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Abstract

It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued
reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error
trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer
schedules (referred to as ‘‘schedule length effect’’). This violates the principles of reward maximization and invariance and
cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We
develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but
whose predictions are not different from those of the standard temporal difference model in choice tasks. In the
modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from
the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where
the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the
application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical
framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical
findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we
discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: ‘‘framing,’’
wherein equivalent options are treated differently depending on the context in which they are presented, and the ‘‘sunk
cost’’ effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made.
The schedule length effect might be a manifestation of these phenomena in monkeys.
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Introduction

In studying reward-seeking behavior it is often assumed that

animals attempt to maximize long term returns. This postulate

often forms the basis of normative models of decision making [1],

choice behavior [2–4], and motivation [5], and plays a prominent

role in the field of Reinforcement Learning (RL; see, e.g., [6]). RL

is a set of methods for learning to predict rewarding outcomes

from their association with environmental cues, and to exploit

these predictions to generate effective behavioral policies. These

are policies that comply with principles of reward maximization

[7,8] and invariance [9,10]. Applied to reward-seeking behavior,

the principle of reward maximization states that subjects should

maximize the reward/cost ratio, and the invariance principle that

subjects should be equally motivated when facing situations with

identical reward/cost ratios.

The idea of maximizing reward over time or effort is general

and has provided an effective basis for describing decision-making

where the choice between available options is basically a matter of

preference. RL methods such as the method of temporal

differences (TD) constitute an efficient way of solving decision

problems in tasks where a subject must choose between a larger vs.

a smaller reward, or between a more probable vs. a less probable

reward, and predict courses of actions comparable to the actual

behavior observed in animals performing the same tasks [11–13].

RL methods have proven less successful, however, in situations

where motivation, defined as the incentive to be engaged in a task

at all, plays a strong role [14–16]. A case in point is the behavior of

monkeys performing visually-cued reinforcement schedules [17],

wherein a series of identical actions is required to obtain reward,

and a visual cue indicates how many trials remain to be completed

before a reward is delivered (‘‘reward schedule task,’’ see Figure 1).

In this task, the error rate of the monkeys is proportional to the

number of unrewarded trials remaining before reward, indicating

that the value of the trial is modified by knowing the number of

remaining trials. This violates the principle of reward-maximiza-

tion: monkeys make errors in unrewarded trials that will have to be

repeated, thus preventing optimal reward-harvesting behavior.

Here we show that in trials equally far from reward, monkeys

make fewer errors in longer schedules, when more trials have

already been performed (‘‘schedule length effect’’). Thus, the value

of the current trial is also modified by the number of trials already

completed. This behavior violates the principle of invariance:

monkeys perform differently in trials equally far from reward,

depending on the number of trials already completed in the

current schedule. Taken together, these results suggest that the
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behavior in the reward schedule task does not develop under the

principles of invariance and reward-optimization, as commonly

assumed when applying RL methods to understanding reward-

seeking behavior.

We present a RL rule which predicts the monkeys’ behavior in

the reward schedule task. Such a rule is a heuristic generalization

of TD learning. When applied to the reward schedule task, it

predicts all aspects of monkeys’ behavior, including the sensitivity

to the contextual effect due to schedule length leading to the

violation of the invariance principle. When applied to a task

involving choice preference, the new method predicts the same

behavior as does the standard TD model. Thus, the behaviors in

the reward schedule and in choice tasks can be the consequence of

the same learning rule.

Building on the special cases of the reward schedule and choice

tasks, we then provide a general theory for Markov Decision

Processes, wherein the transition to the next state is governed in a

manner similar to a choice task, but is conditioned on whether the

agent is sufficiently motivated to act at all, like in the reward

schedule task. Finally, we link the schedule length effect to

instances of ‘‘framing’’ [18,19] and ‘‘sunk cost’’ effects [20,21],

which also emerge in conjunction with the violation of the

principle of invariance.

Results

Behavior
In this work we collate the behavior of 24 monkeys tested in the

reward schedule task [17], and analyze the entire set of data as a

group (see Material and Methods). In this task, a series of trials had

to be completed successfully to obtain reward at the end of the

series. This series is defined to be a schedule, which is then

characterized by its length measured in number of trials (Materials

and Methods and Figure 1). The monkey starts each trial by

holding a bar which causes a visual cue to appear on a computer

screen, followed by the appearance of a red dot in the middle of

the screen. The monkey must wait for the red dot to turn green

(‘‘GO’’ signal), at which point it must release the bar within a 200–

1000 ms window. If the bar is released correctly, the monkey

proceeds to the next trial of the schedule. Each trial must be

repeated until performed correctly.

In the presence of visual cues informing the monkey of the

progress through the schedule (Valid Cue condition), the

percentage of errors in all monkeys was directly related to the

number of trials remaining to be completed in the schedule, i.e.,

the largest number of errors occurred in the trials that are furthest

from the reward (x2 test, p,0.05; Figure 2A and 2B, circles; each

trial is labeled by the fraction t/s, where t stands for current trial

and s stands for current schedule length). The performance in

terminal trials was indistinguishable across schedules for each

monkey, was above 94% correct in 14 out of 24 monkeys, and

above 90% in 19 out of 24 monkeys.

In the Random Cue condition the visual cues were selected at

random and bore no relationship to schedule state. In such a

condition, error rates were indistinguishable across all schedule

states (or idiosyncratic; ‘‘x’’ in Figure 2A and 2B; x2 test, p.0.05 in

10 out of 15 monkeys tested in the Random Cue condition), and

close to the error rates in terminal trials in the Valid Cue

condition. Thus, performance in unrewarded trials in the Valid

Cue condition was well below the ability of the monkeys. Since the

individual trials of each schedule have the same perceptual and

motor demands, we interpret the different error rates as being

related to the different levels of motivation. This interpretation is

also supported by the observation that, in most monkeys, the

Figure 1. Behavioral paradigm used in the reward schedule
task. (A) Color discrimination task. Each trial begins with the monkey
touching a bar. A visual cue (horizontal black bar) appears immediately.
Four hundred milliseconds later a red dot (WAIT signal) appears in the
center of the cue. After a random interval of 500–1500 ms the dot turns
green (GO signal). The monkey is required to release the touch-bar
between 200 and 800 ms after the green dot appeared, in which case
the dot turns blue (OK signal), and a drop of water is delivered 250 to
350 ms later. If the monkey fails to release the bar within the 200–
800 ms interval after the GO signal, an error is registered, and no water
is delivered. An anticipated bar release (,200 ms) is also counted as an
error. (Red, green and blue dots are enlarged for the purpose of
illustration). (B) 2-trial schedule. Each trial is a color discrimination task
as in panel A, with cues of different brightness for different trials (see
Materials and Methods for details). In the 2-trial schedule, completion of
the first trial is not rewarded and is followed by the second trial after an
inter-trial interval (ITI) of 1–2 seconds. An error at any point during a
trial causes the trial to be aborted and then started again after the ITI
interval. The same applies to schedules of any length. Schedules of
different length are randomly interleaved. Note that after an error, the
schedule is resumed from the current trial and not from the first trial of
the schedule.
doi:10.1371/journal.pcbi.1000131.g001

Author Summary

Theories of rational behavior are built on a number of
principles, including the assumption that subjects adjust
their behavior to maximize their long-term returns and
that they should work equally hard to obtain a reward in
situations where the effort to obtain reward is the same
(called the invariance principle). Humans, however, are
sensitive to the manner in which equivalent choices are
presented, or ‘‘framed,’’ and often have a greater tendency
to continue an endeavor once an investment in money,
effort, or time has been made, a phenomenon known as
‘‘sunk cost’’ effect. In a similar manner, when monkeys
must perform different numbers of trials to obtain a
reward, they work harder as the number of trials already
performed increases, even though both the work remain-
ing and the forthcoming reward are the same in all
situations. Methods from the theory of Reinforcement
Learning, which usually provide learning strategies aimed
at maximizing returns, cannot model this violation of
invariance. Here we generalize a prominent method of
Reinforcement Learning so as to explain the violation of
invariance, without losing the ability to model behaviors
explained by standard Reinforcement Learning models.
This generalization extends our understanding of how
animals and humans learn and behave.

Violation of Invariance in Reinforcement Schedules
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reaction times become faster as the end of the schedule is

approached [17,22–25].

In the penultimate trials of each schedule (i.e., 1/2, 2/3, and 3/

4 when available) 20 of 24 monkeys made progressively fewer

errors as the schedule became longer (sign test, p,0.005). The

error rate in state 1/2 was significantly larger than in state 2/3 in

12 out of 20 monkeys (Marascuilo procedure, p,0.05, see

Materials and Methods and Figure 2C and 2D). In two of three

monkeys tested with 4 schedules, the error rate in state 2/3 was

also significantly larger than in state 3/4. The third monkey tested

with 4 schedules showed small error rates, and multiple

comparisons between penultimate trials were not significant

(monkeys often will not perform the task with 4 schedules

[17]).

In many of these studies the cues were distinguished by their

brightness, where their brightness had been set according to the

number of trials remaining in the schedule (Material and

Methods), raising the possibility that performance was related to

judging the brightness. However, this seems unlikely because the

behavioral sensitivity was also seen when unique stimuli, e.g.,

Walsh patterns, were used as cues (e.g., Figure 2 of [26]), where no

feature of the visual stimulus is a graded function of reward

proximity or progress through the schedule. In conclusion, in a

population of monkeys there was a significant tendency for

motivation to increase with the number of trials already

performed, at parity of proximity to reward. We refer this

phenomenon to as the ‘‘schedule length effect.’’

Model
In the reward schedule task, all trials have the same cost because

they all require the same action in response to the same trigger (the

appearance of the green dot); trials differ only in their proximity to

reward, which in turn does not depend on how many trials have

already been performed. A standard reinforcement learning

method can only learn to predict the proximity to reward

correctly, and thus, unlike the behavior shown by the monkeys, is

insensitive to the context introduced by the schedule length. We

address this issue in detail in the remainder of this manuscript.

