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Abstract

The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of
force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical
behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the
distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin
immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This
allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions,
including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability
is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of
coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect
constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a
molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins
in general.
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Introduction

Cellular functions such as growth, motility, and signaling are

tightly coupled with mechanical forces [1–3]. Proteins play a

pivotal role in such mechanically guided processes, as robust

elements bearing cellular stress, and as mechanosensors transduc-

ing the mechanical signal into a biochemical response [4]. A

fundamental question is how a protein of mechanical function has

been evolutionarily designed to withstand and transmit high levels

of stress. Analysis and design of macroscopic structures such as

cells, organs, or implants is routinely guided by the calculation of

force propagation to predict and improve mechanical response

[5,6]. However, how force propagates through the microscopic

structure of proteins upon external stress is currently unknown.

Mechanical response of proteins can be directly revealed by

measuring forces for protein unfolding [7–9], activation [2,10],

and enzymatic action [1,11]. For different titin immunoglobulin

(IG) domains and engineered variants thereof, unfolding forces

have been measured and rupture mechanisms inferred [12–16].

These data provide important insight into the load-bearing

structural motifs of IG. A more fundamental question is how

mechanical load distributes through a protein. It is an obvious

assumption that force propagates through the structure to parts

which, being distant from the application site of the perturbation,

cannot be straightforwardly inferred from unfolding forces.

Currently, there is no direct way at hand to explain the frequent

experimental observation of site specific changes in dynamics (see,

e.g., [17]). In this study we present a new method to detect the

mechanical network sustaining load within a protein from

molecular dynamics simulations. We apply the force distribution

analysis to I27, an IG domain of the muscle protein titin and one

of the most robust protein domains known. The atomic resolution

force distribution analysis relies on an accurate three dimensional

picture of atomic interactions. We have determined the first high-

resolution crystal structure of I27, a cornerstone for the

interpretation of force spectroscopy experiments and crucial for

our analysis.

The sparse mechanical network spanning the I27 structure is

reminiscent of the molecular networks revealed by statistical

coupling analysis on multiple sequence alignments [18,19]. Such

networks of evolutionarily coupled residues have been proposed to

reflect dynamic or energetic couplings along signaling pathways in

proteins [20–22]. A direct relation of coevolution with molecular

behavior, however, remains to be found. We compare the

obtained pattern of force propagation with a network of coevolved

residues found in the IG domain family, and find strongly

coevolved residues to play a dominant role in force distribution.

We therefore suggest internal strain propagation to present a first

microscopic interpretation of a coevolved network in a protein

with mechanical function.
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Results

Overall Structure of I27
The crystal structure of wild-type human cardiac muscle I27

(residues 5253–5341, renumbered to 1–89 for simplicity) has been

solved to 1.8Å by molecular replacement, Figure 1A. There are six

I27 molecules in the asymmetric unit arranged around the local

non-crystallographic 6-fold axis, with the N-termini of I27 closest

to the local axis and the C-termini pointing outward. The entire

amino acid sequence from residue 1–89 is visible in electron

density (except L89 in chain E), as well as an additional 3–4

residues left from the TEV cleavage site after the N-terminal H6-

tag (-AMA- in chain A; none in chain B; and -GAMA- in chains

C–F, see Methods). The crystal structure reveals the well-known

IG-like fold of the titin I-band IG domains and closely resembles

the structure of the average NMR ensemble published earlier

(PDB code 1TIT [23]); with 1.23Å root mean square distance

(RMSD) between Ca carbons from all superposed residues (Figure

S1). The largest distance (3.66Å for G53) is explained by the

presence of a drastically different turn conformation between

strands D and E, removing this turn (residues 52–55) reduces

global RMSD to 1.05Å. As a comparison, the RMSD between

non-crystallographic symmetry-related chains in the I27 crystal

structure ranges from 0.16–0.35Å. Residues involved in the H-

bond pairing across the A’G strand have RMSD between 0.6–

1.4Å (res. 11–16) and 0.5–1.5Å (res. 78–87). After globally fitting

to the wild-type backbone, the RMSD at the position of the two

mutations encountered in the NMR structure (A42T, T78A) is 0.4

and 0.6Å, respectively. Crystallographic refinement statistics are

given in Tables S3 and S4.

The present crystal structure of I27 represents an improved

model for further studies because it does not contain potential

structural perturbations introduced by unwanted mutations, and

due to the high quality diffraction data, with overall coordinate

error of 0.15Å. Overall, there are more and shorter H-bonds in the

crystal structure comparing to the previously described NMR

structure [23]. An additional H-bond between E3 and S26 and a

stronger bond between K6 and E24 are found between strands A

and B. While the hydrogen bonding between the A’ and G strand

largely overlaps, the interaction between Y9-N83 is absent but

E12-K87 are within interaction distance, the latter supposedly

adding resistance. Of the two residues mutated in the NMR

structure, T78 (first residue of strand G) makes a side chain H-

bond interaction with the carbonyl oxygen of L2 (preceding strand

A) which is absent in the NMR structure and which could

potentially add further mechanical resistance to I27. The

implications of the differences observed between the interaction

networks of both I27 structures for atomic force microscopy (AFM)

and molecular dynamics studies are obvious, since site-directed

mutagenesis of the residues involved in those interactions has been

used as a tool to discern the mechanical properties of I27.

