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Abstract

Regulatory networks have evolved to allow gene expression to rapidly track changes in the environment as well as to buffer
perturbations and maintain cellular homeostasis in the absence of change. Theoretical work and empirical investigation in
Escherichia coli have shown that negative autoregulation confers both rapid response times and reduced intrinsic noise,
which is reflected in the fact that almost half of Escherichia coli transcription factors are negatively autoregulated. However,
negative autoregulation is rare amongst the transcription factors of Saccharomyces cerevisiae. This difference is surprising
because E. coli and S. cerevisiae otherwise have similar profiles of network motifs. In this study we investigate regulatory
interactions amongst the transcription factors of Drosophila melanogaster and humans, and show that they have a similar
dearth of negative autoregulation to that seen in S. cerevisiae. We then present a model demonstrating that this stiking
difference in the noise reduction strategies used amongst species can be explained by constraints on the evolution of
negative autoregulation in diploids. We show that regulatory interactions between pairs of homologous genes within the
same cell can lead to under-dominance — mutations which result in stronger autoregulation, and decrease noise in
homozygotes, paradoxically can cause increased noise in heterozygotes. This severely limits a diploid’s ability to evolve
negative autoregulation as a noise reduction mechanism. Our work offers a simple and general explanation for a previously
unexplained difference between the regulatory architectures of E. coli and yeast, Drosophila and humans. It also
demonstrates that the effects of diploidy in gene networks can have counter-intuitive consequences that may profoundly
influence the course of evolution.

Citation: Stewart AJ, Seymour RM, Pomiankowski A, Reuter M (2013) Under-Dominance Constrains the Evolution of Negative Autoregulation in Diploids. PLoS
Comput Biol 9(3): e1002992. doi:10.1371/journal.pcbi.1002992

Editor: Jorg Stelling, ETH Zurich, Switzerland

Received May 25, 2012; Accepted February 4, 2013; Published March 21, 2013

Copyright: � 2013 Stewart et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AJS acknowledges funding from the CoMPLEX EPSRC Doctoral Training Centre, an EPSRC PhD Plus Fellowship, and a James S. McDonnell Foundation
grant to Joshua B. Plotkin. MR was supported by grants from the Natural Environment Research Council (NE/D009189/1 and NE/G019452/1), AP by grants from
the Natural Environment Research Council (NE/G00563X/1) and the Engineering and Physical Sciences Research Council (EP/F500351/1). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alstew@sas.upenn.edu

Introduction

Negative autoregulation is a network motif in which a

transcription factor inhibits its own expression. Theoretical work

has shown that this type of regulation reduces intrinsic noise and

quickens the response time to environmental perturbations [1–3]

and experiments using artificial gene regulatory circuits in E. coli

have confirmed these predictions [2]. Negative autoregulation

therefore represents a simple yet powerful mechanism to maintain

cellular homeostasis in the face of environmental and metabolic

perturbations and reduce the often substantial fitness costs that

noise can incur [4]. Different organisms, however, vary a great

deal in their use of the motif. In E. coli, close to 50% of

transcription factors (82 out of 182) [5–8] have been shown to

negatively autoregulate. In contrast, negative autoregulation is

almost entirely absent amongst the transcription factors that have

been studied in S. cerevisiae (3 out of 169) [6,8–11].

How can we account for this discrepancy? In order to answer

this, we looked at the extent to which negative autoregulation is

used in other species. We interrogated systematic datasets on the

regulatory interactions amongst the known transcription factors of

D. melanogaster and humans and found a similar pattern to that

observed in yeast: in D. melanogaster 3 out of 87 [12–14] and in

humans 5 out of 301 [13–15] transcription factors negatively

autoregulate (see SI, Table S1, S2, S3). Currently, there is no

obvious way to account for this striking discrepancy between these

organisms, despite widespread interest in the strategies they

employ to tackle noise [1–4,16–18]. Here we develop a model,

founded in biophysics, for the evolution of negative autoregulation

in diploid species. We use it to support the hypothesis that a dearth

of negatively autoregulating genes in yeast, flies and humans can

be explained by constraints on the evolution of negative

autoregulation that arise due to diploidy.

Results

Gene expression under negative autoregulation
Previous theoretical work on the dynamics of gene expression

under negative autoregulation has considered single genes and so

is implicitly haploid [1–3,18]. Such models exclude the more

complex interactions that occur due to cross-regulation between

homologous gene copies within a diploid cell (Fig. 1). Here we
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characterise the expression dynamics and regulatory evolution of

homologous pairs of negatively autoregulating genes, taking into

account the cross-talk between alleles.

We model negative autoregulation in a diploid using a set of

ordinary differential equations that track changes in the mRNA

and protein concentrations for each of a pair of alleles (labelled

with subscripts 1 and 1), r1, r2, p1 and p2. The total concentration

of mRNA and protein in the diploid cell are given by the summed

output of the two alleles r~r1zr2 and p~p1zp2. Changes in

mRNA and protein concentrations for the pair of alleles over time

are given by

dr1

dt
~klzw1(p){crr1,

dr2

dt
~klzw2(p){crr2,

dp1

dt
~r1kp{cpp1,

dp2

dt
~r2kp{cpp2:

ð1Þ

According to these equations, mRNA is transcribed at a (usually

low) constant background rate kl , plus a rate w(p) due to negative

autoregulation, that decreases as the total cellular protein level

p~p1zp2 increases. Protein is produced from mRNA at the rate

of translation kp, whilst protein and mRNA degrade with rates cp

and cr, respectively.

As in previous work [1,2], we model the repression function

w(p) in Eqs. 1 as a Hill function

wi(p)~
k0

1z p
Ki

� �n

where Ki is the dissociation constant associated with the

autoregulating transcription factor binding site. Smaller values of

K (lower rates of dissociation) indicate stronger regulation. The

Hill coefficient n governs the steepness of the function at the

inflection point and hence determines how step-like regulation will

be. In systems where transcription is regulated by a single binding

site, w(p) has a Michaelis-Menten-like form, corresponding to a Hill

coefficient of n~1 [2,19,20]. A single binding site is the simplest,

and perhaps the most relevant case for evolving negative

autoregulation, and it is the one we focus on here. We analyse the

more general case of arbitrary Hill coefficient in the Methods and in

the SI we show that our results also hold for different values of n.