The basic model. We assume that performance, here

measured as the percentage of correct trials in each schedule

state, reflects the monkey’s motivation, which in turn reflects the

value of that schedule state. Both rewarded and unrewarded trials

acquire value: if unrewarded trials had no value, the monkeys

would not perform them because there would be no motivation to

do so. Thus, value acquisition must be based on a mechanism

capable of learning to predict delayed rewards, like the method of

temporal differences [27]. The values of the trials reflect any

attribute that will affect motivation such as temporal discounting

or intrinsic reward value, and thus will be referred to as

motivational values. Performance accuracy will be guided

completely by the motivational values, whereas other factors

such as sensory or motor thresholds will be ignored, given that all

monkeys found the color-discrimination task required in each trial

(Figure 1A) easy to learn and perform (see Materials and

Methods).

Figure 2. Monkeys’ behavior in the reward schedule task. (A–B) Error rates as a function of schedule state for two monkeys, for both valid
(circles) and random cues (‘‘x’’). Each schedule state is labeled by the fraction t/s, where t stands for current trial and s stands for current schedule
length. Maximal schedule length was 3 for monkey A and 4 for monkey B. In both monkeys, error rates with valid cues are significantly different (x2

test, p,10210). In monkey A, the error rate in states 1/2 is larger than in state 2/3 (Marasquilo test for multiple comparisons, p,0.005); in monkey B,
the error rate in state 2/3 is larger than in state 3/4, and error rate in state 1/2 is larger than in state 2/3 (Marasquilo test, p,0.05). Original data from
refs. [25] (A) and [44] (B). (C) scatter plot of the difference in error rates between states 1/2 and 2/3 (E(1/2)2E(2/3)) vs. the maximal error rate for all 24
monkeys. Filled circles mark positive differences E(1/2)2E(2/3) which are significant (Marasquilo test for multiple comparisons, p,0.05). (D) error rates
(dots) for the 12 monkeys corresponding to the closed circles in panel C. Thick grey lines: medians.
doi:10.1371/journal.pcbi.1000131.g002

Violation of Invariance in Reinforcement Schedules
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The model below establishes the functional connection between

performance and motivational values, and provides a recipe for

learning the values. In general terms, the model assumes that the

agent, on any given state S, performs the required action correctly

with a probability proportional to the value of that state, V(S),

through a softmax ‘‘performance function’’:

P m Sjð Þ~ ebV Sð Þ

1zebV Sð Þ ð1Þ

The parameter b controls the steepness of the performance

function in the region around V(S) = 0. Thus, P(m|S) is the

probability of being motivated enough to perform the action

required to leave state S. Its complement, P(m̄|S), is the probability

that the agent is not motivated enough to perform correctly, i.e.,

the model correlate of the error rate in state S:

P �mm Sjð Þ~1{P m Sjð Þ~ 1

1zebV Sð Þ ð2Þ

In the particular case of the reward schedule, Equation 1

specifies completely the ‘‘policy’’ followed by the agent. We shall

clarify in a later section that Equation 1 is a special case of the

policy we propose for general Markov Decision Processes. V(S) is

updated trial-by-trial according to

Vtz1 Stð Þ~Vt Stð Þzadt ð3Þ

where t is the trial number, Vt+1(St) is the value of current state St at

trial t+1, a is a learning rate (here a constant), and d is the temporal

difference term of TD learning:

dt~rtzcVt Stz1ð Þ{Vt Stð Þ ð4Þ

Vt(St+1) is the current value of the state expected to follow the action

taken. rt is the reward delivered as a consequence of that action (r = 0

in all incorrect trials and in correct, unrewarded trials, and r = 1 in

correct, rewarded trials). Parameter c, with 0#c,1, is a temporal

discount factor that establishes the importance of the next state’s

value for updating the value of the current state (Figure 3A). When

c = 0, the value of the current state is only related to the immediate

reward contingency; when c.0, all future contingencies affect the

value of the current state, weighted by proximity, allowing learning

to predict delayed contingencies, see, e.g., [6]. Learning is

accomplished by minimizing the difference dt. When an error is

made, a negative d follows, decreasing the value of the current state,

thereby increasing the probability of making an error upon the next

occurrence of that state. By performing correctly (by chance or

otherwise), the algorithm reinforces the values of the schedule states,

increasing the probability of correct performance in the future. At

equilibrium, the average ds vanish in each schedule state, and the

state-values fluctuate around their equilibrium values. So far the

main difference from the more common implementations of TD

learning is that these latter implementations use d also to improve

the action selection process directly, whereas here the parameters of

the performance function (Equation 1) are held constant. When the

TD signal d is also used to improve the action selection process, this

typically leads to the development of an optimal policy, i.e., a policy

which maximizes the long-term acquisition of reward [6]. Following

Sutton [27], we interpret TD learning as a general means of

learning to predict delayed contingencies, and not necessarily for

learning an optimal policy.

Figure 3. Models. (A) Diagrammatic representation of the basic model for 3- and 2-trial schedules. (B) General pattern of error rates predicted by
the basic model. For trials with the same reward proximity (pre-reward number, preRN, plotted in the same color) the model predicts equal error
rates. (C) Diagrammatic representation of the context-sensitive model for the 3-trial schedule. (D) General pattern of error rates predicted by the
context-sensitive model. For trials with the same reward proximity (in same color) the model predicts smaller error rates in longer schedules.
doi:10.1371/journal.pcbi.1000131.g003

Violation of Invariance in Reinforcement Schedules
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In the reward schedule, a state is defined by the pair {t,s},

where t stands for current trial and s stands for current schedule

length, so that Equation 4 reads

d~rtzcVt ttz1,stð Þ{Vt tt,stð Þ ð5Þ

If an error is made, t+1 is replaced by t because the trial is

repeated. In a correct terminal trial (t = s and rt.0), the next state

St+1 is unknown, and its value is set to zero (the common choice in

RL, see, e.g., [6]). An alternative option would be to endow the

model with some ‘‘post-reward expectation’’ and assign some

positive value to the next state (for example, the mean value of the

first trials). This approach scales all values by a constant factor,

producing the same qualitative behavior (see Materials and

Methods for details).

In the validly-cued reward schedule, learning continues until the

average d vanishes in all states. In terminal trials, V = r, where r is

the amount of reward received in each rewarded trial. For non-

terminal trials (t,s), the equilibrium condition is V(t,s) = cV(t+1,s),

i.e., trials more proximal to reward are more valuable, and by

iteration

V t,sð Þ~c s{tð Þr ð6Þ

Here, V depends only on the difference between s and t, i.e., the

proximity to reward. Therefore, it can be written as

V preRN~i sjð Þ~cir ð7Þ

where preRN = s2t is the pre-reward number (defined to be zero in

terminal trials), and V(i|s) is the value of the state having preRN = i,

conditioned on schedule length being s (which, as Equation 7

shows, does not depend on s). Trials with larger preRN have smaller

values (since c,1). The actual values will converge to the

theoretical values given above only in the absence of errors, i.e.,

if the policy is to execute every trial correctly independently of its

value. If the policy is given by Equation 1, then the correct values

must be found by solving self-consistent equations (given in the

Materials and Methods, Equation 13). However, the results are

qualitatively the same and for simplicity we shall use the values of

Equation 7 in the following.

As Equation 7 shows, trials equally distant from reward will

acquire the same value and thus produce the same error rate

under any policy (Figure 3B). Thus, the basic model is not sensitive

to the contextual effect of schedule length observed in the data,

i.e., the difference in performance between penultimate trials

belonging to schedules of different length. This phenomenon can

be seen as a broken symmetry between trials with the same

proximity to reward, which are equivalent in the basic model. In

the next section we propose a different TD learning rule which is

sensitive to the context produced by schedule length.

Context-sensitive model: the effect of schedule

length. In the schedule length effect, the value of each trial is

larger than predicted by proximity to reward alone. A simple

speculation on how this might arise is that the value of each trial is

enhanced by having completed any previous trial in the current

schedule. This idea can be implemented by modifying the

temporal difference rule as follows:

d~rtzcVt ttz1,stð ÞzsVt tt{1,stð Þ{Vt tt,stð Þ ð8Þ

In this rule, the value of the immediately preceding trial is also

taken into account. The parameter s quantifies the fraction of

value carried forward to the next trial, with 0,s,1. This is just

the basic model when s = 0. In first trials we set s = 0, i.e., the

value of rewarded trials is not carried forward. This seems a

natural choice because the terminal states of each schedule are not

part of the next sequence required to obtain reward. However, no

qualitatively different behavior would result from keeping s.0 in

first trials also (see Materials and Methods). All other details are as

in the basic model, including Equation 3 which remains

unchanged. In this rule, a trial acquires value due to both the

next trial and the previous one (Figure 3C). When learning has

occurred (i.e., d fluctuating around zero), the new learning rule

gives V(t,s) = r+cV(t+1,s)+sV(t21,s) (compare with the value in the

basic model, r+cV(t+1,s)). This gives V(t,s) a dependence on

schedule length s, unlike Equation 7. In the absence of errors, the

equilibrium values for the first three schedules are:

V11~r,

V22~r 1{csð Þ{1,V12~cV22,

V33~r 1{csð Þ 1{2csð Þ{1
, V23~c 1{csð Þ{1

V33, V13~cV23:

ð9Þ

If errors are made according to Equation 2, a more involved set of

self-consistent equations defines the values implicitly (see Materials

and Methods), but this does not affect the qualitative pattern of

behavior described next. The relation V1s = cV2s, that in the basic

model holds for the values of all pairs of successive schedule states,

applies here only to first trials, whereas the value of the

intermediate trial V23 is augmented by a factor (12cs)21.1 due

to the temporal accumulation of values of past trials. This gives

V23.V12, i.e., the value of state 2/3 is greater than that of state 1/

2, as observed in the experiments. In general, the error rates will

be different in trials with the same preRN but belonging to different

schedules (Figure 3D). We refer to this model as ‘‘context-

sensitive’’ because the motivational context due to the schedule

length is an emergent property of, and not an input to, the model

itself (e.g., through a redefinition of the schedule states). For s = 0,

Equation 6 of the basic model reappears.