Force Distribution
To elucidate distribution of mechanical stress in the titin I27

domain, we directly calculate forces Fij between each pair of atoms

i and j during MD simulations of the high-resolution crystal

structure of I27 described above. Forces are calculated individually

for bonded and non-bonded (electrostatic and van der Waals)

interactions below the cutoff distance using the interaction

potentials defined by the OPLS [24] force field. By considering

pairwise instead of atomic forces, forces do not average to zero

over time. The propagation of the externally applied mechanical

perturbation is measured as the change in pairwise forces upon

applying external stress, DFij , defined as the difference between

the average force in the strained state and the relaxed state as

obtained from equilibrium and force clamp (FCMD) [25]

molecular dynamics simulations, respectively. In the strained

state, as in vivo, force is applied to the termini of I27 in opposing

direction. It remains controversial if IG domains in muscle titin

ever fully unfold under physiological forces [26–28]. We here are

interested in the force propagation within the fully folded protein,

the physiologically relevant force-bearing structure. To this end,

we apply a constant force of 300 pN, low enough to keep the

protein structure intact. Importantly, no break in the AB strand,

which is known as the first rupture event during I27 unfolding

[29], was seen during 20 ns of simulation time. The heavy atom

RMSD between average equilibrium and FCMD structures was

,1.6Å for all simulations. For convergence, forces were averaged

over ten equilibrium and eight FCMD trajectories, each 20 ns in

length, respectively. To reduce noise further, mainly resulting from

slow side chain fluctuations, data were normalized as described in

Methods. Dimensionless normalized changes in force are denoted

Df.

Regarding the previously established importance of of inter-

sheet hydrogen bonding for mechanical robustness [29], the highly

resolved non-bonded interactions in the crystal structure are

important for the atomic detail force propagation network we are

analyzing here. Figure 1B shows the normalized force distribution

along the protein sequence, Dfj , obtained from summing over all

changes of pairwise forces of atom j upon stress application. The

high signal-to-noise ratio indicates statistical significance of the

data, with a remaining average error ,35 of normalized force

estimated from equilibrium data. Importantly, the force distribu-

tion pattern forms a spatially connected network of residues

(Figure 2A and Video S1). The overwhelming majority of force

signals are part of a network spanning the protein between the

stretched termini, suggesting that the network indeed reflects

propagation of the external stress into the structure. Remarkably,

the mechanical network is sparse in the sense that large parts of the

protein including strands C, D, E and F are not part of the

Author Summary

Many biological processes such as cell proliferation and
signaling are guided by mechanical stress. Proteins as the
molecular machinery behind these processes are reacting
to or withstanding mechanical forces in specific ways. How
mechanical stress propagates through proteins to induce a
certain mechanical response is currently unknown. We
here present a new method that detects force distribution
in proteins, reminiscent of computational approaches used
to engineer macroscopic structures. The method is based
on molecular dynamics simulations during which we
calculate changes in interatomic forces, here caused by
pulling the protein. We apply this method to the extremely
robust immunoglobulin domain of the muscle protein titin
and obtain the mechanical network of stress-bearing
elements spanning the protein scaffold. Mutations in this
region were shown to result in a significant loss of
mechanical stability. We then ask how the remarkable
mechanical stability has been designed during evolution.
To this end, we compare the force distribution network
with a network of coevolved residues found in the
immunoglobulin family. Both networks show a remarkable
overlap, thereby suggesting that the observed stress
propagation pattern reflects constraints used during
evolution to render this protein mechanically robust.

Force Distribution in Immunoglobulin
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network and thus apparently play no direct role in mechanical

stability (Figure 2B).

The pattern is found to be highly anisotropic, with the terminal

strands passing the tension along the strands adjacent to the force

application sites and partially into the protein core through a

connected network of mainly hydrophobic interactions spanning

between I2, V4, N77, I23, L25, V30, W34, H56, F73 and T78

from the N-terminal side and V11, A19, F21, L60, M67, and L84

from the C-terminal side. We observe very different mechanisms

of force distribution for the A’G and AB strands (Figure 2C). The

A’G strand, known to be crucial for mechanical resistance [29],

forms a mechanical clamp. Under load it shows a strong increase

in interstrand H-bond (blue) and side chain forces (red). This is

accompanied by a stiffening of the strand and neighboring residues

as reflected by decreased root mean square fluctuations (Figure

S2). In contrast, the AB strand, even though it has been shown to

Figure 1. Crystal structure and force propagation in I27. (A) Crystal structure of I27 (PDB-entry 1WAA). Mechanical load during MD simulations
is applied to I27 by pulling the termini with a constant force as indicated. All protein structures were plotted using PyMOL [61]. (B) Signal-to-noise
ratio of atomic forces after mechanical loading and equilibration. The dimensionless normalized force signal, Df, per atom after summing over all
atom pairs is measured by the difference in atomic forces between strained and relaxed state (blue), and is compared to noise, estimated from
normalized differences between two sets of equilibrium trajectories (gray). (C) The raw force signal, DF, with noise plotted in gray. Comparison with
the normalized signal in (B) shows that the overall force distribution pattern is not affected by normalization, see Methods for details.
doi:10.1371/journal.pcbi.1000306.g001

Force Distribution in Immunoglobulin
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be the first point of rupture of the IG fold, does not show any

major contribution to mechanical stability (Figure 2C), in

agreement with experimental data [14]. Instead, force applied at

the N-terminus is directly deflected into the protein core via

mainly hydrophobic side chain interactions (red edges) between

strands A and G, bypassing the AB interstrand hydrogen bonds,

what again involves stiffening (Figure S2). This illustrates that

rupture points are not necessarily involved in taking up large

conformational load. Interestingly, signal propagation via side

chain interactions involving stiffening of connected residues was

previously observed experimentally in another globular protein

[17]. A number of structural features, such as the A’G interstrand

hydrogen bonds or the interactions involving T78, which was

absent in the NMR structure due to the T78A mutation, are part

of the force-bearing network. The determination of a refined

crystal structure thus served as an important basis for our force

distribution analysis.

