the estimation based on a small number of

observed cases less accurate or impossible. In addition, determin-

ing the number of sources could also be challenging. This problem

might depend on the spatial separation of the sources; very widely

spaced and more discrete ‘‘clusters’’ of cases might be quite

obvious allowing their independent analysis. Some epidemiological

oversight would obviously be key in such circumstances.

Our estimates could be used to parameterize models which have

been developed to estimate the optimum duration of antibiotic

treatments [3,20,21] and to evaluate various mitigation interven-

tions following an anthrax release [15]. Other work in this latter

area has shown that rapidity of intervention would be a key issue

for the control of an outbreak and has proposed the use of

biosensors. Better characterizing the release with the method we

propose and thus estimating which areas were exposed would also

help to decrease the delay in planning a targeted emergency

response; it could also represent an alternative tool if biosensor

data were not available.

Comparing our model with others in the literature, previous

models provided estimates of the release date and the outbreak size

but not the location [4,18,19]. Furthermore, the performance of

our method was equal to that of the existing models at estimating

both the release date and the outbreak size. All such back-

calculation methods require knowledge about the timing of

symptom onset which may not always be captured by early

outbreak investigation studies depending on the systems that are in

place. If hospital admission dates were available instead, the

release date estimate could be biased though we have shown that

the date estimate is only slightly sensitive to a 12 hours uncertainty

in symptom onset dates. However, our model could also be refined

to integrate a delay between symptomatic onset and hospital

admission (see Hogan’s presentation in http://www.galaxy.gmu.

edu/QMDNS2007/). Incorporating the date of symptomatic

onset and also the residence and workplace of cases into

surveillance systems could shorten the delay between the

occurrence of the first cases and the implementation of relevant

mitigation strategies, notably by allowing the use of appropriate

analytical methods, such as the one we propose here, as soon as

possible. In the event of an anthrax outbreak in GB, we are

anticipating having the data from detailed field epidemiological

studies which should in most cases include symptoms onset dates

and home/work locations (see for example the legionella outbreak

investigation guidelines http://www.hpa.org.uk/web/HPAweb-

File/HPAweb_C/1194947321368).

We have focused on evaluating our spatial back-calculation

model for small outbreaks. In the case of a large outbreak, the

rapid accumulation of cases and their locations would probably

allow localization of the exposure event without the need for

sophisticated methods. Nonetheless, the methods we developed

here could be used for large outbreaks if statistical rigor was a key

requirement for any analysis and to help with the early

identification of the spatial extent of the release and the

geographical targeting of antibiotic therapy. Application of this

type of model to the airborne release of an agent capable of being
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transmitted from person-to-person (e.g. smallpox or pneumonic

plague) would be feasible at the very beginning of an epidemic

(before any transmission is likely to have occurred). But if

secondary cases were suspected, our method would need further

development to take into account the transmission process.

Supporting Information

Text S1 SUPPLEMENTARY MATERIAL

Found at: doi:10.1371/journal.pcbi.1000356.s001 (1.23 MB

DOC)
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