Predictions of the models in the Random Cue

condition. The model predicts equal values for random cues

that bear no relationship to schedule state. This results in uniform

error rates, with a small spread around the mean due to the

stochasticity in the cue selection and the learning processes. Any

TD-based model would make the same prediction, which is a

consequence of a symmetry contained in the design of the task, i.e.,

all cues are associated with reward with the same frequency. In the

absence of errors, the mean value of random cues is

V~
Nzr

1{ czsð Þ 1{Nzð Þ ð10Þ

where 0,N+,1 is the fraction of rewarded trials, and is equal to

the number of schedules divided by the number of schedule states

(Materials and Methods). Uniform performance is indeed

observed in the data (black crosses in Figure 2A and 2B). Thus,

the context-sensitive model can explain all the qualitative

properties of the behavior in the reward schedule task.

The same properties can also be captured quantitatively, as

shown by the best fits of the context-sensitive model to the data

(Figure 4A and 4B). The parameters of the model were tuned to

minimize the difference between the model fits and the

experimental error rates (see Materials and Methods), and the

same parameters values were used for valid and random cues. The

best-fit values of c and s ranged from 0.2 to 0.8 and from 0.1 to

Violation of Invariance in Reinforcement Schedules
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0.8, respectively (24 monkeys), and were strongly anti-correlated

(r = 20.82, r2 = 0.67, p,1026). The negative correlation between

s and c is to be expected since s is a measure of the strength of the

schedule length effect, which is stronger when the maximal error

rate is larger (Figure 2C), and the latter is in turn inversely related

to the discount rate c. We emphasize that although we fit the

model to individual experimental cases, the qualitative behavior

predicted by the model is independent of the actual choice of

parameters (provided that the value of s is within the allowed

range, see Materials and Methods).

Predictions of the context-sensitive model in the reward

schedule task. Both the basic and context-sensitive models

predict that valid and random cues have roughly the same average

value, as shown in Figure 4C, which depicts the error rate as a

function of the values of schedule states (Equation 2). The larger

dots represent the mean values of valid (black) and random (grey)

cues respectively, which are generally close to each other. In the

inset of Figure 4C this is shown for 2 to 10 schedules. The mean

values decrease with the number of schedules, since the average

fraction of rewarded trials also decreases with the number of

schedules. The prediction that valid and random cues have

approximately the same average value does not have a direct

experimental correlate, since one only has access to the error rates.

Intuitively, however, the correlation between the mean values of

valid and random cues should be reflected in the correlation

between the median error rates in the two paradigms. This

correlation was present in the data (Figure 4D, r2 = 0.69, p,0.0005).

Figure 4C suggests that the overall level of motivation (as

measured by the average values) is approximately the same with

either valid or random cues. The non-linearity of the performance

function explains why the overall performance is better in the

Random Cue condition than in the Valid Cue condition. The

values of valid cues (black dots in Figure 4C) spread around their

mean (larger black dot), producing distributed error rates which

depend on schedule state, whereas random cues’ values have a

limited spread (not shown) around their mean (grey dot) due only

to random fluctuations, producing indistinguishable error rates. As

shown in Figure 4C, the complement of the performance function

(Equation 2) tends to flatten towards larger values more than for

smaller ones. As a consequence, performance with random cues is

much closer to the performance in validly cued rewarded, rather

than unrewarded, trials (as, e.g., in Figure 2A and 2B).

Predictions of the context-sensitive model in choice

tasks. To be a valid generalization of TD learning, the

context-sensitive model must predict the same qualitative

behavior is situations where animal behavior is well described by

the standard model. We show here that this is generally true in

situations involving behavioral choices. In particular, this means

that the context-sensitive model does not predict a suboptimal

behavior in tasks where this is not observed.

A simple choice task entails the offer of two alternative options,

say A and B, to an agent which has the freedom to choose between

the two and will get rewarded accordingly. In the deterministic

version of this task, one option is always rewarded, the other is

Figure 4. Predictions of the context-sensitive model in the reward schedule task. (A–B) Theoretical error rates predicted by the context-
sensitive model (black) for both valid (circles) and random (‘‘x’’) cues. The model parameters were tuned to match the experimental error rates of
Figure 2A and 2B respectively using least-square minimization as described in Materials and Methods. The experimental data from Figure 2 are
reproduced in grey for comparison. Parameters for Monkey A (B): b = 3.6 (3.2), s = 0.3 (0.8), c = 0.4 (0.3). (C) Error rate (Equation 2) as a function of
schedule state values (full curve) for the model of panel B. Black dots are the actual values of valid cues in the standard model (i.e., with s = 0; see
Equation 6); larger dots are the mean values of valid (black) and random (grey) cues. The inset shows the predicted mean values of valid (black) and
random (grey) cues for paradigms with 2 to 10 schedules (basic model). Larger dots correspond to the case of main figure (4 schedules). (D) Linear
regression of the median error rates with valid cues against the median error rates with random cues for the 13 monkeys tested in both conditions
(r2 = 0.69, p,0.0005).
doi:10.1371/journal.pcbi.1000131.g004
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never rewarded; in the probabilistic version, one of the options is

rewarded more often than the other, and neither of them is

rewarded with certainty; or both options are rewarded with equal

probability but in different amounts; and so on (Figure 5A). A

standard reinforcement model would predict a preference (as

measured by choice ratio) for the more rewarded option in all

cases, and will learn to choose always the rewarded option in the

deterministic choice task. The context-sensitive model predicts

exactly the same behavior (Figure 5B). This is most easily

explained in the fully deterministic case where option A gives

always a reward r whereas option B gives no reward (i.e.,

Prew(A) = 1 in Figure 5B). In this case, for s = 0 the values of the two

options approximate the amount of reward obtained, i.e., VA = r

and VB = 0. When 0,s,1, the value of each option is increased

on average by the same amount, i.e., V?Vz s
1{s Psel Að Þr, where

Psel(A) is the observed frequency of selecting A. Under the standard

assumption that the action with larger value is selected more often,

such preference will not be reversed in the context-sensitive model.

For example, under a softmax model for Psel(A), e.g.,

Psel Að Þ~ebVA
�

ebVAzebVB
� �

~1
�

1ze{b VA{VBð Þ� �
, the probabil-

ity of selecting A depends only on the difference VA2VB, which is

left unchanged. Similar results are found for the probabilistic

version of the task, where the best option is rewarded with

probability Prew(A).0.5 and the other with probability 12Prew(A)

(Figure 5B). The two models give the same results also under a

‘‘greedy’’ policy, which by definition selects always the action with

larger value (this can be obtained from the softmax function by

letting bR‘). These conclusions hold also for variations of this

two-choice task where the probability that one choice is the better

option increases with the number of consecutive selections of the

alternative choice, typically resulting in matching behavior (see,

e.g., [28]; not shown).

The argument can be generalized to an n-choice task

(Figure 5C), where each choice gives a reward drawn from a

given distribution (sometimes called the n-armed bandit task in the

RL literature, see, e.g., [6]). Also in this case, all values are

increased by the same amount c in the context-sensitive model,

and the softmax function,

Psel ið Þ~ebVi

.X
je

bVj ð11Þ

is invariant under the scaling VjRVj+c. As a consequence, the

frequency of each choice does not depend on the value of s
(Figure 5D).

The reason for which a positive s will not make a difference in a

choice task is that at each decision node the same value (sVN in

Figure 5A and 5C) will be carried over to whatever the outcome of

the choice. For s.0 to have an effect on the choice, the choice

must be followed by a sequence of states or actions, with different

Figure 5. Predictions of the context-sensitive model in choice tasks. (A) Two-choice task. At decision node N (of value VN) the agent can
either choose action A (which gives a larger or more probable reward) or action B (smaller or less probable reward). The same value sVN is carried
over to whatever outcome of the choice (curved arrows). (B) Mean frequency of choosing action A in the two-choice task of panel 5A (Psel(A)) vs. the
probability that action A is rewarded (Prew(A)) for different values of s (see the text). For each value of Prew(A), four values of s were used (0. 0.1, 0.2,
and 0.3). Shown are means (dots) and standard deviations (error bars) over 20 simulations with b = 3 and r = 1 together with the theoretical prediction
Psel Að Þ~ 1ze{br 2Prew Að Þ{1ð Þ� �{1

(dashed line). For s = 0, the model is the standard TD model. Choice preference does not depend on the value of s.
(C) 4-armed bandit task. At decision node N the agent can choose between 4 possible actions, each rewarding the agent according to a predefined
probability distribution. The same value sVN is carried over to whatever outcome of the choice. (D) Mean frequency of choosing each of the four
alternative actions of the 4-armed bandit task of panel 5C for different values of s (same values as in panel 5B). Each choice was rewarded according
to a Gaussian distribution truncated at negative values, with mean m = 0.25, 0.5, 0.75, 1 and standard deviation 0.25. Shown are means (dots) and
standard deviations (error bars) over 20 simulations with b = 3, together with the theoretical prediction Psel ið Þ~ebmi

�P
je

bmj (dashed line). Choice
frequencies do not depend on the value of s.
doi:10.1371/journal.pcbi.1000131.g005
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amounts of previous value carried over in different sequences. To

illustrate this point, consider a combination of a choice task and a

reward schedule task which we shall name ‘‘two-choice schedule

task’’ (Figure 6A). Assume that an agent can choose whether to

receive a reward R now and a smaller reward r later on ({R,r},

schedule A), or the smaller reward now and the larger one later on

({r,R}, schedule B). This task is more complex than the simple

choice task, because here the initial action or choice affects the

return obtainable from subsequent ones. A standard TD model

predicts a preference for schedule A, since this model discounts

later rewards, penalizing reward R in schedule B more than in

schedule A. Numerically, Vsch.A2Vsch.B = (12c)(R2r).0, and the

‘‘immediate-reward’’ schedule A is chosen more often than the

‘‘delayed-reward’’ schedule B. This is modified into

Vs;sch.A2Vs;sch.B = (12cs)21(12c)(R2r).Vsch.A2Vsch.B in the con-

text-dependent model. The difference between the values of the

two schedules not only keeps its sign, but is increased in

magnitude. This is because in the immediate-reward schedule A,

a larger value is carried over to the next trial compared to the

delayed-reward schedule. Thus, the context-sensitive model

amplifies the existing preference for the immediate-reward

schedule (Figure 6B). However, no new qualitative behavior

emerges.