Comparison of the Mechanical with the Evolutionary
Network in IG Domains

Sparse networks which span protein molecular structures in a

spatially connected and anisotropic way have been previously

observed for evolutionary couplings [18,19]. An obvious assump-

tion is that coevolved and therefore presumedly functionally

important residues are involved in distributing and sustaining

mechanical stress in IG domains. We tested this by comparing the

force distribution pattern with evolutionary data from the IG

domain family. Statistical coupling analysis (SCA) [18,19] was

performed to identify coevolved residues. As a measure of

coevolution, the impact of a perturbation in the amino acid

frequency at one site in a multiple sequence alignment (MSA) on

the frequency at another site is used, here termed statistical

coupling energy DDE. We constructed a MSA denoted IGtitin

(Dataset S1) containing sequences from the 152 IG domains found

in human muscle titin. We thereby restricted the sequences to

those evolved for the specific function of bearing mechanical load.

Mapping of the highly coupled residues on the I27 structure

shows many of the couplings to span a spatially connected network

between physically close residues residing in the protein core. In

contrast, a subset of coevolved residues was found to couple

distantly. It apparently belongs to a conserved IG-IG interaction

interface, which becomes obvious when mapping coevolved

residues onto two adjacent IG domains (PDB-entry 2RIK [30],

Figure 3B). Indeed principal component analysis on the pertur-

bation matrix (see Methods) clearly separates a subset from the

bulk that coincides with the interaction interface, namely residues

G16, E27, P28, M67, G69, N77, and S80 (Figure 3A). For direct

comparison with the force distribution analysis, which was

restricted to interactions within one domain, we exclude these

interface residues from further analysis.

We compared the evolutionary network with the force

distribution pattern in I27; hereto we restricted our analysis to

inter side chain forces, Df SC (see Methods), as evolution mainly

optimizes side chains. A distinct group of residues with highest

evolutionary couplings, residues I23, V4, F73, I2, V30, and L84,

were found to mainly couple among each other and to clearly

separate from the bulk, as indicated by hierarchical clustering

analysis on the coevolution data (Figure 4A) Remarkably, these

evolutionarily strongly connected residues show a very strong

Figure 2. Force distribution in I27. (A) Graph representation of changes in interatomic forces, Dfij , observed upon mechanical perturbation of I27.
Edges connect non-bonded atom pairs with Dfijw4. The protein surface is shown in gray. A 3D animation of this figure is available as Video S1. (B)
Changes in atomic forces, Df, mapped onto the protein structure. Colors range from blue for elements outside the mechanical network with Df = 0 to
red for force bearing elements with high Df. (C) Graph representation of Dfij displayed as edges as in (A). I27 is shown as cartoon. Edges connecting
main-chain atoms are colored blue, those connecting side chain atoms are colored red. Mechanical load at the C-terminus is mainly taken up by
main-chain interactions around the A’G strand, whereas at the N-terminal side forces are primarily propagating into the protein core by side chain
interactions.
doi:10.1371/journal.pcbi.1000306.g002

Force Distribution in Immunoglobulin

PLoS Computational Biology | www.ploscompbiol.org 4 March 2009 | Volume 5 | Issue 3 | e1000306



response to the applied mechanical perturbation, being among

those showing highest changes in force distribution values

(Figure 4B). This suggests that evolutionary and force distribution

analysis show an overlapping set of residues which are crucial for

mechanical robustness (Figure 4C). The overall comparison of

evolutionary couplings with inter-residue forces of all IG residues

indicates a connection of the evolutionary with the mechanical

network as well. DDE and Df SC show a significant correlation,

shown in Figure S3A, with a correlation coefficient of R = 0.52

(t = 5.56 and pv10{7 for 86 data points as calculated using

student’s t-test). This correlation is remarkable, regarding that the

two data sets, from molecular simulations and sequence analysis,

are completely independent. Furthermore, constraints acting on

the evolution of proteins can be expected to be of manifold nature

and thus to blur the correlation. One of these additional

constraints is the optimization of the IG-IG interaction interface.

Indeed, excluding the interfacial residues (see above) increases the

correlation coefficient to R = 0.60 (with t = 6.62 and pv10{7 for

79 data points). For the same reason, the correlation is expected to

weaken when including sequences into the alignment that are not

necessarily designed to bear mechanical load. To test this, we

constructed a second more diverse alignment denoted IGdiverse

(Dataset S2), containing 282 sequences with high similarity to the

I27 structure. Results from coupling analysis for

IGtitin and IGdiverse overlap (Figure S3B), suggesting that the

observed conservation pattern is robust with regard to the MSA.

We observe a lower correlation for IGdiverse than for IGtitin (0.37

vs. 0.52) corroborating our conclusion that the overlap found

between evolutionary couplings and force distribution reflects an

optimization for mechanical robustness of IG domains. Similarly,

overlap of Df SC with overall residue conservation is low (R = 0.18),

suggesting that it is the network rather than individual residues

that are important for mechanical stability.