In the absence of negative autoregulation (i.e., w(p)~k0),

mRNA is produced at the maximum rate of transcription klzk0.

In this case, concentrations of mRNA and protein reach

equilibrium values of rmax~
2(k0zkl)

cr

and pmax~rmax

kp

cp

. Start-

ing from these values, equilibrium mRNA and protein levels

decrease with increasing autoregulatory binding strength (decreas-

ing K ). The minimum mRNA and protein levels are reached when

negative autoregulation is strongest (i.e. w(p)?0 as K?0). The

resulting minimum equilibrium concentrations are rmin~
2kl

cr

and

pmin~rmin

kp

cp

.

Evolution of negative autoregulation for homeostasis
and faster response times

In order to analyse the evolution of autoregulatory binding sites

we consider two separate but related functions of negative

autoregulation: faster response times and maintaining mRNA

and protein homeostasis. First, to study the evolution of negative

autoregulation for faster response times, we simply equate the

fitness of a system with its response time (i.e the time taken to

return to equilibrium following a perturbation). We use Eqs. 1 to

infer selection pressures on the strength of autoregulation, i.e., the

dissociation constant K , by analysing how quickly genotypes with

different autoregulatory binding strength return to equilibrium

following a perturbation in protein level. To do this we calculate a

genotype’s ‘‘response time’’: the time taken for cellular protein

concentration to return to equilibrium following a perturbation.

We model perturbations as a reduction of the protein level to a

fraction a of the equilibrium level. The value of a varies

continuously between 0 and 1 to encompass both small

perturbations, for example those resulting from intrinsic noise in

transcription and translation (a&1), and larger perturbations, for

example those resulting from resource deprivation in the

environment or following cell division [17]. We present results

derived from numerical analysis of Eqs. 1 that are applicable to

perturbations of any size. These are complemented with an

analytical treatment of the response time of the system to small

perturbations, based on its maximal eigenvalue (see Methods),

which allows us to develop an intuition for how autoregulating

genes in diploids respond to perturbations.

To study the evolution of negative autoregulation for homeosta-

sis, we turn to stochastic simulations of negatively autoregulating

genes, which allow us to assess the amount of intrinsic noise

associated with gene expression. Previous work has shown that

negative autoregulation can help maintain homeostasis in gene

expression by reducing the amount of intrinsic noise in negatively

autoregulating genes, compared to other genes [3]. In fact, reducing

the response time of a gene to very small perturbations away from

equilibrium, also decreases the intrinsic noise in gene expression.

Therefore, the two functions of negative autoregulation we consider

(producing faster response times and reduced intrinsic noise) are

Author Summary

All genes have to deal with intrinsic noise, and a variety of
mechanisms have evolved to reduce it. One important
mechanism of noise reduction for transcription factors is
negative autoregulation, in which a gene product repress-
es its own rate of transcription. Negative auotregulation
occurs frequently in E. coli but, we find, occurs much more
rarely in S. cerevisiae, D. melanogaster and humans. Whilst
there are a great many important differences in the
genetic architectures of these organisms, they tend to
share, with the exception of negative autoregulation,
similar profiles of network motifs. This makes the discrep-
ancy in the degree of negative autoregulation all the more
striking, as it lacks any obvious explanation. Our study
presents a potential explanation, by comparing the
evolvability of negative autoregulation as a noise reduc-
tion mechanism in haploids and diploids. We show that, in
diploids, mutations that increase the strength of negative
autoregulation at one gene copy often increase overall
noise in gene expression. This results in under-dominance,
in which heterozygotes are less fit than homozygotes. The
result is that the evolution of negative autoregulation in
diploids is significantly constrained. We verify our results
using a combination of detailed molecular simulations and
evolutionary simulations

Evolution of Negative Autoregulation in Diploids
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highly inter-related. To study the evolution of negative autoregu-

lation for lower intrinsic noise, we equate the fitness of the system

with the amount of intrinsic noise it displays (i.e the ratio of the

variance in gene expression to the mean gene expression level). We

infer selection pressures on the strength of autoregulation, i.e., the

dissociation constant K , by the intrinsic noise of genotypes with

different autoregulatory binding strengths. These are determined by

performing Monte Carlo simulations for a full, molecular model of

transcription, translation and autoregulation (see Methods).

Response time in homozygotes
We first compare the response times of two homogozyotes

whose alleles are identical in every respect except for the

dissociation constant. One homozygote carries two copies of a

resident allele with dissociation constant K1, the other carries two

mutant alleles that have a decreased dissociation constant

K2~K1 exp½{e� (with ew0) and hence stronger autoregulatory

binding. Numerical analysis of the system shows that homozygotes

for the more strongly autoregulating allele (with K2) respond more

quickly than homozygotes for the more weakly autoregulating

allele (with K1, Fig. 2a). This is true up to a value of K&Kopt,

which provides the fastest response time attainable by the system

and hence provides the optimal binding strength. Further

increases in regulation beyond this value are not favoured and

lead to overshooting the optimal binding strength. These results

for diploid homozygotes mirror those obtained for haploids [2]

(see Methods) and show that regulatory interactions between pairs

of identical alleles do not, in themselves, diminish the beneficial

effects of negative autoregulation. Negative autoregulation can

therefore, in principle, function as a mechanism to produce faster

response times in diploids just as it does in haploids.

Response time in heterozygotes
The results above depend on comparing homozygotes for alleles

with different dissociation constants, K1 and K2. The evolution of

negative autoregulation, however, must occur through the

stepwise accumulation of new mutations that are initially rare

and found only in heterozygotes. In order to assess whether

autoregulation can evolve in diploids, we therefore need to

determine whether a mutant allele with a stronger binding site (K2)

will confer a selective advantage to a heterozygote that also carries

a resident allele with a weaker binding site (K1). A mutation will be

favoured and increase in frequency if a heterozygote is able to

respond more quickly to perturbations than a homozygote

carrying two copies of the more weakly binding resident allele.