These conclusions hold for any choice schedule with two

schedule states (i.e., with any choice of rewards and parameters

values). In this more general case, parameters can be chosen so

that a preference for either schedule could emerge; however, a

positive value of s can only amplify the existing preference (not

shown).

A positive s can alter an existing preference if the schedules

comprise more than two trials. Consider for example the case where

upon selection of schedule A the agent receives reward R at the first

step and then a smaller reward r at the next two steps, i.e., a schedule

of type {R,r,r}; whereas schedule B gives the smaller reward first,

followed by the larger reward in the next two steps: {r,R,R}

(Figure 6C). Since in this case Vsch.A2Vsch.B = (12c2c2)(R2r), the

immediate-reward schedule (schedule A) will be preferred only if

cvbcc: ffiffiffi
5
p

{1
� ��

2&0:618. Depending on the value of the

discount factor c, both schedules may be preferred in this task

under standard TD learning. For c just above its critical value ĉ, a

positive value of s can only increase the agent’s preference for the

delayed-reward schedule B; but for c just below its critical value ĉ, a

Figure 6. Predictions of the context-sensitive model in choice-schedule tasks. (A) Description of the choice-schedule task with 2-trial
schedules. At decision node N (of value VN) the agent can either choose the immediate-reward schedule A (which gives a larger reward, R, sooner and
a smaller reward, r, later) or the delayed-reward schedule B (smaller reward sooner and larger reward later). The same value sVN is carried over to
whatever outcome of the choice, but following trials in each schedule modify the value of A or B differently (curved grey arrows, shown for schedule
A only. See the text for details). (B) Mean frequency of choosing the immediate-reward schedule (schedule A) in the task of panel 6A predicted by the
model as a function of s. Shown are means (dots) and standard deviations (error bars) over 20 simulations with b = 3, c = 0.55, R = 1 and r = 0.5.
Dashed line: theoretical prediction according to the equation Psel sch:Að Þ~ 1ze{b Vsch:A{Vsch:Bð Þ� �{1

with Vsch.A2Vsch.B = (12cs)21(12c)(R2r). A
positive value of s enhances the existing preference for the immediate-reward schedule. (C) Choice-schedule task between two 3-trial schedules, a
generalization of the task in panel 6A. (D) mean frequency of choosing the immediate-reward schedule (schedule A) in the task of panel 6C predicted
by the model as a function of s. Shown are means (dots) and standard deviations (error bars) over 20 simulations with the same parameters as in 6B.
Dashed line: theoretical prediction according to the equation Psel sch:Að Þ~ 1ze{b Vsch:A{Vsch:Bð Þ� �{1

with Vsch.A2Vsch.B = (122cs)21(12c2c22cs)(R2r).
Dotted line: indifference point Psel(sch.A) = 0.5, i.e., the situation where the agent has no preference for either schedule. For s larger than <0.268, choice
preference is reversed and the delayed-reward schedule is chosen more often.
doi:10.1371/journal.pcbi.1000131.g006
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positive value of s can bias preference away from the immediate-

reward schedule A and towards the delayed-reward schedule B. This

is shown in Figure 6D, where c = 0.55, R = 1, and r = 0.5. With these

parameters, a reversal in preference occurs at s<0.268. It can be

shown that for any choice schedule task with three states, a

preference for the delayed-reward schedule will always be amplified

by a positive s, whereas a preference for the immediate-reward

schedule could be reversed if some conditions are met. However,

either schedule could be favored in the standard model also,

depending on the value of the discount factor c. In a choice task

between two n-trial schedules, of type {R,r,r,…,r} and {r,R,R,…,R},

respectively, the critical value of c is given by the real solution of

12c2c22…2cn21 = 0. This value decreases with n and approach-

es 0.5 when n tends to infinite (practically, for n.10). Since

preference for one schedule or the other can be obtained in the

standard model by adjusting the value of c, there is no new

qualitative behavior emerging from the context-sensitive model in

this task. We conclude that in simple choice tasks and in choice-

schedule tasks the context-sensitive model predicts the same

qualitative behavior as the standard TD model.

General model for Markov Decision Processes

(MDPs). Reinforcement schedules and choice tasks are

examples of MDPs. Formally, a MDP is a collection of states,

each with an associated cost or reward, and a set of transition

probabilities that govern the transitions between those states. We

shall indicate with Pij the probability to move to state j from state i

(Figure 7A). The numbers Pij must satisfy a number of properties,

among which: (a) the transition from i to j must depend on current

state i but not on any state previously visited (the Markov

property), and (b) starting from i, a transition to some other state

must occur, i.e., gj Pij = 1 (see, e.g., [6] for an introductory

exposition of the theory of MDPs). A MDP is a very general

framework and is widely used as an abstract setting for RL

problems [6], where the transition probability rule Pij is called a

‘‘policy.’’ However, this framework does not consider the effort

due to an instrumental action required to leave the current state,

which could induce some motivational reluctance to the subject, as

shown in the reward schedule. This is also true in choice tasks,

where even in the case of excellent performance, the percentage of

correct trials is typically less than 100%. In defining a policy for

the reward schedule (Equation 1) we have, in effect, introduced an

example of what we shall call ‘‘instrumental MDP,’’ i.e., a MDP

where each transition is conditioned on an instrumental action

being performed correctly, otherwise an error results and no

transition is possible, represented by a self-link to the current state

in Figure 7A. We show in this section that a general policy can be

introduced for an instrumental MDP, of which the policy

Equation 1 for the reward schedule task, and the softmax

function Equation 11 used in the choice tasks of Figures 5 and 6

are special cases.

In the more general case of an instrumental MDP, we shall

define the policy, i.e. the probability of making a transition from i

to j, as the product of the probability P(m|i) of leaving the current

state i (by performing correctly), times the probability P(iRj|m) of

transitioning to state j, given that the agent is motivated to do so:

Pij~P i?j mjð Þ:P m ijð Þ ð12Þ

(Figure 7A). In the reward schedule, P(iRj|m) equals 1 if j is the

next state in the schedule, otherwise it equals zero, hence the

policy reduces to Pij = P(m|i) (Figure 7B). In a choice task, the full

policy Equation 12 should be used, which takes in account also the

fraction of incorrectly performed trials. However, choice behavior

is typically analyzed on correct trials only (as we have done in the

previous section), since these are the trials where an actual choice

occurs. On the subset of correct trials, P(m|i) is determined to be 1,

and the policy reduces to Pij(iRj|m) (Figure 7C). This explains our

use of different policies for reinforcement schedules and choice

tasks, respectively.

Regarding the specific choice of policies we have adopted, note

that P(iRj|m) need not be a softmax function e
bVjP
j e

bVj
as in Figures 5

and 6, but could be any other suitable policy (e.g., a greedy or an

e-greedy policy, see [6] for details). As for P(m|i), the reward

schedule data presented in this manuscript imply that P(m|i)

cannot be taken to be the choice type, i.e., of the same type as

P(iRj|m), regardless of the actual functional form used for it. This

point can be illustrated with the following simple argument. Since

error trials must be repeated, one might be tempted to frame the

motivational process of performing the trial as a choice between

proceeding to the next state in the schedule, say j, or remaining in

the current state i: ebVj ebVi zebVj
� �{1

. However, in the task with

random cues this policy would give a 50% error rate, which is

never observed. The motivation to perform at all, therefore,

cannot be framed as a decision process of the choice type. In

mathematical terms, P(m|i) can only depend on the current state

and be an increasing function of its value. A softmax function,

P m ijð Þ~ebVi xzebVi
� �{1

, where the parameter x.0 may be

required for proper normalization, is a natural choice [6,29]. We

have provided additional evidence for this choice because of its

ability to explain detailed aspects of the behavior (Figure 4). The

actual value of x is immaterial and could be tuned to maximize the

agreement with the data in each dataset. However, we found one

Figure 7. Model for the general Markov Decision Process
(MDP). (A) Policy for the general MDP. In the fragment of MDP shown,
the agent is in state i and must decide (1) whether to leave the state
(with probability P(m|i)), and (2) in which state to go in case of a positive
decision (weighting each choice with probability P(iRj|m)). Decision 1
depends on the motivational value of current state; decision 2 depends
on the relative values of the possible arrival states, or choices. Both the
motivational and the choice values are learned with the TD method of
the main text. If the agent is not motivated to perform the trial, it will
find itself in the same state one time step later (curved arrow). If the
agent is sufficiently motivated to perform the trial correctly, it proceeds
to make a choice. In the figure, this situation is represented by the
curved shaded region from which the arrows to the possible choices
reach out. In the general case, the transition probability Pij is the
product of the probabilities P(m|i) and P(iRj|m). (B) Policy in the reward
schedule task. In this case, P(iRj|m) because there is no choice and j can
only be the next schedule state (in this example, i = 1/2, j = 2/2). Thus,
Pij = P(m|i). (C) Policy in the choice task when considering only correct
trials. In this case, P(m|i) is determined to be 1 and thus Pij = (iRj|m).
doi:10.1371/journal.pcbi.1000131.g007
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free parameter (b) to be sufficient, and we set x = 1 in Equation 1:

this reduces the number of degrees of freedom and thus offers the

most parsimonious account of the data. The same principle would

demand b to be the same in both Equation 1 and in

P i?j mjð Þ~ e
bVjP
je

bVj
, although it need not be.