An alternative explanation for the observed correlation could be

packing interactions of core residues that give rise to both, high

evolutionary dependencies and high inter-residue forces. In

particular, coevolution has been suggested to primarily reflect

packing interactions or constraints from structural integrity or

thermodynamic stability. We however find the correlation

between DDE and packing density, measured as the number of

close atomic contacts in I27 (within a 6Å cutoff), to be low, with

R = 0.23. The correlation of DDE with Df SC of R = 0.52 is

significantly higher (p,0.05), and thus can barely, if at all, be

explained by packing density. Similarly, changes in thermody-

namic fold stability of I27 upon point mutation, as measured

previously for 29 residues [31], do not correlate with DDE

(R = 0.19). Instead, we find the fold stability to correlate

significantly with the number of close contacts (R = 0.71).

Consequently, while thermodynamic stability can be largely

explained by core packing constraints, the evolutionary couplings

can not be considered to reflect a simple spatial relationship or

thermodynamic constraints. While mechanical and evolutionary

couplings are mainly found between residues vicinal in the

structure, vicinity in turn is not an indicator for strong coupling.

Unfolding Simulations of I27 Mutants
By force distribution and coevolution analysis, we have

identified the force-bearing scaffold of IG domains. The analysis

predicts these residues to be crucial for mechanical function. We

therefore expected a loss in mechanical stability upon their

mutation, and directly tested this by forced unfolding of I27 in silico

mutants in force-probe MD (FPMD) simulations [25].

We here considered the force distribution of the native state as

the physiologically most relevant state of IG. We thus monitored

force changes for the rupture of the AB strand, the primary

unfolding event [29], and of the A’G strand, whose rupture is

visible as the highest force peak in AFM experiments, upon in silico

point mutations. We selected the nine residues with highest Df SC

values, which include the cluster of highly coevolved residues, and

performed at least 10 independent FPMD simulations for each

candidate after mutation to alanine. For most of the mutants we

observed statistically significantly lower forces (p,0.01 in student’s

t-test, Table S1) required to unfold into the intermediate state,

Figure 5A and 5B. Interestingly, three of the residues with high

Df SC instead show little change in mechanical resistance upon

mutation. In addition, none of the mutations gave rupture forces

smaller than 500 pN. This may reflect the robustness of the

mechanical network to local perturbations, allowing it to re-

balance load. We performed six control simulations of residues

that featured low Df SC values despite their location in the protein

core. As expected, none or only minor decreases in rupture forces

are found, with an overall destabilization significantly lower than

for the nine selected high Df SC candidates (p,0.03, Figure 5B).

Several residues located in the A’G strand show a high degree of

force distribution into the protein core, including F21 and L84, as

indicated by their high Df SC signal, in contrast to the common

notion of the primary importance of interstrand hydrogen

bonding. Indeed, removing the hydrophobic contacts of F21 and

L84 results in significantly decreased rupture force of the A’G

strand (Figure 6A). This renders F21 and L84 interesting targets

for further experimental studies and stresses our observation that

specific core interactions are important force-bearing interactions.

Figure 3. Coevolved interaction interface. (A) Principal compo-
nent analysis on the perturbation matrix (see Methods) separates a set
of residues along the first component (gray numbers). (B) Mapping
these residues on the adjacent titin domains I67 and I68 (PDB-Code
2RIK [30]) reveals that they apparently belong to a conserved IG-IG
interaction interface. Interaction interface residues are marked as gray
spheres. Edges connect highly coevolved residues (red spheres) with
DDE.0.7.
doi:10.1371/journal.pcbi.1000306.g003
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Force spectroscopy experiments mainly probe the later step of

unfolding of the intermediate via the C-terminal A’G strand

rupture, since it involves the highest rupture forces [29]. For

validating our FPMD simulations with experimental data, we

monitored rupture forces of this unfolding step. We included

additional in silico mutations for comprehensive comparison with a

series of AFM experiments done by Clarke and co-workers [14].

Our results are in good agreement with their data, with a

significantly decreased rupture force only found for the V13A and

V86A mutants (Figure 6B), but not for the others.

Discussion

We present here the first force distribution network in a protein

at atomic detail, thereby revealing the force-bearing scaffold

rendering I27 mechanically robust. The network is in good

agreement with previous experimental results [12,14] and provides

a basis for the choice of mutants to rationally alter the mechanical

response, even at sites distant from force application. Our force

distribution analysis can be directly tested by force probe

experiments of such mutants, and can in future allow the design

of proteins having specific mechanical stability and response. It

can also help in explaining and engineering stability in biological

as well as synthetic materials, such as silk or polymers. Previous

attempts to detect force distribution in proteins have been

restricted to elastic network models [32–34], which assume linear

elasticity of the interactions. Importantly, we find the non-linear

nature of non-bonded interactions to give rise to stiffening of

structural motifs. Examining the extent of non-linearity in the

mechanical response of IG and other proteins by determining the

Figure 4. Overlap of the mechanical and coevolutionary network. (A) Heatmap of the clustered, symmetric coupling matrix containing DDE
values for each pair of residues, interaction interface residues were excluded. The cluster containing residues important for mechanical stability is
marked in blue (augmented plot). Heatmap colors range from blue for DDE = 0 to yellow for high DDE values. (B) Comparison of evolutionary and
mechanical couplings. Inter-side chain forces Df SC and evolutionary couplings DDE are shown as barplots and sorted in descending order; interface
residues were excluded. The six residues forming a highly connected cluster via evolutionary couplings, colored blue, are found to be among the
highest Df SC values. The average error in the (dimensionless) Df SC values is ,5 as estimated from equilibrium data (Figure 1B). (C) Structural overlap
of the evolutionary with the mechanical network. The six clustered residues shown in blue in (B) mapped as spheres/sticks onto the 1WAA structure.
Sticks are colored with Df SC and spheres with DDE. SCA identifies the six residues as highly coevolved, edges show couplings between these
residues with DDE.0.7. The secondary structure was colored with Df SC to give an overview of the overall force distribution.
doi:10.1371/journal.pcbi.1000306.g004