Numerical analysis of Eqs. 1 reveals that heterozygotes often

have greater response times than homozygotes with the more

weakly binding resident allele. Fig. 2b shows that heterozygotes

Figure 1. Cross-talk in diploid autoregulators. (a) Schematic representation of negative autoregulation when one (left) and two (right) copies of
a gene are present in a cell. In the haploid the amount of negative autoregulation the gene experiences depends on on its own expression level. In
the diploid, two gene copies are present (shown as light gray and dark gray), and the amount of negative autoregulation experienced by each gene
depends on the expression level of both genes combined. If the two gene copies differ from one another in the strength of their transcription factor
binding sites, complex dynamics can arise that are not observed in haploids. (b) IIllustration of variation in the repression function, w(p), with protein
concentration for different Hill coefficients, n~1 (sold line), n~2 (small dashes) and n~5 (large dashes).
doi:10.1371/journal.pcbi.1002992.g001

Evolution of Negative Autoregulation in Diploids
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only have improved response times when the resident allele

binding strength is weak (K pmax [1,2]) or if the effect of a

mutation that increases binding strength is small (e is small). As the

resident allele binding strength increases (i.e. pmax=K increases) an

ever larger range of mutation sizes result in increased heterozygote

response times (Fig. 2b), resulting in under-dominance (i.e.

heterozygote disadvantage). Typicaly mutation sizes e for tran-

scription factor binding sites are in the range 1vev3, [20–22]. In

this range regulatory mutations are subject to under-dominance

even when the resident allele has relatively weak binding strength,

and increasingly so as the binding strength of the resident allele

increases. As a consequence, the maximum binding strength that

can evolve is likely to be significantly lower than in haploids (Fig. 2).

Based on these results, we expect under-dominance to pose a

significant barrier to the evolution of negative autoregulation in

diploids.

To better understand why under-dominance arises in this

system, we calculated the eigenvalues associated with Eqs. 1.

These provide a measure of the rate at which the system returns to

equilibrium following a small perturbation, and allow us to

elucidate the relative contributions of the different alleles to the

response dynamics of the gene pair. The maximal eigenvalue of

Eqs. 1 for a heterozygote, lhetj j, can be expressed as

lhetj j~ lhomj j{ V

p�het

, ð2Þ

(see Methods) where V is the squared difference of the mean

steady state expression levels of the two alleles in the heterozygote

and lhomj j is the maximal eigenvalue of a homozygote with protein

concentration equal to that of the heterozygote at equilibrium, p�het

(see Methods). Eq. 2 says that, even if increasing autoregulatory

binding strength leads to a faster response time in a homozygote,

this advantage is offset in the heterozygote by an amount V=p�het,

which measures how different the expression levels of the two

alleles are (it is analogous to the Fano factor, a measure of the

spread in a probability distribution [3]). As the difference in the

expression of the alleles increases, V=p�het increases from 0 to a

maximum p�het=2.

We can understand why increasing the difference in allelic

expression results in increased response time by considering the

contribution of the individual alleles to the response time of the

gene pair (Fig. 3). The level of negative autoregulation at each

allele depends on the strength of its binding site and the amount of

protein product present in the cell. In a heterozygote, the allele

with the stronger binding site is more strongly suppressed

(compared to the same allele in a homozygote), since there is

more protein available to bind to it. At the same time, the allele

with the weaker binding site is less strongly suppressed compared

to the same allele in a homozygote. As a result, the allele with the

stronger binding site has a faster response time than in a

homozygote, whilst the allele with the weaker binding site has a

slower response time than in a homozygote. However, the overall

effect tends to be to increase the response time of the heterozygote,

because the dynamics of protein expression in the heterozygote are

dominated by the allele with the weaker binding site (Fig. 3).

Evolution of faster response times
Under-dominance for response time occurs across a wide range

of parameter values, but can be avoided if mutations have small

effects on binding site strength (Fig. 2b). To determine whether a

series of mutations with small effect could offer a feasible way for

genes to evolve strong negative autoregulation in diploids, we

carried out simulations of binding site evolution that incorporated

established properties of real binding sites.

Transcription factor binding sites in eukaryotes vary between 5
and *30 nucleotides in length, with an average of 10 nucleotides

[23]. They have a small number of optimal sequences that bind

the transcription factor with maximum affinity [20–22,24,25]. The

binding strength of a site can be expressed as a function of the total

binding energy E of its sequence, so K~exp½{E�. This total

binding energy is generated by the additive contributions of

individual nucleotides to overall binding, E~
P

i ei. Individual

Figure 2. Invasibility of autoregulatory binding sites. The response time of mutant (a) homozygotes and (b) heterozygotes are shown.
Different values of the binding strength of the resident allele, in units of pmax=K (x-axis), are plotted against mutations to binding site strength e of
different size (y-axis). Thus the graphs compare a resident allele, K1 with a mutant allele, K2~K1 exp½{e�. Mutations falling into white region result in
decreased response time in the carrier compared to resident genotype and are favoured by selection; mutations falling into the gray region result in
increased response time and are not favoured by selection. Weak binding occurs when pmax=K 100 [1,2]. Response times were calculated by
numerically integrating Eq. 1 from zero protein concentration to 90% of the equilibrium. The optimal binding strength in these graphs is
pmax=K~1250, corresponding to a background transcription rate kl=cp~10{3 .

doi:10.1371/journal.pcbi.1002992.g002

Evolution of Negative Autoregulation in Diploids
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contributions are set to ei~0 for nucleotides that do not match the

optimal sequence and eiw0 for matched nucleotides [20–22].