Regarding the general policy Equation 12, note that gj Pij#1,

since P(m|i)#1: the sum over j now represents the percentage of

correct trials. Also, note that j can also be state i, if the agent is

given the choice of remaining in the current state as a result of

executing the corresponding action correctly. In such a case, the

probability of remaining in state i is formally the product of the

probability of leaving the state times the probability of choosing to

return to it. This possibility is relevant if, for example, error trials

need not be repeated. Thus, remaining in the current state can be

the consequence of a choice (with probability P(iRi|m)?P(m|i)), or

the consequence of an error (with probability P(m̄|i)), if error trials

must be repeated. These two possibilities need to be kept

conceptually distinct. If, after an error, the agent is positioned in

a different state, the self-link in Figure 7A and B is replaced by a

link to the corresponding state (with transition probability P(m̄|i)).

In general, P(iRi|m) and P(m|i) depend on the same value Vi, but

in different ways. All values are learned with the same learning

rule, which might be the standard TD method, or its generaliza-

tion introduced here to account for the schedule length effect. If

the latter method is used together with the full policy Equation 12,

a schedule length effect for the error rates will emerge also in the

choice-schedule tasks of Figure 6 (not shown).

Finally, this framework can be generalized to the case of

transitions in continuous time. So far, transitions (including errors)

could only happen at discrete time steps indexed by trial number,

an adequate simplification for the purpose of this study. Formally,

this means that Pij = Pij(t), where t is the trial number. However,

one could define an arbitrary time unit t, much smaller than t, so

that each trial (or any event of duration longer than t) can unfold in

time, like in the ‘‘serial compound representation’’ implementa-

tions of RL models (see, e.g., [30,31]). Each transition would thus

occur at a variable time, Pij(t) = P(iRj|m)?P(m|i;t), depending on

P(m|i;t). In this scenario, at each time step t the agent ‘‘decides’’ to

make a transition depending on P(m|i;t), and when it does, the

final state of the transition is regulated by P(iRj|m), which may

also depend on time, if the nature of the decision problem requires

it. An error trial could be defined accordingly. For example, in the

reward schedule, where reaction times are of the order of 300–

600 ms, t could be chosen to be, e.g., 20 ms and the requirement

of performing a correct trial would translate into a transition

occurring between tGO+10t and tGO+50t, where tGO marks the

time onset of the GO signal. A lack of transition within this

window is counted as an error: the agent is held in a ‘‘null’’ state

for the duration of the inter-trial interval, during which no

transitions are allowed, and then repositioned into the previous

state at the beginning of the next trial. This implementation also

allows the introduction of reaction time as the time elapsed since

tGO and when a transition occurs. It is predicted that the larger the

motivational value, the faster the reaction time, and the smaller

the number of errors, as observed in the experiments [17,22–25].

Discussion

In reward schedule tasks, monkeys make substantially more

errors in validly cued unrewarded trials than in rewarded trials.

The number of errors decreases with reward proximity. Also, the

error rates are typically smaller in trials equally distant from

reward, but belonging to longer schedules (schedule length effect;

Figure 2). Both of these features disappear and monkeys make

fewer errors in the absence of valid cues.

The monkeys do not maximize the amount of reward over the

smallest number of trials, violating a principle requiring maximi-

zation of reward over time, and also violate the principle of

invariance in trials equally far from reward, especially penultimate

trials (Figure 2). This behavioral pattern occurs in most monkeys,

thus it is robust and reliable. It only occurs after the meanings of

the cues are learned, and persists over long periods (months or

years despite constant practice in the task). Therefore, it should not

be construed as maladaptive simply because it violates the

principles of reward-maximization and invariance. Since the

monkeys were allowed to work until they stopped by themselves, it

can be inferred that they would get a sufficient amount of liquid

reward, and were simply not interested in maximizing the amount

over time.

We have argued that the monkeys’ behavior is a direct

consequence of learning the motivational values attached to each

trial by using the cues. Either randomizing the cues or damaging

the rhinal cortex prevents the formation of this typical error rates

pattern [26,32], and damaging orbitofrontal cortex blunts it [33].

In the model introduced here, the motivational values of the

schedule states arise through trial-and-error learning and lead to

suboptimal behavior. In its basic form, i.e., with s = 0, this model

can be described as TD-learning for solving the value prediction

problem [6,27]. The standard RL approach is usually concerned

with the development of behavioral strategies that adapt towards

optimality, and less often with the simpler value prediction

problem, i.e., the problem of learning to predict the long term

return obtainable starting from each behavioral state and following

a given policy. Our interpretation of the RL method used in this

work follows this thread, because the policy (the performance

function Equation 1) is fixed and is not modified by the learning

algorithm (of course its arguments, the values, are). This has been

called ‘‘learning with an indirect actor’’ by Dayan and Abbott

[34]. The particular policy used for the reward schedule departs

from previous accounts because it depends on the value of the

current state only. This is one of two core departures of our model

from existing ones (e.g., [35,36]). The second is the modification of

the learning rule so as to capture the schedule length effect.

Properties and Predictions of the Model in the Reward
Schedule Task

In our model, a single algorithm explains the differential

behavior with valid and random cues. Assuming that the average

value of the schedule states is a measure of overall motivation, the

model predicts that the overall motivation is similar in the valid

and random cue conditions. The difference in performance in the

two paradigms is a consequence of the non-linear (sigmoidal)

shape of the performance function Equation 1 (cf. Figure 4C). The

finding that the same overall level of motivation leads to different

patterns of error rates with valid and random cues is not built into

the model but is an emergent property of the learning process.

The context-sensitive model also predicts that, although the

behavior appears to be the same in all terminal trials, terminal trials

may acquire different values (see, e.g., Equation 9). This difference is

not reflected in the behavior since the latter depends on both the

values (which might be different) and the performance function

(Equation 1), which tends to remove value differences in the high

value region (Figure 4C). In this region the performance function (or

its complement) is almost flat and slight differences in value will be

unlikely to produce observable differences in error rate.

The context-sensitive behavior is also an emergent property of

the model. The model does not change the definition of the
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schedule states to accommodate their contextual meaning. Valid

cues come to ‘‘label’’ the schedule states via predictive learning.

The basic model translates these labels into a pattern of

motivational values and error rates which only depend on reward

proximity, and thus are the same in penultimate trials. This

symmetry is broken in the context-sensitive model as a

consequence of generalizing the temporal difference so as to look

backwards as well as forward, and not through a redefinition of the

schedule states.

It might seem at first that the model does not take into account

the cost of performing a trial, i.e., the cost of releasing the bar at

the GO signal. In fact, this cost could be interpreted as the origin

of the residual, non-zero error rate given by the performance

function (Equation 1) when the values are maximal (approximate-

ly, the error rate in validly-cued rewarded trials). It is also possible

to implement this cost so as to affect the values of each state,

V(S)RV(S)2c, where c stands for cost. However, since the cost of

the action is the same for all trials, it could not account for the

differential error rates in different schedule states.

Inadequacy and Generalization of Standard TD Learning
Our analysis unveils the inadequacy of standard TD learning

for the reward schedule task. The general statement can be proved

that it is not possible to capture the schedule length effect with RL

methods inspired to TD learning, including TD(l) [27], if these

only take into account the values of trials remaining in the current

schedule (cfr. Equation 4; see Materials and Methods for details).

Thus, for a method based on temporal differences to capture the

schedule length effect, its learning prescription must have access

either to the value of a past trial in the current schedule, as

proposed in this manuscript, or to the value of a trial belonging to

a different schedule, a method that is not clear how to generalize

beyond the reward schedule task.

The predictions of the context-sensitive model are the same as

standard TD learning in a wide class of other tasks involving choice,

where the values of states at decision nodes apply equally to

whatever outcome of the decision. In simple choice tasks (cf.

Figure. 5), both models predict a preference for more probable

rewards, either always—under a greedy policy—or with occasional,

temporary reversals of preference when the policy allows explor-

atory behavior—like the softmax function Equation 11. In the

choice-schedule task of Figure 6A, the context-sensitive model

predicts the same preference as the standard model. With schedules

comprising more than two trials, choice preference of one model

can be mapped into the choice preference of the other by

readjusting the value of the discount rate c appropriately. Thus

the context-sensitive model, although heuristic in its derivation,

appears to be a generalization of standard TD learning: it predicts

the same behavior in tasks where human and animal subjects

tprefer the choice leading to more probable or larger rewards; but it

also predicts the violation of the principle of invariance occurring in

the reward schedule task, not captured by the standard model; and

it predicts the ‘‘procrastination-like’’ behavior of monkeys in the

same task. The latter is to be generally expected in tasks requiring a

step-wise approach to reward, where the willingness to act in each

single trial exerts a powerful influence on the behavior. More work is

required to characterize fully the mathematical properties of the

model, and explore its possible derivation from well-defined

principles as is customary in the fields of Machine Learning and

RL, which is beyond the scope of this work.

Extension to General Markov Decision Processes
The reward schedule and choice tasks represent two particular

cases of general MDPs where the problem of making a decision

can be factorized into two sub-problems, the motivation to

perform at all, and the selection of one among alternative choices

given the motivation to act. We have used the strategy of dividing

this general problem into two parts: we have analyzed the

behavior as driven by motivational value using the reward

schedule task, and the behavior as driven by choice preference

using choice tasks. In both cases, we have compared the standard

and the novel TD model using the same policy for both. These two

components are simply multiplied in general MDPs, where by

definition both the motivation to act and choice selection can

occur.

Our results indicate that only in the choice selection problem

does the actor-critic architecture of RL [6,37] potentially have a

significant role. In the actor-critic architecture, the RL problem is

solved by two related ‘‘structures,’’ one responsible for performing

the action (the actor), the other responsible for criticizing those

actions based on evaluative feedback (the critic). Actor-critic

architectures usually lead to policies that maximize the long-term

return, and thus they seem to have only a small role in the reward

schedule task. If an underlying actor-critic is present, its

effectiveness in producing optimal control might be blunted by

an opposing force deriving from the purely motivational nature of

the problem encountered in this task, i.e., whether or not to

comply with its demands. Indeed, we have shown that it is

sufficient for the critic to assess the value of the current trial and

use it to direct the level of engagement in the task, without the

need for a more specialized actor structure as would be required

for action selection [38]. Instead, the process of valuation of

several alternatives, potentially leading to different courses of

actions and rewards as it typically occurs in general decision

problems, could benefit more from an actor-critic organization of

the behavior.