Figure 5. Forces needed for transition into the intermediate
state measured for a selected set of in silico mutations. (A) Df SC

values for the mutated residues sorted in descending order. The nine
residues with highest Df SC , for which decreased rupture forces are
expected, are colored gray. (B) Rupture forces observed for transition
into the intermediate. The majority of the nine residues with highest
Df SC shows a significant decrease in rupture forces comparing to the
wild-type (WT), while residues with significantly lower Df SC show less
impact onto rupture forces upon mutation. The overall decrease
comparing to the WT and to the six negative controls is statistically
significant (p,0.01 and p,0.03, respectively, student’s t-test on
cumulative rupture force data. For individual p-values, see Table S1).
doi:10.1371/journal.pcbi.1000306.g005
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force pattern as a function of external stress will be the subject of

future studies, and will allow the development of coarse-grain

models without the need for assuming harmonic interaction

potentials. Furthermore, while in elastic network models sequence

specificity is either neglected [32] or taken into account implicitly

by modifying inter-residue force constants [33,34], our pairwise

atomic analysis is directly sensitive towards residue types.

An interesting question is how long an externally applied

perturbation needs to propagate through a protein, which is not

directly accessible by force spectroscopy. We find a sub-

nanosecond time scale to be sufficient for convergence of forces

in I27 (Figure S4), a rigid protein not undergoing major

conformational changes upon stretching. Remarkably, this time

scale is comparable to that measured experimentally for heat

transport in helices [35] and to previous theoretical studies [36].

However, a more detailed force distribution analysis that is both

time and spatially resolved is required to determine the timescale

for force propagation and mechanical equilibration, which is the

aim of future studies.

The mechanical response of I27 appears to be remarkably

robust with regard to point mutations within the force distribution

network, which lower the rupture force never by more than

,30%. In particular, a small subset of highly force bearing

residues (V30, F73, L78) do not cause any loss of overall stability

upon mutation. This suggests a certain redundancy or plasticity of

the mechanical network. Biological networks ranging from

interaction networks to gene regulatory networks are increasedly

well characterized and understood [37,38]. The force network

described in this study represents a new type of biological network,

which asks for graph theoretical analysis to further clarify its

function, including splits, redundancy, hubs, and other properties.

We hypothesize that strain propagation as revealed here acts in

an allosteric protein as a mechanism to transduce an external

signal through the protein core to distant sites. The force

distribution analysis was here applied to the propagation of

mechanical force as a perturbation acting on a protein, but can

easily be extended to other types of perturbation, in particular to

allosteric signals. Since forces can monitor allosteric signal

propagation more sensitively than coordinates, our method is

particularly suited for allosteric proteins not undergoing an

obvious conformational change, i.e., rigid proteins [39], and

dynamic allostery [40] for which changes in fluctuations in

pairwise forces can be expected.

Networks of coevolved residues and their relevance for protein

stability and function have been exhaustively analyzed for many

proteins [18,19,21,41–43]. It has been suggested that the

molecular mechanism by which coevolved residues couple is of

dynamic or energetic nature [20]. Couplings in binding free

energies [44] have not yet been unambiguously correlated with

evolutionary couplings. Recently, attempts have been made to

compare couplings in dynamic fluctuations with evolutionary

couplings [45]. In contrast to the notion of functional protein

fluctuations propagating force, we here propose the stiffness, i.e.,

the static nature, of the force-bearing scaffold to be functionally

crucial (Figure S2). The relevance of this first molecular

interpretation of evolutionary design for other proteins, with

mechanical, allosteric, or other functions, remains to be investi-

gated.

Methods

Force Distribution
We use a modified version of Gromacs 3.3.1 to write out forces

Fij between each atom pair i and j. Forces include contributions of

individual bonded (bond, angle, dihedral) and non-bonded

(electrostatic and van der Waals) terms below the cutoff distance,

which are stored separately for further analysis. The force between

each atom pair is represented as the norm of the force vector and

thus is a scalar. Attractive and repulsive forces are assigned

opposite signs, forces are averaged over simulation time and

converge to an equilibrium value. As we consider the direct force

between each atom pair, this equilibrium value can be different

from zero, even for the theoretical case of a system without any

motion. We hereby obtain the advantage to be able to observe

signal propagation even through stiff materials, where forces

propagate without causing major atomic displacement. Atomic

forces, i.e., the sum over the force vectors acting on an atom,

instead average out to zero over time and are not of interest here.

A real world example for such force propagation is Newton’s

cradle. Due to the nature of the non-bonded potentials pairwise

forces are most significant for atom pairs in relative close

proximity, resulting in a force-propagation network comprised of

a series of short to medium ranged connections.