Based on these properties, we performed simulations of the

evolution of an autoregulatory binding site under selection for

decreased response time. These took into account the empirical

distribution of binding site length in model eukaryotes and the

variation in contributions to binding strength ei across the binding

site sequence (see Methods). The values of ei were drawn from a

uniform distribution in the interval (0,3). This sampling covers the

empirically estimated range 1veiv3 [20–22]. It also ensures that

mutations of small effect (ev1) occur frequently and so allows for

the possibility that autoregulation could evolve via the accumu-

lation of mutations with small effect. Evolution was started from a

state of minimum affinity (all nucleotides non-optimal) and

proceeded through a series of single nucleotide substitutions. A

mutant was assumed to go to fixation if it resulted in a response

time less than or equal to that of the resident. Simulations were

carried out for both haploids and diploids (for which the response

time of mutants was evaluated in the heterozygote state).

The results (Fig. 4) confirm that under-dominance strongly

constrains the evolution of negative autoregulation in diploids.

Haploids readily evolved binding sites with dissociation constants

close to Kopt. In contrast, the average binding strength in diploids

was around 100 times weaker than Kopt and only a small

proportion of sites reached binding strengths comparable to those

of haploids. This shows that under realistic conditions, diploids will

rarely be able to evolve the level of autoregulation observed in

haploids.
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Figure 3. Response times and allele expression. This figure shows quantitative results for the contributions of different alleles to expression and
to response time. (a) Expression level of the resident allele (black line) and the mutant allele (red line) in the heterozygote relative to the resident
allele in the homozygote. As binding strength increases the resident allele is over-expressed. (b) Response times for individual alleles (time to return
to 90% of the equilibrium expression level) in the heterozygote. The response time of the resident allele (black line) and the mutant allele (red line) in
the heterozygote are shown relative to the response time of the resident allele in the homozygote. The resident allele in the heterozygote shows an
increased response time with increasing binding strength. Mutant alleles in these graphs have dissociation constant K exp½{2�, and the optimal
binding strength in these graphs is pmax=K~1250, corresponding to a background transcription rate kl=cp~10{3 .

doi:10.1371/journal.pcbi.1002992.g003
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Intrinsic noise in diploids
In order to investigate the evolution of negative autoregulation

as a mecahnism to reduce intrinsic noise in diploids, we turned to

stochastic simulations. Intrinsic noise in gene expression occurs

because transcription and translation are inherently noisy

processes: all genes experience constant fluctuations in their

mRNA and protein levels. The greater intrinsic noise associated

with a particular gene, the higher the variance in its expression

level relative to the mean. Therefore, a natural way to characterise

the amount of intrinsic noise associated with a gene is to measure

the ratio of the variance to the mean expression level at

equilibrium (known as the Fano factor) [3]. We performed

molecular simulations that capture transcription, translation and

degredation in the presence of negative autoregulation (see

Materials and Methods). Just as in our analysis of response times,

we compared a resident allele with dissociation constant K1, to a

mutant allele with dissociation constant K2~K1 exp½{e�. We

compared the intrinsic noise (as measured by the Fano factor) in

the resident homozygote to that of the heterozygte and the mutant

homozygote, and thus determined whether under-dominance

occurs in the evolution of negative autoregulation as a mechanism

to reduce intrinsic noise. The results are shown in Fig. 5. We find

once again that under-dominance occurs. Whereas the optimal

binding strength for a single negatively autoregulating binding site

is found to be pmax=K*10, the maximum evolvable binding

strength (i.e that which can evolve without encountering under-

dominance) is found to be pmax=K*1, an order of magnitude

weaker. A similar pattern occurs when steeper Hill coefficients are

considered (Fig. 5). Therefore we conclude that under-dominance

poses a barrier to the evolution of strong negative autoregulation

both as a mechanism to speed response times and to reduce

intrinsic noise.

The effects of mutations to other parameters
To test the generality of our findings, we also considered

variation in other parameters (see SI Fig. S1, S2, S3, S4, S5 and

Text S1). We first relaxed our assumption of a single binding site

and explored the case of Hill coefficients nw1, implying regulation

through multiple, cooperatively acting binding sites. In line with

the effect of increasing binding strength through changes in K , we

find that mutations increasing the Hill coefficient are subject to

under-dominance (see SI Fig. S1, S2 and Text S1). Therefore, a

mutation that increases the strength of negative autoregulation is

subject to the same evolutionary constraints, independent of

whether they increase regulation by changing the dissociation

constant K or the Hill coefficient n.

We also considered variation in the rates of mRNA and protein

degradation (cr and cp) to see whether they provide conditions in

which the effects of under-dominance on autoregulatory binding

strength can be avoided (see SI Fig. S4 and Text S1). Variation in

the rate of mRNA or protein degradation did not remove the

tendency for mutations that increase autoregulatory binding

strength to be subject to under-dominance. However, as has been

pointed out elsewhere [17,26], faster rates of protein degradation
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Figure 4. Evolution of autoregulatory binding sites. Distribution of binding site strength achieved in evolutionary simulations for haploids
(gray) and diploids (white). Hapoids are able to evolve stronger binding than diploids. The histograms shows results of 105 replicate simulations for
each ploidy level. The simulation procedure is described in the main text and the Materials and Methods. The optimal binding strength used was
pmax=K~1250, corresponding to a a background transcription rate kl=cp~10{3 .

doi:10.1371/journal.pcbi.1002992.g004
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result in faster response times, and regulation of protein

degradation can reduce noise. As might be expected, the

constraints we describe on the evolution of response times through

stronger negative autoregulation do not preclude the evolution of

response times through other mechanisms, such as changes in

protein degradation rates.

Discussion

Negative autoregulation is found to occur in 46% of E. coli

transcription factors [1–3,18], but is rare in other species for which

systematic data on transcriptional regulation is available, occurring

in v2% of the known transcription factors of yeast, Drosophila and

humans (see SI, Table S1, S2, S3). We have put forward the

hypothesis that this difference can, at least in part, be explained by

considering the different evolutionary dynamics of autoregulating

genes in haploids and diploids: selection for genes to have a

decreased response time to perturbations favours negative

autoregulation in haploids, but under-dominance tends to prevent

the evolution of stronger autoregulatory binding sites for this

purpose in diploids. This constraint on the evolution of negative

autoregulation in diploids is compelling because it offers a simple

and general explanation for the apparent dearth of the motif in

yeast, humans and flies. Furthermore, it is important to note that

under-dominance is not built into our model but arises as an

emergent property of our analysis of regulatory evolution – an

analysis that simply extends to diploids previous models that have

been shown to provide a good description of regulatory behaviour

in haploids [2,3].