Related Work
The extension of RL to capture the fundamental role of

motivation in reinforcement schedules is currently a major

challenge for the field, and other authors have also considered

how to include motivation in RL [14,15]. These authors focused

on incorporating overall drive (e.g., such as degree of hunger or

thirst) so as to describe how habitual responses can be modified by

the current motivational level, which is, in turn, assumed to

influence generalized drive through sensitivity to average reward

levels [39]. In the reward schedule, however, we focused on how

motivation orients behavior in a trial-specific, not generalized,

manner. In such a case, an alternative solution to ascribing errors

to a decreased level of motivation is Pavlovian-instrumental

competition, which has been used to explain suboptimal behavior

[16]. Applied to the reward schedule task, this solution would posit

that error trials would result from the competition between the

negative valence of the valid cue associated to an unrewarded trial

(acquired through a Pavlovian-like mechanism), and the incentive

to perform the same trial correctly to reach the end of the schedule

and obtain reward. This interpretation is supported somewhat by

the fact that the visual cues have no instrumental role in the

reward schedule (they are neither triggers nor instructors of correct

behavioral actions). The schedule length effect, however, escapes

explanations in terms of Pavlovian-instrumental competition and

would still have to be taken into account. Instead, the single

motivational mechanism put forward in this work accounts for all

the aspects of the behavior; has a natural interpretation in terms of

learned motivation to act, however originated; and can be

extended to general MDPs.

A dependence on the value of the preceding state implemented

in our learning rule suggests an explanation of the schedule length

Violation of Invariance in Reinforcement Schedules
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effect as a history effect. When environmental cues are not perfect

predictors of the availability of resources, monkeys’ decisions about

where to forage depend on past information like the history of

preceding reinforcements [40], or stored information about recent

trends in weather [41]. Lau and Glimcher [28] have found that

past choices, in addition to past reinforcements, must be taken into

account to predict the trial-by-trial behavior of rhesus monkeys

engaged in a choice task resulting in matching behavior. However,

contrary to the statistical description of Lau and Glimcher [28],

past information in our model bears an effect on the learning rule,

not directly on the action selection process, and it does so through

the value of the previous state, as opposed to past reinforcements

or past choice history. Taken together, these findings point to

some form of sensitivity to preceding actions and visited states (or

their values) in primates’ foraging behavior, and the schedule

length effect might be a side effect of such a mechanism, perhaps

also present in other forms of reinforcement learning.

Relation to Neural Data
Current theories of reinforcement learning posit that dopami-

nergic neurons code for a prediction error signal analogous to d in

our model and in TD learning in general [30]. Data from

dopaminergic neurons of monkeys performing a reward schedule

task, however, are not in sufficient accord with the predictions of

such theories [24]. For example, one prediction is that d, and

therefore dopamine neurons, after sufficient training should cease

to respond to predicted reward, and this was not observed. Recent

developments [42,43] rule out that this could be the consequence

of the small temporal jitter around reward delivery. Despite the

incongruence with the assumed role of dopamine neurons as

signaling some form of prediction error, there is clear evidence of

the involvement of dopamine in learning. In the reward schedule,

the importance of dopamine D2 receptors for learning the

meaning of new valid cues has been demonstrated in perirhinal

cortex [26], and Ravel and Richmond [24] have argued that

salient events may drive dopaminergic neurons, whose activity

may be required for enhancing the connection of the stimulus with

its prediction in perirhinal cortex.

The contextual impact of the organization of the task in

schedules has been found in the event-related responses of neurons

in all neural structures investigated thus far in the reward schedule

task, except perhaps for neurons of the area TE [22]. The brain

area where the neural modulation with schedule state is most

apparent is the anterior cingulate cortex [44]. One third of the

neurons recorded in this area keep track of the progress through

the schedule in the Valid Cue condition, and could reflect the

(motivational) value of the schedule states and their being linked to

one another in a chain of states culminating in the rewarded trial.

Another candidate structure for the representation of the schedule

states is the perirhinal cortex, whose neurons become selective for

the meaning of the visual cues, as opposed to, e.g., TE neurons’

responses that are locked to their physical identity [22].

In some brain regions, neuronal responses are different in trials

of different schedules that might be regarded as homologous,

particularly last trials of different schedules. Dopamine neurons

[24], perirhinal neurons [22] and ventral striatum neurons [23]

respond differently to valid cues in last trials (predicting the same

reward, but in different schedules). This is reminiscent of the

phenomenon that the context-sensitive model assigns different

values to terminal trials belonging to different schedules.

Neurons of the basolateral complex of the amygdala often have

differential post-cue activity in first trials [25]. In these neurons

another, different effect related to the organization in schedules

has also been observed: these neurons increase their activity in the

pre-cue period before the beginning of each schedule. No pre-cue

activity was observed in the Random Cue condition, supporting

the hypothesis that pre-cue activity is related to the contextual

imprint of the task’s organization in schedules [25]. This activity

could be related to a context-sensitive representation of the values

of the states, either in the amygdala itself, or in areas connected to

the amygdala like perirhinal cortex [22], anterior cingulate cortex

[44] and ventral striatum [23], where the schedule state meaning

of valid cues is strongly represented. The possibility of a more

specific role of the amygdala for the emergence of the schedule

length effect will be considered later when discussing the analogous

phenomenon of ‘‘framing’’ in humans.

Finally, there is evidence for the role of the primate striatum in

learned action selection, with some authors [45] proposing for its

ventral part coding for the values of states (reminiscent of the critic

in actor-critic RL methods), and its dorsal part coding for the

values of actions and for action selection (reminiscent of the actor

[11,13,45]; but see [38]). In the reward schedule, the largest

population of ventral striatum neurons which are responsive

around the time of bar release, do so in rewarded trials, with the

second larger population being responsive in all trials [23].

Comparison of latency and periods of peak activity between these

neurons and neurons of the orbitofrontal cortex suggest that the

latter are better positioned for representing the reward contingen-

cy and thus for guiding action, whereas the former are more

related to executing the action [46]. This role is usually ascribed to

more dorsal regions of the striatum, but the involvement of the

ventral striatum is conceivable in the reward schedule, given the

simple action selection required (it amounts to the timely execution

of the bar release in all contingencies), and it is compatible with

our model, where the probability of a correct bar release is based

solely on the value of the current state and not on action values.

Interpretation of the Schedule Length Effect: Framing
and Sunk Cost

In the context-sensitive model, the mechanism responsible for

the schedule length effect leads to the violation of invariance. The

violation of this principle was invoked by Tversky and Kahneman

in their description of ‘‘framing’’ [18,19]. Framing describes the

process whereby the choice made is influenced by the manner or

context in which the choice is presented. Thaler [47] and Tversky

and Kahneman [18] showed that humans often act as if they kept

separate accounts for gains and losses, rather than estimate the

total value. A consequence of keeping separate accounts is that the

manner in which a problem is cast, in terms of gains, of losses, or

of total value influences choices. For example, people purchasing

two items, costing respectively $15 and $125, are more willing to

put an effort (for example by driving to another store) to save $5

when this is presented as a discount on the $15 item, than when

presented as a discount on the $125 item, even though the total

saving is the same [18,47,48]. Similarly, monkeys are willing to put

more effort in a trial if the total effort to get there had been larger,

even though this does not affect the upcoming reward. A ‘‘minimal

account’’ would consider only the proximity to reward, whereas

the behavior of the monkeys shows that a combination of minimal

(reward proximity) and topical (workload) accounts affects their

motivation when facing a reward schedule. From this point of

view, reward proximity could be seen as a property defining the

state (in accord with Equation 7), much like the $5 discount defines

the saving in the example above, independently of the item to

which it is nominally attached. In both cases, it is the comparison

with some truly contextual attribute that assigns a different

motivational value to the same action. Thus, especially on

penultimate trials, the length of the schedule seems to exert a
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contextual effect on the monkeys’ motivation analogous to

framing. A more direct, preliminary example of framing in

monkeys has been reported recently [49] using a task similar to

one previously used with starlings [50].

The schedule length effect is also reminiscent of the so-called

‘‘sunk cost’’ effect [20,21,51,52], ‘‘a maladaptive behavior that is

manifested in a greater tendency to continue an endeavor once an

investment in money, effort or time has been made’’ [21]. The

sunk cost phenomenon comes in different varieties and with

different interpretations (to the point of having different names,

like ‘‘Concorde effect,’’ ‘‘cognitive dissonance,’’ ‘‘work ethics,’’ see

[20] for a review), some of which come close to framing. In one

interpretation, sunk cost derives from the violation of the principle

that ‘‘a prior investment should not influence one’s consideration

of current options; only the incremental costs and benefits of the

current options should influence one’s decision’’ [20]. The

similarity with the schedule length effect and with the previous

discussion about its interpretation in terms of framing seems

obvious. A relevant example is Experiment 2 of Arkes and Blumer

[21]. In this experiment, three groups of patrons were sold season

tickets for the Ohio University Theater at three different prices,

and those who purchased tickets at either of the discounted prices

attended fewer plays during the season. In this case, the money

spent at the beginning of the season influenced the patrons’ choice

to attend the plays.

It could be argued that, in the reward schedule task, the cost of

performing trials is not strictly a ‘‘sunk’’ (wasted) cost, as it would

be if the monkeys had to start the schedule anew after each error

trial. However, this would only be a minor difference with other

instantiations of sunk cost effects; and it could similarly be argued

that the money spent in Experiment 2 of Arkes and Blumer [21] is

not a wasted cost, since it is necessary to attend the plays.