An approximation is used to represent angle and dihedral forces

(Figure S5). Multi body forces such as hydrophobic effects and

PME forces are not included and thus cannot be accounted for in

the analysis. Average forces were written out every 10 ps. To

Figure 6. Comparison of in silico rupture forces for the A’G
strand with experimental data. (A) Our simulations predict
decreased stability of the A’G strand for 5 residues near the A’G strand,
rendering them interesting targets for further experimental studies. The
figure shows these residues mapped as sticks on the I27 structure. F21,
L84 and V71 are colored blue, the experimentally validated V13 and V86
are colored red. (B) Changes in rupture force DFrup

� �
from experiment

and simulation plotted against each other. The line shows a fit of the
data to a linear model. Experimental data for a pulling speed of
10 nm s21 were extracted from Figure 3, Best et al. 2003 [14].
doi:10.1371/journal.pcbi.1000306.g006
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obtain converged averages, forces for each atom pair were

averaged for each trajectory and afterwards over all pulling and

equilibrium trajectories, respectively. The normalized change in

force is defined as the difference between forces in the strained

state, FFC
ij , and equilibrium forces, F

EQ
ij , for each atom pair i,j.

Normalization by the standard error of the mean e accounts for

differences caused by insufficient sampling, i.e., slow side chain or

backbone fluctuations that cannot equilibrate in simulation time.

Dfij~
FFC

ij {F
EQ
ij

eFC
ij {eEQ

ij

ð1Þ

The overall distribution, however, remains largely unchanged

upon normalization, Figure 1C. The mechanical coupling of an

atom j with respect to all other atoms is then defined as the

absolute sum Dfj .

Dfj~
X

i

Dfij

�� �� ð2Þ

Side Chain Forces
In analogy, for all pairs of side chains u and v, we sum up forces

Fij , where atom i and atom j must not be part of the same residue.

Forces Fuv are averaged for each trajectory and afterwards over

equilibrium and pulling trajectories. The normalized change in

inter side chain forces is defined as the difference between force

clamp FFC scð Þ and equilibrium FEQ scð Þ forces normalized by the

standard errors e scð Þ observed between equilibrium and force

probe trajectories, respectively.

Df sc
uv ~

FFC
uv scð Þ{FEQ

uv scð Þ
eFC

uv scð Þ{e
EQ
uv scð Þ

ð3Þ

We then define the mechanical coupling for residue v as the

absolute sum Df sc
v .

Df sc
v ~

X

u

Df sc
uv

�� �� ð4Þ

Molecular Dynamics (MD) Simulations
were carried out using Gromacs 3.3.1 [46]. The OPLS all atom

force field [24] for the protein and the TIP4P [47] water model

were employed. The crystal structure of I27 (PDB-entry 1WAA)

was used as starting structure for all simulations. Simulation times

were 20 ns for equilibrium and FCMD simulations. A constant

force of 300 pN was applied to both terminal residues in opposing

direction. The applied force was low enough to keep the protein

structure intact and no partial rupture events were seen during the

simulation time. Simulations were run in the NpT ensemble,

temperature was kept constant at 300 K by coupling to the

Berendsen thermostat [48]. The pressure was kept constant at

p = 1 bar using anisotropic coupling to a Berendsen barostat [48]

with tp~1:0 ps and a compressibility of 4.5 1025 bar21 in the x,

y, and z directions. In FPMD simulations of the I27 mutants all

bonds were constrained using the LINCS [49] algorithm; an

integration timestep of 2fs was used. No constraints and an

integration timestep of 1fs was used for equilibrium and FCMD

simulations. Lennard-Jones interactions were calculated using a

cutoff of 10Å. At a distance smaller than 10Å, electrostatic

interactions were calculated explicitly, whereas long-range elec-

trostatic interactions were calculated by Particle-Mesh Ewald

summation [50]. System coordinates were saved every 10 ps.

The X-ray structure of I27 (PDB-entry 1WAA) was used as

starting structure for all simulations. Protonation states of

histidines were determined by optimizing the hydrogen bond

network using Whatif [51]. All mutations were done using Whatif,

starting from the equilibrated structure. Structures were solvated

in a triclinic box with dimensions 556556100Å, containing

,40,000 atoms. Sodium and chloride ions corresponding to a

physiological ion strength of 100 mM were added. An energy

minimization of 1000 steps using the steepest descent algorithm

was followed by a 400 ps MD simulation with harmonical

restraints on the protein heavy atoms with a force constant of

k = 1000 kJ mol21 nm2 to equilibrate water and ions. For

mutants, this simulation was followed by a 1 ns MD simulation

with the same harmonical constraints on backbone atoms only. A

subsequent free MD simulation of 5 ns length was performed to

equilibrate the whole system, during which the protein backbone

root mean-square deviation (RMSD) was monitored. All mutants

remained stable during free MD, with a heavy atom RMSD to the

starting structure ,2Å for all structures (Table S2). For each run,

new velocities were chosen form a random distribution using

Gromacs, followed by a 400 ps MD simulation with restraints on

protein heavy atoms as described above. During unfolding

simulations partial rupture at the N-terminus that leads to the

intermediate state was measured by means of the distance between

the Ca of S26 and the backbone N of E3. Rupture of the A’G

strand was measured by monitoring the length of the V13-K85

hydrogen bond.