The empirical patterns we present are striking, however it is

important to ask weather they can be explained by other means

than those proposed in this paper. In particular we asked whether

negative autoregulation is truly under-represented in the yeast,

human and Drosophila data sets, as compared to E. coli, or whether

the apparent reduction in the number of negative autoregulators is

due to under-representation of genes with repressive function

generally. To address this we interrogated each dataset to find the

number of transcription factors with documented repressor

activity. These account for 58 factors in humans, 37 in Drosophila,

54 in yeast and 82 in E. coli. If we include only transcription factors

with known repressor function in our analysis, we find that 5 out of

58 (8:6%) genes negatively autoregulate in humans, 3 out of 37

(8:1%) in Drosophila, 3 out of 54 (5:6%) in yeast and 82 out of 138

(59%) in E. coli. Thus, the relative rarity of negative autoregulation

in eukaryotes is not due to a general underrepresentation of

repressive transcription factor effects among the genetic interac-

tions described for these species. Instead, they appear to be a true

property of their regulatory networks. This interpretation is based

on our current knowledge of these networks. E. coli has been more

intensively studied, so we look forward to more complete data on

regulatory interactions in yeast, human and Drosophila, which will

provide a more rigorous test of our hypothesis by enabling us to

better establish the extent of negative autoregulation in eukaryotes.

It is also possible to conceive of experimental work to directly

test our hypothesis that under-dominance constrains the evolution

of negative autoregulation in diploids. This could exploit synthetic

negative autoregulatory loops [1], comparing their regulation in

haploid and duplicated copies. For example, a duplicated version

of the tetracycline repressor-GFP system could be constructed in

E. coli and expression dynamics monitored in cells that carry

different combinations of wildtype and mutant promoters. Similar

tests would then need to be performed with haploid and diploid

circuits in eukaryotes such as budding or fission yeast, in order to

show generality.

Another approach would be to examine haploid genes in

diploid species and duplicate genes in haploid species. Haploid

genes in a diploid organism should escape the evolutionary

constraint on negative autoregulation. Unfortunately, the data on

Figure 5. Intrinsic noise in gene expression. The figure shows
quantitative results for the intrinsic noise of autoregulating genes, as
measured by the ratio of the variance to mean expression in protein
concentration at equilibrium. (a) Percentage change in the noise of a
heterozygote compared to the resident homozygote. These are shown
for different Hill coefficients, n~1 (black), n~2 (red) and n~3 (blue).
Mutations become deleterious in the heterozygote when pmax=Kw1.
(b) Percentage change in the noise of a mutant homozygote compared
to the resident homozygote. Mutations become deleterious in the
mutant homozygote when pmax=K is about 10. The graphs show the
results of stochastic simulations (see Materials and Methods) for
parameter values typical for transcription factors [3], kr~0:01s{1 ,

kp~0:17s{1 , kl~0:001s{1 , cr~
1

120
s{1 and cp~

1

3600
s{1 . The resi-

dent homozygote has binding strength pmax=K (as indicated by the x-
axis), mutations are of size e~2.
doi:10.1371/journal.pcbi.1002992.g005
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genetic regulation are too sparse to test this prediction with any

degree of rigor. The only candidate for a haploid gene in our

dataset is the human Y-linked transcription factor Sry (see SI

Table. S3). However, its mode of regulation (positive or negative)

is unknown. Duplicate genes in haploids offer a better prospect as

they are far more common [8]. Our model implies that in

haploids, divergence in the expression levels of negatively

autoregulating duplicates will tend to slow the response time of

the pair. This is because expression divergence will tend to

increase the response time in exactly the same way as we have

described for heterozygotes in diploid cells. So negative autoreg-

ulating, multi-copy genes in haploids may be subject to

evolutionary constraints similar to those we have described for

diploids. The evidence for this is inconclusive. Negative autoreg-

ulating duplicates in E. coli are not more common than duplicates

of other genes [8]. This is despite the prediction that they should

be more common as they suffer less from the deleterious effects of

increased dosage following duplication [8]. However, this test is

not particularly strong as the evolutionary dynamics of duplication

and divergence are complex [27], so simple predictions are not

without alternative explanations.

An alternative hypothesis to the one analysed here is that

eukaryotes experience different types of noise, and accordingly

have different mechanisms for dealing with it, making negative

autoregulation unnecessary. There are several points worth

noting. The use of response time as a measure of fitness makes

our model quite general, because all cells have to deal with large

perturbations, such as occur across the cell cycle. The speed with

which the concentration of a transcription factor returns to

equilibrium, and the regulatory dynamics allowing it to do so, are

important across all levels of biological complexity. Although our

model captures the response time to perturbations and the amount

of intrinsic noise associated with a gene [3], it does not capture

other, extrinsic sources of noise. In particular, eukaryotes tend to

be affected by ‘‘input noise’’ that results, for example, from the

stochastic ON-OFF switching occurring in eukaryotic cells

[17,28]. Previous work shows that this is best dealt with by

positive autoregulation, not negative autoregulation [17,28,29].

However, positive autoregulation does not feature any more

prominently than negative autoregulation within the regulatory

networks of the three eukaryotes we analysed, with 9 instances in

yeast, 16 in humans and 11 in Drosophila. These figures are not

comparable to the frequency of negative autoregulation in E. coli,

indicating that we are not simply observing a shift in the

importance of different types of perturbations.

It is possible that eukaryotes deal differently with the kind of

perturbations that require negative autoregulation in prokaryotes.