Various explanations of sunk cost and framing have been

proposed. Arkes and Ayton [20] explain the sunk cost fallacy as an

overgeneralization of the ‘‘don’t waste’’ rule, since based on their

review of the literature, the effect is not unambiguously present in

lower animals, and is not found in children [20]. Even if the

schedule length effect can legitimately be interpreted in terms of

sunk cost or framing, we think that this is unlikely to be the correct

explanation. A better explanation may be linked to emotional

factors. A functional imaging study [53] points to an important

emotional component in the susceptibility to frames in humans.

This study found the susceptibility to framing linked to amygdala

activations, with the ability to resist the frame linked to activation

of the orbital and medial frontal cortex. Similarly, we believe that

there is a strong emotional component responsible for the

monkey’s reaction to unrewarded cues (leading to larger error

rates), and possibly for the schedule length effect. Thus, a

connection between this emotional component and parameter s,

which quantifies the schedule length effect in our model, could be

speculated on the basis that a larger s implies a larger schedule

length effect, in the same way as a larger emotional component

would imply a stronger susceptibility to framing [53]. We do not

reject this idea as a possibility, but our data are not sufficient

evidence for it.

Our model does make a clear prediction in one case where

framing has been found, i.e., in the increase in preference due to

training with a larger cost [51], a case of state-dependent learned

valuation. In this experiment, starlings preferred to choose stimuli

which had previously associated with a larger effort (16 1-m flights

vs. four 1-m flights) to obtain an otherwise identical reward. Since

this paradigm pitted two reinforcement schedules of different

length against each other, there are obvious similarities with our

reward schedule task. Indeed, it would be possible to run a similar

test in monkeys by associating different cues to terminal trials in

different schedules (e.g., cue H for the longer schedule and cue L

for the shorter), and then test the monkeys’ preference in a choice

task where there is no cost (or equal cost) to obtain the same

reward from two sources, one cued with H, the other with L.

Would the monkey prefer the cue associated during training with

the longer schedule, as found in starlings [51]? Our model predicts

exactly this. Because of the accumulation of previous values, the

values of terminal trials are larger in longer schedules in the model

with s.0. Assuming that in the choice task preference depends on

the same learned values, the source of reward cued by H

(previously associated with the longer schedule) would be

preferred. This also means that our model implies state-dependent

learned valuation when the state of the animal is defined by the

cumulative effort expended to obtain the reward.

We stress, however, that our learning model is not meant to be a

general model of the effects that frames, or sunk costs, have on

humans and animals. For example, Pompilio et al [52] offer

additional evidence of state-dependent valuation in an inverte-

brate (the grasshopper), but in their case the state of the animals at

the time of learning is defined by their nutritional state (e.g., more

or less hungry) as opposed to their expended cost. They found that

the grasshoppers, in a later choice task with equal cost, prefer the

food experienced when in a lower nutritional state during learning.

We do not see a connection between this finding and the schedule

length effect, or the role of the parameter s. This should not be

surprising. As Pompilio et al. [52] point out, there may be more

than a single mechanism responsible for state-dependent valua-

tion, depending on the animal and, in the same animal, depending

on the paradigm used for training.

Conclusions
In the heuristic modification of TD learning introduced in this

work, the schedule length effect emerges spontaneously from the

sensitivity to the immediately preceding trial, leading to the

violation of the invariance principle. Since this principle is violated

in instances of framing and sunk cost effects, we have interpreted

the monkeys’ behavior using the framing and sunk cost analogies,

even though monkeys might not be susceptible to framing or sunk

cost the way humans are. We are not aware of alternative RL

models predicting the violation of the principle of invariance.

Materials and Methods

Subjects and Behavioral Paradigm
In this work we collate the behavioral data from earlier studies

on monkeys (Macaca mulatta) tested in the reward schedule task

[22–26,32,44]. In all of these studies, randomly interleaved

schedules of one, two or three trials must be completed to obtain

a reward. In n = 3 monkeys, schedules with 4 trials were also used.

A trial begins when the monkey touches a bar (Figure 1A), causing

the appearance of a visual cue. Four hundred milliseconds later a

red dot (WAIT signal) appears in the center of the cue. After a

random interval of 500–1500 ms the dot turns green (GO signal).

The monkey is required to release the touch-bar between 200 and

800 ms after the green dot appeared, in which case the dot turns

blue (OK signal), and a drop of liquid reward is delivered 250 to

350 ms later. If the monkey releases the bar outside the 200–

800 ms interval after the GO signal, an error is registered, and no

reward is delivered. To start, monkeys are trained on this simple

color discrimination task, with or without the presence of a cue,

and are rewarded for every correct trial. When performance

reaches criterion (at least 75% correct), reward schedules start.

Each reward schedule is a sequence of 1, or 2, or 3, …, or Ns trials,
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where Ns is the maximal schedule length for that session (3 or 4; see

Figure 1B for a 2-trial schedule). All schedules are selected with

equal probability, and within a schedule error trials must be

repeated until performed correctly. Only correct terminal trials are

rewarded. After a correct terminal trial, a new schedule is selected

pseudo-randomly. Each schedule state is labeled by the pair {t,s},

where t = 1, 2, …, s stands for trial and s = 1, 2, …, Ns stands for

schedule. Terminal trials have t = s. Trials of different schedules

representing the same schedule fraction (e.g., 1/2 and 2/4) are

considered different schedule states, even though they might have

been associated to the same visual cue (Valid Cue condition, see

below). Different cue sets have been used in different studies

[17,22–26,32,44,54], producing similar behavioral results. For the

data shown in Figure 2, collected by Sugase-Miyamoto and

Richmond [25] (panel A) and Shidara and Richmond [44] (panel

B), horizontal bars with different brightness were used as cues, and

the cues were brighter as the schedule progressed. Other cue sets

have also been used. Some, still based on cue brightness, had the

opposite relationship between brightness and proximity to reward,

e.g., cues were darker towards the end of the schedule, as, e.g., in

Figure 1 [22,24,32,54], to ensure that the behavior of the monkeys

was not biased by the direction of brightness. Other cue sets were

based on bar length [26,32]; still others consisted of unique stimuli

like, e.g., Walsh patterns [26], to establish that the behavior was

not a consequence of having a sensory attribute (like length or

brightness) increasing or decreasing with proximity to reward. The

typical behavioral patterns that are the main focus of this work

were similar across individual experiments and cue sets.

In the paradigm with random cues, the same visual stimuli are

present, but each stimulus is selected pseudo-randomly with equal

probability in each trial (Random Cue condition). In such a case,

there is no relationship between cues and schedule states, although

the schedules are still in effect.

The monkeys were not taught the ‘‘rules’’ of the reward

schedule task but were simply exposed to it. The behavior reported

in Figure 2 emerges spontaneously, typically within a week of the

first exposure, depending on the monkey (in some cases, it emerges

on the very first day), and it generalizes rapidly (in less than 3 days)

to different cue sets.

Data Analysis and Statistics
For each monkey, the error rates were calculated as the ratio of

the total number of incorrect trials (in all sessions) to the total

number of trials for each schedule state. Differences in error rates

across schedule states were tested with a x2 test of the contingency

table obtained from the numbers of correct and incorrect trials

(confidence was taken at the 5% level). Pair-wise comparisons of the

error rates in different schedule states were tested with the

Marascuilo procedure after a significant x2 test [55]. If the x2 test

is significant at the a level, the Marascuilo procedure [55,56]

provides a confidence interval of 100(12a)% for each pair-wise

difference of error rates |pi2pj|, where pi = ei/ni is the error rate in

schedule state i, and ei, ni are, respectively, the number of error trials

and total trials in schedule state i. The Marasquilo confidence

interval on |pi2pj| is given by bppij~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a,N{1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi 1{pið Þ

ni
z

pj 1{pjð Þ
nj

r
.

In this formula, x2
a,N{1 is the critical value of x2 with N21 degrees of

freedom at a level of significance (the point of the distribution which

leaves an area of a in the upper tail of the distribution). N is the

number of different schedule states. Schedule states with |pi2pj|.p̂ij

are significantly different at the a level.

A sign test [57] was run on the number (n+) of monkeys showing

better performance in penultimate trials belonging to longer

schedules, as compared to the number (n2) of monkeys where

either the inverted pattern, or no difference, was observed. The

‘‘exact’’ binomial probability for n+ successes in n++n2 trials was

used.

Reaction times were defined as the time elapsed since the

appearance of the GO signal and the bar release, and, as reported

previously, were generally shorter in trials more proximal to

reward [17,22–25]. Reaction times had a similar relationship to

schedule states as did error rates. Since they provide no new

qualitative interpretation, they were not analyzed further.

Model Fitting
For each monkey, the theoretical error rates (pth) were fitted to the

experimental error rates (pex) by minimizing a weighted sum of

squares, x2~
PN

i~1
pth,i{pex,ið Þ2

Dp2
i

, where the sum goes over all schedule

states in both the Valid and Random Cue conditions, and

Dpi~ niz1ð Þ{1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pex,i 1{pex,ið Þniz0:25

p
[58]. The reason for this

choice is that the interval Li,{,Li,z½ �~ pex,iniz0:5
niz1

{Dpi,
h

pex,iniz0:5
niz1

zDpi� is approximately a 68% confidence interval around

pex,i based on Wilson’s ‘‘score’’ equation [59,60], and (Li,+2Li,2)/

2 =Dpi. The theoretical error rates were given by Equations 2, 9,

and 10. The minimization of x2 was accomplished with a full

factorial search of the best-fit values for parameters b, c, and s of

Equations 2, 9, and 10.

Solution of the Model
The formula Equation 6 of the main text for the equilibrium

values of the basic model is exact only in the absence of errors,

otherwise the values are smaller and are given by the self-

consistent, recursion formula:

V Sð Þ~
Pc V Sð Þj

1{c 1{Pc V Sð Þj
� �( )

cV S0ð Þ ð13Þ

Here, S9 is the next state in the schedule, Pc|V(S);P(c|V(S)) is the

probability of correct performance in (current) state S, conditioned

on the value of that state, V(S). V(S) appears also on the left hand

side, and for this reason the formula defines V(S) only implicitly. If

S is a terminal trial, cV(S9) must be replaced by r in Equation 13.