Mutants were partially unfolded during a 12 ns FPMD

simulation with a harmonic spring potential applied on both

terminal residues, with a spring constant of

k = 500 kJ mol21 nm21. The springs were moved with a constant

velocity of 0.02Å ps21 each.

Statistical Coupling Analysis (SCA)
Coupling analysis was carried out as described by Ranganathan

and co-workers [18,19]. SCA assigns a ‘‘statistical coupling

energy’’ DDE to each position in a multiple sequence alignment.

DDE is determined upon perturbation by removal of sequences of

the alignment that changes the amino acid distribution at a specific

position. If the observed amino acid distribution at position b

changes with respect to perturbation at position a, these positions

are ‘‘coupled’’. Intuitively, if evolution changed residue a it is also

likely to change residue b to maintain the protein’s functionality,

i.e., a and b are statistically dependent throughout evolution. We

perform a set of small perturbations to the MSA by removing one

row at a time. Each perturbation results in a small fluctuation of

DDE values for each position. The matrix containing perturbations

versus DDE fluctuations is referred to as perturbation matrix, and

PCA was done on this matrix. We then define the coupling score

between two positions as the cross product of the two DDE

trajectories, which is the norm of the two position vectors in

perturbation space.

We perform SCA on two sets of sequences. The first, IGtitin,

contains the sequences of all 152 IG domains in human muscle

titin (UniProtKB/Swiss-Prot Q8WZ42). The second more general

alignment IGdiverse was chosen from the IG I-set (Pfam id:

PF07679) family by similarity to I27 and contains 282 sequences.

Hereto a Blast [52] search against all sequences from the I-set

family was done and sequences with e-score ,1.00 were selected.

All sequences with similarity .90% to any other sequence were
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removed. SCA requires the set of sequences to be sufficiently

diverse. Further the set of sequences should be well balanced, in

the sense that the average similarity to all other sequences should

be roughly the same for each sequence. We checked the diversity

of sequences within the IGtitin and IGdiverse alignments and found

it to be comparable to results published earlier. I.e., the average

sequence similarity within IG domains of human titin of 0.46

compares well with the average similarity of 0.48 for the alignment

of PDZ-domain sequences used by Ranganathan and co-workers

[18]. Figure S3C shows that the variance in average sequence

similarity is low, indicating that both alignments are well balanced.

To assess the alignment quality, we calculated the sequence

entropy [53], a measure for conservation at each position, and

again find it to be very comparable with data published earlier

(PDZ = 1.95, IGtitin~1:95, IGdiverse~1:93). Sequences were

aligned using Dialign [54] that is reported to perform well on

local sequence alignments [55]. In the final alignments, no position

aligned to the I27 sequence contained more than 50% gaps.

Correlation with Side Chain Forces
For the calculation of correlations with inter-side chain forces

the terminal residues which were directly subjected to force and

the ultra-conserved W34 were excluded. Hierarchical cluster

analysis was done using Ward’s algorithm [56] as implemented in

R (R Development Core Team). At each step in the analysis, the

method considers the union of every possible cluster pair, and the

two clusters with minimal square sum of error are combined. The

city-block metric was used as distance measure. For the

comparison of Df SC with residue conservation, conservation was

calculated using Shannon entropy.

Structure Determination and Refinement
The I27 structure was determined by molecular replacement

with AMORE [57] using as search model a representative

structure from a previously determined NMR ensemble (PDB-

entry 1TIT [23]). Of the six copies of I27, four copies were

orientated and placed successively with AMORE. Correctness of

this incomplete model was assessed by the increase in correlation

coefficient (from 24.8% to 40.4%) and the concomitant decrease in

R-factor (from 50.2% to 45.2%) attained between the first and the

fourth I27 molecule. The last two copies of I27 could not be

automatically located with AMORE using the same protocol.

Instead, this first model containing four I27 molecules was refined

(rigid body) and then the missing two copies of I27 were placed

manually. Since the I27 NMR structure contained two mutations

not present in the wild type titin sequence (A42T, T78A), the

sequence in our I27 structure was modified accordingly.

Refinement and modeling was performed iteratively using

REFMAC5 [58] and Turbo-Frodo (http://www.afmb.univ-mrs.

fr/-TURBO-). The model has been refined to a final R-factor of

0.211 and R-free of 0.268 (Table S3). Upon convergence, the

maximum-likelihood coordinate error estimation is 0.15Å.

Protein Expression, Purification and Crystallization
Residues 5253–5341 of human cardiac titin I27 (renumbered 1–

89 for simplicity) were amplified from a cDNA clone (accession

code X90568 of the EMBL data library) by polymerase chain

reaction (PCR) and subcloned into the pETM11 expression vector

for expression of I27 in E. coli fused to a TEV (tobacco edged virus

protease) cleavable N-terminal His6-tag. An overnight preculture

of BL21(DE3) cells transformed with the I27 expression plasmid

was used as inoculum to 3 liters of Luria-Bertani medium plus

50 mM kanamycin, and I27 expression was induced at OD600 of

0.6 by the addition of 1 mM IPTG. Cells were harvested 3 h post

induction, lysed by sonication in 20 mM Tris-HCl, 300 mM

NaCl, 20 mM imidazole, pH 8.0, and clarified by centrifugation

at 20,0006g and filtration through a 0.22 mm membrane. The

supernatant, containing soluble protein, was poured on a Ni2+-

NTA agarose column and I27 was eluted with a linear imidazole

gradient. Elution fractions containing I27 were pooled together

and incubated with TEV protease for 3 h to remove the affinity

tag. The cleaved tag and TEV were removed by passing the

digestion over a second Ni2+-NTA column (Qiagen). The flow-

through, containing cleaved I27, was dialysed overnight against

20 mM Tris-HCl, 2 mM DTT, pH 8.0, loaded onto a MonoQ

(GE Healthcare) ionic exchange column and eluted with a 0–1 M

NaCl linear gradient. Final polishing of I27 was brought about by

gel filtration chromatography on a Supedex 75 (GE Healthcare)

column. Purified I27 was concentrated to 10 mg/ml in 20 mM

Tris-HCl, 50 mM NaCl, pH 7.5.