Eukaryotes may be able to achieve negative autoregulation

through multiple, weak autoregulatory binding sites, along with

cooperation (see Figs. S1, S2). Our work shows that the evolution

of strong cooperative autoregulation is subject to under-domi-

nance (Fig. S1), but we find that the evolution of multiple, weak

autoregulatory binding sites (Fig. S2) is less constrained. Since

weak binding sites would likely be under-represented or absent

from systematic datasets, it is possible that diploids achieve

negative autoregulation in this way, and a study based on human

sequence conservation suggest that autoregulatory binding sites

are quite widespread [30]. Eukaryotes may also achieve negative

autoregulation through mechanisms other than direct transcrip-

tion regulation, for example, through changes in local chromatin

structure or covalent changes in the protein structure of

transcription factors. As these regulatory mechanisms are less

likely to generate cross-regulation that occurs in diploid transcrip-

tion regulation, they may not to be subject to under-dominance.

Finally, it is important to reiterate that our study is only concerned

with the evolution of negative autoregulation for noise reduction

and faster response times. Genes can achieve noise reduction

through other means than autoregulation, and autoregulation can

be used for other purposes than noise reduction [31–33]. We do

not suggest that eukaryotes are exempt from the problem of noise.

We do suggest that diploid gene networks, in contrast to those of

haploids, must seek a different solution to the same problem.

Conclusion
We have put forward the hypothesis that regulatory interactions

between homologous genes can generate deleterious effects that

constrain the evolution of negative autoregulation. The predictions

of our model show that the high incidence of autoregulation in E.

coli and the dearth of negatively autoregulating genes in yeast, flies

and humans can be reconciled by taking into account a simple

biological attribute—ploidy. Importantly, the difference between

haploid and diploid regulation dos not appear to be a mere correlate

of the prokaryote-eukaryote divide. This was already suggested by

the finding that the genetic networks of E. coli and yeast are—with

the exception of their use of autoregulation— very similar [11].

More generally, our work demonstrates that regulatory evolu-

tion can be considerably complicated by the presence of multiple

copies of a gene in a cell, as is typically the case for eukaryotes. By

explicitly considering the evolution of regulatory interactions, we

have highlighted constraints that would not be evident from an

analysis of the functional properties of an existing regulatory

interaction in isolation—strong negative autoregulation quickens

the response of genes to perturbation, but it is hard to evolve for

this purpose due to under-dominance. This evolutionary perspec-

tive needs to be absorbed into attempts at unravelling the function

of regulatory networks in higher organisms, a key problem for

systems biology.

Methods

Monte-Carlo simulations
We used simulations of the molecular dynamics within a cell to

determine the amout of intrinsic noise of autoregulating genes in

diploids. A model that tracks the number of mRNA and protein

molecules for a negatively autoregulating gene within a haploid

cell is described in [3]. We generalised this to account for diploidy.

The state of the system is described by the number of mRNA

molecules ri, and the number of protein molecules pi produced

from the two alleles i[f1,2g. The probability of a state

fr1,r2,p1,p2g is specified by the joint probability distribution

nr1,r2,p1,p2
(t). The transition probabilities for the system to move

between states due to changes in r1 and p1 (and, analogously, due

to changes in r2 and p2) are given by

fr1,r2,p1,p2g {
klzw1(p)
{{{? fr1z1,r2,p1,p2g,

fr1,r2,p1,p2g {
r1kp
? fr1,r2,p1z1,p2g,

fr1,r2,p1,p2g {
r1cr? fr1{1,r2,p1,p2g,

fr1,r2,p1,p2g {
p1cp? fr1,r2,p1{1,p2g,
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where p~p1zp2, klzw1(p) is the rate at which mRNA molecules

are transcribed from allele 1, cr is the rate of mRNA degradation,

kp is the rate at which mRNA is translated into protein and cp is

the rate of protein degradation. As in the ODE model, w1(p) is a

function of the number of proteins p present in the cell, such that

w1(p)~
k0

1z
p

K1

,

where k0 is the maximum rate of mRNA transcription, and K1 is

the dissociation constant of the binding site of allele 1.

To calculate response times we first determined the equilibrium

expression level of the system from the average of 105 replicate

Monte-Carlo simulations. We then reduced mRNA and protein

levels to a fraction a of the equilibrium level. The time for each

replicate to return to equilibrium was measured and the average

across the ensemble used as an estimate of the response time of the

system. In order to determine how response times vary with the

level of perturbation, simulations were run for values of a between

0 and 1 in steps of 0.01.

Simulations of binding site evolution
Binding site evolution was modelled by generating a transcrip-

tion factor binding motif with a length n nucleotides and an

optimal base associated with each nucleotide. As in other models

of TF-DNA binding, when a given nucleotide i was matched for

for the optimal base it contributed an amount ei to binding energy,

otherwise it contributed 0 [20–22].

Binding site lengths were drawn from an empirical distribution

generated from the binding motifs of 454 eukaryotic transcription

factors contained in the JASPAR CORE database [23]. The value

of ei for each nucleotide was drawn from a uniform distribution in

the interval (0,3). The optimal binding strength Kopt was

determined numerically (see Methods), using the values for the

system parameters that are given in the legend of Fig. 4 4. We

excluded from our analysis any binding sites for which the total

binding strength of the optimal sequence was too low to achieve

the fastest response time (i.e., those sequences for which

K~exp½{
P

i ei�wKopt). Evolution started from a state of

minimum affinity (all nucleotides non-optimal) and proceeded

through a series of single nucleotide substitutions. At each time

step, a random mutation was introduced into the binding site

sequence, switching one nucleotide from the non-optimal to the

optimal state. If the mutation resulted in a response time less than

or equal response time of the resident, the mutant sequence was

assumed to go to fixation in the population. Deleterious mutations

that increased response times were assumed to be lost. The

simulation was ended when no further advantageous mutations

were available. Simulations were carried out for both haploids and

diploids (for which response time of mutants was evaluated in the

heterozygote state).

Derivation of response times in haploids
Here we derive results for the response time of a haploid

autoregulating gene. We derive results for the general case in

which autoregulation is described by a Hill function with arbitrary

coefficient n (the analyses in the main text assumes n~1).