By iteration, Equation 13 gives

Vts~ PtsPtz1,s...Pssð Þc s{tð Þr ð14Þ

where Pts:
Pc V t,sf gð Þj

1{c 1{Pc V t,sf gð Þjð Þ to simplify the notation. This set of

equations must be solved self-consistently for Vts as the Pts depend

on Vts. Under the optimal policy of not making any errors, i.e.,

with each Pc|V;1 independently of V instead of Equation 1,

Equation 14 becomes the explicit solution given by Equation 6

reported in the main text.

Equation 13 can be derived as follows: at equilibrium, V(S) is the

average of the value obtained after an error (Ve, occurring with

probability Pe|V;12Pc|V) and the value obtained after a correct

trial (Vc, probability Pc|V), conditioned on current average value

being V, i.e.

V~Vc Vð ÞPc Vj zVe Vð Þ 1{Pc Vj
� �

ð15Þ

with Vc(V) = V+a(cV92V) and Ve = V+a(cV2V). The last two

equations are simply the update equation for V after a correct

and an incorrect trial respectively; V9;V(S9) is the value of the next
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schedule state after a correct trial (cV9 must be replaced by r in

terminal trials). Solving Equation 15 for V gives Equation 13.

The same procedure, though more involved algebraically, gives

the values in the context-sensitive model:

V11~P11r,

V22~P22r 1{csP12P22ð Þ{1, V12~cP12V22,

V33~P33r 1{csP13P23ð Þ 1{cs P13P23zP23P33ð Þ½ �{1,

V23~cP23 1{csP13P23ð Þ{1
V33, V13~cP13V23,

where Prs is defined as for the basic model. This system of

equations must be solved self-consistently for the values Vrs. In the

absence of errors, each Prs = 1 and Equations 9 of the main text

follow. We have checked with simulations that the approximate

solution given by Equations 9 gives a good approximation to the

correct values on our dataset of monkeys’ data. For this reason,

Equations 2 and 9 were used to estimate the theoretical values

when fitting the theoretical error rates to the experimental error

rates.

In the Random Cue condition, the cues define the states of the

model. The model learns the values of the cues using the same

algorithm specified by Equations 1, 3, and 8, with St;cuet. The

next cue is selected at random with equal probability for all cues if

the trial is performed correctly, otherwise the current cue remains

as the next. We set d = rt+sV(cuet21)2V(cuet) in terminal trials, in

keeping with the rule adopted with valid cues. The average value

of random cues can be obtained by averaging the update equation

over all trial types that produce a different temporal difference d,

obtaining

V~Vza
X

i

fidi Vð Þ ð16Þ

i.e., gi fidi(V) = 0, where V is the sought average value, fi is the

average frequency with which trial i occurs, and di is the temporal

difference in trial i. In the basic model, it is sufficient to distinguish

three trial types: correct terminal trials, incorrect terminal trials,

and non terminal trials. The frequency (f) of correct terminal trials

is N+Pc|V, where N+ is the average fraction of rewarded trials, equal

to the number of schedules divided by the number of schedule

states. In correct terminal trials the temporal difference is d = r2V.

Incorrect terminal trials occur with frequency N+(12Pc|V) and

have d = 2V; non-terminal trials occur with frequency 12N+ and

generate a temporal difference d = (c21)V, whether the trial is

correct or not. Replacing these values in Equation 16 and solving

for V gives

V~
Pc Vj Nzr

1{c 1{Nzð Þ : ð17Þ

Equation 17 defines V only implicitly and must be solved self-

consistently to give the exact value of V. For the small error rates

usually encountered with random cues, Equation 17 is well

approximated by its version in the absence of errors (Pc|V = 1 for

any V), i.e. V~ Nzr
1{c 1{Nzð Þ. Note how V increases with c and is

constrained between the average collected reward N+r (for c = 0)

and r (for c = 1). Setting c= 0 (value at which V is minimal) is the

same as assuming that the next cue is always unknown and its

value is zero (cfr. Equation 4). This implies that having some

expectation about the next state, even a random expectation as for

the random cues, increases the values and hence the motivation to

perform correctly.

The context-sensitive model can be solved in a similar way, with

in addition non-first trials to be taken into account. The final result

is V~
Pc Vj Nzr

1{ czsð Þ 1{Nzð Þ, from which Equation 10 of the main text

follows under the approximation of small error rates, i.e., Pc|V<1.

Similar results are obtained in the case of post-reward expectation,

where the value of the next state after a rewarded trial is not set to

zero, as shown in a later subsection.

Since it is required that V.0, this result requires

(c+s)(12N+),1, or (c+s),(Ns+1)(Ns21)21. This inequality is never

violated in the basic model (where s = 0), but it might be, and must

be imposed, in the context-sensitive model, especially for long

maximal schedule lengths. Similar restrictions coming from the

values of valid cues also apply (e.g., s,1/2c from Equation 9).

Insufficiency of Forward-Type Methods of Temporal
Difference Learning (Including TD(l))

Here we show that it is not possible to obtain values dependent

on schedule length (like in the context-sensitive model) by using a

standard TD learning rule, which considers only future trials

within the current schedule. The most general such rule can be

written as dt~rtz
P

i~1,T

aiV Stzið Þ{V Stð Þ, where the coefficients

{ai}i = 1,2,…,T may depend on pre-reward number (i.e., the number

of trials remaining before reward), but not on schedule length. t+T

is the time at which the terminal trial is reached: when St is a

terminal trial, the states St+i are not defined and their values are set

to zero. It is more convenient to express the values as a function of

the number, n, of trials remaining before reward (‘‘0’’ being the

terminal trial), conditioned on schedule length being s, V(n|s), as in

Equation 7 of the main text. At equilibrium (dt = 0) one has

V(1|s) = a1V(0|s). Since V(0|s) = r does not depend on s, V(1|s) does

not depend on s, which in turn implies that V(2|s) = a1V(1|-

(2|s) = a1V(1|s)+a2V(0|s) does not depend on s, and so on. It

follows by induction that V(n|s) does not depend on s for all pre-

reward numbers n, and for any value of the coefficients an (some of

which may vanish). This result holds also in the case of post-

reward expectation, where the value of the next state after a

rewarded trial is not set to zero and the forward terms in the series

g aiV(St+i) are taken to the (T+1)th term. As shown later, all values

are re-scaled by a constant factor which does not depend on s,

leaving the above argument unchanged.

It follows from this argument that, to obtain the schedule-length

effect, it is necessary either to look backwards at the values of

previous trials in the same schedule (as in the context-sensitive

model of the main text), or to take into account trials belonging to

different schedules [61]. The notable TD(l) rule (see, e.g., [6]),

that has been suggested to be implemented by dopamine neurons

of rats [62], considers only forward trials within the current

schedule, and therefore cannot produce the contextual effect due

to schedule length. In fact, here we show that for the reward

schedule, the equilibrium values in the TD(l) rule are the same as

those obtained with the basic model. In TD(l), all forward trials

within a schedule are considered, weighted by imminence.

Formally, when in state St at time t, the TD term is evaluated

as

dt~
1

NT

X
i~1,T li{1R

ið Þ
t {V Stð Þ ð18Þ

where the sum is over all states remaining until the terminal one

(reached after T steps). l is a parameter between zero and one;
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NT;1+l+l2+…+lT21 is a normalization factor; and R
ið Þ

t ~rtz

crtz1z . . . zci{1rtzi{1zciV Stzið Þ is the i-steps-ahead predic-

tion starting from St. (If l = 0, Equation 18 reduces to

dt = rt+cV(St+1)2V(St), the basic model of the main text.) The

values are updated in the usual way: Vt+1 = adt. In the reward

schedule it is R
ið Þ

t ~ciV Stzið Þ (only the terminal trial is rewarded),

and Equation 18 reads

dt~
1

NT

cV Stz1ð Þzlc2V Stz2ð Þz . . . zlT{1cT V StzTð Þ
� �

{V Stð Þ,
ð19Þ

where t+T is the time at which the terminal trial is reached. The

solution to dt = 0, with dt given by Equation 19, is the same as for

the basic rule (Equations 3 and 4 of the main text), i.e.,

V(St+i) = cT2ir, or V(t,s) = cs2tr if St;{t,s}, as can be proved, e.g.,

by direct substitution. This was confirmed in simulations of TD(l)-

learning of the reward schedule implemented through the use of

eligibility traces, an alternative approach to TD(l) (see [6] for

details).

Solution of the Model with Post-Reward Expectation
So far, the value of the next state at the end of each schedule

had been to set to zero. In other words, the learning rule following

a rewarded trial is dt = rt+sV(St21)2V(St), which written in this

form applies to all cases, including the case of random cues and the

basic model (where s = 0). As said in the main text, this is the

common choice in RL [6]. Here we show that behavior predicted

by the model does not change if we assign a positive value to the

next state (‘‘post-reward expectation’’). The reason is that, in a

terminal trial, the next trial is not known and thus the same value

must be assumed independently of current schedule. The actual

value is immaterial, but for the sake of argument we shall make a

choice. In the Random Cue condition, the current value of any

cue chosen at random will do; in the Valid Cue condition, since

the only available information is that the next state will be one of

the initial trials {1,s}, the average value of all first trials will be

taken, i.e., V Stz1ð Þ~SV 1,sð ÞT:N{1
s

P
i~1,Ns

V 1,ið Þ. It can be

shown that the average value of each state is increased by a

constant factor (12cq)21, where q is the ratio of the value of the

state post-reward to the value of rewarded trials. For the value

chosen above (average of first trials), q~N{1
s

P
i~1,Ns

ci{1 (note that

this choice gives cq,1). Similarly, the value of random cues

changes from V~
Pc Vj Nzr

1{ czsð Þ 1{Nzð Þ to V~
Pc Vj Nzr

1{c{s 1{Nzð Þ. Thus,

there is no qualitative difference with respect to the case of no

post-reward expectation of the main text. A similar argument also

shows that the qualitative behavior does not change if s.0 in first

trials of each schedule in the context-sensitive model.
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