Diffraction Data Collection and Processing
Crystals of I27 were grown by hanging drop vapor diffusion in

20% PEG MME 550, 75 mM MES, 7.5 mM ZnSO4 at pH 6.5.

The crystals were mounted in Hampton Research nylon loops,

and cryoprotected in a cryosolution made of the mother liquor and

5% (v/v) glycerol. Crystals belonged to P212121 space group and

X-ray data up to a maximum resolution of 1.8Å were collected on

beam-line BW7B (EMBL, Hamburg, DESY) at a wavelength of

0.841Å at 100 K. One segment of 90u was sliced in 0.5u rotation

steps to give complete and redundant data. Diffraction data were

processed with MOSFLM [59] and scaled in SCALA [60] (Table

S4). Cell content analysis and self-rotation function calculations

indicated that the asymmetric unit contained 6 copies of I27.

Supporting Information

Dataset S1 Multiple sequence alignment - IGtitin alignment

Found at: doi:10.1371/journal.pcbi.1000306.s001 (0.16 MB

DOC)

Dataset S2 Multiple sequence alignment - IGdiverse alignment

Found at: doi:10.1371/journal.pcbi.1000306.s002 (0.34 MB

DOC)

Figure S1 Root mean square distance between Ca carbons of

the NMR ensemble (1TIT) and the newly determined crystal

structure of I27.

Found at: doi:10.1371/journal.pcbi.1000306.s003 (0.07 MB TIF)

Figure S2 Stiffening of force bearing parts under load in I27

indicated by decreased root mean square fluctuations (RMSF).

The observed decrease in RMSF corresponds well with the force

distribution pattern. (A) Differences in RMSF between equilibrium

and force clamp simulations plotted along the protein sequence.

(B) RMSF differences color coded on the I27 structure. Colors

range from blue for no change to red for high change. Data are

averages over 10 equilibrium and 8 FCMD simulations, with

20 ns simulation time each.

Found at: doi:10.1371/journal.pcbi.1000306.s004 (2.75 MB TIF)

Figure S3 Correlation of the evolutionary and mechanical

network and quality assessment for the multiple alignments. (A)

Correlation of evolutionary DDE values with inter side-chain

forces Dfsc. Plotted are DDE versus Dfsc including (left) and

excluding (right) interaction interface residues, yielding correlation

coefficients of R = 0.52 and R = 0.60. The lines show the fit of a

linear model to the data. (B) Correlation between pair-wise

statistical coupling DDE values for IGtitin and IGdiverse, yielding a

correlation coefficient of R = 0.65. The line shows the fit of a linear
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model to the data. (C) The average sequence similarity for IGtitin

and IGdiverse is comparable with the PDZ alignment published by

Ranganathan and co-workers.

Found at: doi:10.1371/journal.pcbi.1000306.s005 (0.78 MB TIF)

Figure S4 Speed of signal propagation in I27, shown are forces

averaged over all atom pairs in I27 during equilibrium (left) and

FCMD simulations (right). Each data point corresponds to the

average force during 100 ps. The global means are plotted as

black lines.

Found at: doi:10.1371/journal.pcbi.1000306.s006 (0.27 MB TIF)

Figure S5 Approximations used for angle and dihedral terms.

The OPLS force field uses angle and dihedral terms calculated as

multibody forces between atoms i,j,k for angles and atoms i,j,k,l for

dihedrals. For angles, Gromacs internally calculates the force

vectors I,J,K acting on these atoms. As we cannot directly map

such multibody forces to pairwise interactions, we represent angle

bending as |K-I|, the force component acting in i,k direction.

Similarly, for dihedral terms the force vectors I,J,K,L acting on the

atoms i, j, k, l are calculated. To represent bending of dihedral

angles we use |L-I|, the force component acting in direction i,l.

This will not provide physically correct forces, but is sufficient to

detect rearrangements under mechanical load.

Found at: doi:10.1371/journal.pcbi.1000306.s007 (0.25 MB TIF)

Table S1 T-tests for unfolding forces of in silico mutants.

Found at: doi:10.1371/journal.pcbi.1000306.s008 (0.05 MB

DOC)

Table S2 Backbone and heavy atom root mean square deviation

(RMSD) in Angstroem for I27 in silico mutants.

Found at: doi:10.1371/journal.pcbi.1000306.s009 (0.04 MB

DOC)

Table S3 X-ray refinement statistics.

Found at: doi:10.1371/journal.pcbi.1000306.s010 (0.05 MB

DOC)

Table S4 Crystallographic statistics, data processing and scaling.

Found at: doi:10.1371/journal.pcbi.1000306.s011 (0.04 MB

DOC)

Video S1 A movie showing the force distribution network

spanning I27.

Found at: doi:10.1371/journal.pcbi.1000306.s012 (5.13 MB

MOV)
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