The set of ODEs describing transcription and translation of

mRNA and protein at a single autoregulating gene are analogous

to those given for one allele in Eqs. 1 for a pair of autoregulating

genes in a diploid. In order to simplify the analysis of the system

we make the change of variables

s~
r

rmax{rmin

,

q~
p

pmax{pmin

,

t~cpt,

with L~
K

pmax{pmin

and c~
cp

cr

. The dynamics of the system can

then be rewritten as

c
ds

dt
~bzks(q){s,

dq

dt
~s{q,

ð3Þ

where b~
rmin

rmax{rmin

~
pmin

pmax{pmin

~
kl

k0

. In general b%1 since

kl%k0 and

ks(q)~
1

1z
q

L

� �n , ð4Þ

is the rescaled form of the repression function w(p) described in the

main text. Assuming that mRNA decays much faster than protein

[2,3] cp%cr, then c%1, it follows that c
ds

dt
is small relative to

dq

dt
and we can assume that transcription output goes to equilibrium

rapidly. That is, we can take c
ds

dt
&0 and hence that the quasi

equilibrium condition s&bzks(q) holds. Substituting into Eqs. 3,

generates a 2-dimensional system that is well approximated by the

1-dimensional system

dq

dt
~bzks(q){q: ð5Þ

Small perturbations
The Lyapunov exponent associated with Eq. 5 at equilibrium

gives the rate at which the system returns to equilibrium following

a small perturbation. It is given by

l~{ 1z
dks

dq

����
����

� �
: ð6Þ

Eq. 6 is always negative. In what follows we will discuss only the

magnitude of the Lyapunov exponent lj j with the understanding

that this quantity is always negative and therefore describes the

rate at which the system returns to equilibrium. From Eq. 6 it is

clear that a mutation which increases
dks

dq

����
���� will always serve to

decrease the Lyapunov exponent and thus increase the rate at

which the system converges to equilibrium.

Evolution of a new binding site
We compare a wild-type binding site, with dissociation constant

L1, to a mutant binding site with dissociation constant L2 such

that L1wL2 —meaning that the mutant has a stronger binding

site than the wild-type. At equilibrium, the protein concentrations
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satisfy

q�1~bz
1

1z
q�1
L1

� �n ,

q�2~bz
1

1z
q�2
L2

� �n :

ð7Þ

It is simple to show that q�1wq�2 by differentiating, with respect to

L. Thus, strengthening the autoregulatory binding site (i.e.,

decreasing L) will lead to a decrease in the equilibrium protein

concentration, and so with L1wL2 we always have q�1wq�2. To

calculate the value of Lopt for which lj j is maximum, we note that

dks

dq

����
����~ n

q
ks(q)(1{ks(q)):

At equilibrium q~q�~ks(q
�)zb, and the Lyapunov exponent

can be written as

lj j~ 1z
n

q�
(q�{b)(1{q�zb)

� �
,

and we can find the value of q� that results in the largest Lyapunov

exponent. This is given by

q�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(1zb)

p
:

Translating this back into units of protein concentration, this

means that the fastest response to small perturbations about

equilibrium occurs when

p�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmaxpmin
p

: ð8Þ

Thus, mutations which increase the strength of negative

autoreguation, (and therefore decrease K ), will decrease response

time provided the equilibrium protein concentration is

p�w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmaxpmin
p

, as discussed in the main text. The optimal

binding site strength Kopt can be determined by calculating the

value of K which gives the optimal equilibrium protein

concentration of Eq. 8. In the general case of arbitrary n, Kopt

cannot be found analytically, but it can always be found

numerically.

The derivation of Kopt presented here is based on the

assumption that perturbations of the system are small, in which

case the dynamics of the system are well captured by its Lyapunov

exponent. The optimal binding strength under perturbations of

arbitrary size can be obtained by numerical integration of the

system. As might be expected, the values Kopt obtained in this way

are similar to those calculated for small perturbations above.

Derivation of response times in diploids
For diploids we proceed in the same way as for a single gene,

and obtain a 1-D system for expression of a pair of alleles (with

dissociation coefficients Li and Lj )

dqij

dt
~2bzksi

(qij)zksj
(qij){qij , ð9Þ

where

ksi
(qij)~

1

1z
qij

Li

� �n :

Evolution of a new binding site
We now consider the response time of a pair of autoregulating

alleles in a diploid. When an organism is homozygous, both

binding sites have the same dissociation constant, L1 and Eq. 9 is

of the same form as Eq. 5 for a haploid, and the results for

response time in haploids can be applied. When an organism is

heterozygous however, the results for haploids do not hold. We

compare the Lyapunov exponents of a heterozygote with

dissociation constants L1 and L2, where L2vL1, to a resident

homozygote in which both binding sites have strength L1. At

equilibrium the total protein concentrations satisfy

q�11~2bz
2

1z
q�11

L1

� �n ,

q�12~2bz
1

1z
q�12

L1

� �n z
1

1z
q�12

L2

� �n ,

ð10Þ

where q�11 is the equilibrium protein concentration of the (resident)

homozygote and q�12 is the equilibrium expression of the (mutant)

heterozygote. It is simple to show that q�11wq�12. by differentiating

Eq. 10 with respect to L2.

Small perturbations
Following a small displacement from equilibrium, under-

dominance will occur if the heterozygote has a smaller Lyapunov

exponent than the homozygote. The maximal Lyapunov exponent

of the system is given by

l11j j~1z
2n

q�11

q�11

2
{b

� �
1{

q�11

2
zb

� �
, ð11Þ

for the homozygote, and

l12j j~1z
n

q�12

q�1,12{b
� �

1{q�1,12zb
� �

z
n

q�12

q�2,12{b
� �

1{q�2,12zb
� �

,

ð12Þ

for the heterozygote, where qi,ij referes to allele i in a diploid

carrying alleles i and j. We can observe that the squared difference

in the mean allele expression, V , is given by

V~ q�1,12{
q�12

2

� �2

z q�2,12{
q�12

2

� �2

, which can be expanded to

give
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V~(q�1,12)2z(q�2,12)2{
q�12

2
:

Substituting this expression for V in Eq. 12 we find

l11j j~1zn 1{
q�11

2
z2b{

2b

q�11

(1zb)

� �
, ð13Þ

l12j j~1zn 1{
q�12

2
z2b{

2b

q�12

(1zb){
V

q�12

� �
: ð14Þ

Note that Eq. 14 is of the same form as Eq. 13, with an

additional term that depends on the ratio of the squared difference

in allele expression, V to the total expression. We can define lhom

to be the Lyapunov exponent associated with a homozygote of a

given equilibrium expression and lhet to be the Lyapunov

exponent associated with a heterozygote of the same equilibrium

expression and obtain Eq. 2 of the main text (with n~1).

Supporting Information

Figure S1 Steeper repression functions further limit the range of

mutations that escape under-dominance. The x-axis shows the

geometric mean of the binding strength across the set of resident

alleles, in units of pmax=K , and the y-axis shows the size of mutations

to binding site strength, as described in the main text. In the gray

region, mutations to one of the n binding sites result in increased

response time in the mutant compared to the resident alleles. In the

white region mutations result in decreased response time in the

mutant compared to the resident alleles; only mutations that fall

within the white region can invade a population. Mutant invasibility

is shown for Hill coefficients n~2 (left), and n~5 (right). Weak

binding occurs when pmax=K 100. Response times are calculated by

numerically integrating Eq. 1 from zero protein concentration to

90% of the equilibrium. The optimal binding strength in these

graphs is pmax=K~1250 corresponding to a background transcrip-

tion rate kl=k0~10{3.

(PDF)

Figure S2 Increasing the Hill coefficient leads to slower response

times unless binding strength is weak. The x-axis shows the

binding strength in the resident allele, in units of pmax=K , and the

y-axis shows the ratio of response times for a heterozygote in which

one allele has a Hill coefficient n~1 and the other has a Hill

coefficient n~2, to a homozygote with Hill coefficient n~1.

Below the gray dashed line, mutations result in increased response

time in the mutant compared to the resident allele. Weak binding

occurs when pmax=K 100. Response times are calculated by

numerically integrating Eq. 1 from zero protein concentration to

90% of the equilibrium. The optimal binding strength in these

graphs is pmax=K~1250 corresponding to a background tran-

scription rate kl=k0~10{3.

(PDF)

Figure S3 Changing the background rate of transcription does

not substantially alter the impact of under-dominance on

mutations of size ew2.The x-axis shows the binding strength in

the resident allele, in units of pmax=K , and the y-axis shows the size

of mutations to binding site strength, as described in the main text.

In the gray region, mutations result in increased response time in

the mutant compared to the resident allele. In the white region

mutations result in decreased response time in the mutant

compared to the resident allele; only mutations that fall within

the white region can invade a population. Mutant invasibility is

shown for background transcription rates kl=k0~10{2 (left), and

kl=k0~10{4 (right). Weak binding occurs when pmax=K 100.

Response times are calculated by numerically integrating Eq. 1

from zero protein concentration to 90% of the equilibrium.

(PDF)

Figure S4 Changing degradation rates changes response times

but does not allow autoregulation to escape under-dominance.

The figure shows results for the response time of autoregulating

genes, to return to 90% of their equilibrium. (left) Percentage

change in the response time of a heterozygote compared to the

resident homozygote. These are shown for different protein

degradation rates coefficients, cp~
1

3600
(black), cp~

1

36000
(red)

and cp~
1

360
(blue). Mutations become deleterious in the

heterozygote when pmax=Kw1. (right) Percentage change in the

response time of a mutant homozygote compared to the resident

homozygote. Mutations become deleterious in the mutant

homozygote when pmax=K is about 10. The graphs show the

results of stochastic simulations (see Materials and Methods) for

parameter values typical for transcription factors, kr~0:01s{1,

kp~0:17s{1, kl~0:001s{1 and cr~
1

120
s{1. The resident

homozygote has binding strength pmax=K (as indicated by the x-

axis), mutations are of size e~2.

(PDF)

Figure S5 Invasibility of autoregulatory binding sites. The

response time of mutant (left) homozygotes and (right) heterozy-

gotes are shown. Different values of the binding strength of the

resident allele, in units of pmax=K (x-axis), are plotted against

mutations to binding site strength e of different size (y-axis). Thus

the graphs compare a resident allele, K1 with a mutant allele,

K2~K1 exp½{e�. Mutations falling into white region result in

decreased response time in the carrier compared to resident

genotype and are favoured by selection; mutations falling into the

gray region result in increased response time and are not favoured

by selection. Weak binding occurs when pmax=K 100 [1,2].

Response times were calculated by numerically integrating Eq. 1

from zero protein concentration to 99% of the equilibrium. The

optimal binding strength in these graphs is pmax=K~1250,

corresponding to a background transcription rate kl=cp~10{3.

(PDF)

Table S1 Autoregulation in Saccharomyces cerevisiae [10,13,14,34–

36].

(PDF)

Table S2 Autoregulation in Humans [13–15,35,36].

(PDF)

Table S3 Autoregulation in Drosophila [12–14,35,36].

(PDF)

Text S1 The supporting information text describes the methods

used in constructing Tables S1, S2, S3 from curated databases,

and in creating Fig. S1, S2, S3, S4, S5 by relaxing the assumptions

of the model outlined in the main text.

(PDF)
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33. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global

quantification of mammalian gene expression control. Nature 473: 337–42.

34. Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, et al. (1997) Genetic and
physical maps of saccharomyces cerevisiae. Nature 387: 67–73.

35. Kersey PJ, Lawson D, Birney E, Derwent PS, Haimel M, et al. (2010) Ensembl
genomes: extending ensembl across the taxonomic space. Nucleic Acids Res 38:

D563–9.
36. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, et al. (2011) Ensembl

biomarts: a hub for data retrieval across taxonomic space. Database (Oxford)

2011: bar030.

Evolution of Negative Autoregulation in Diploids

PLOS Computational Biology | www.ploscompbiol.org 12 March 2013 | Volume 9 | Issue 3 | e1002992


