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Abstract

Speech production involves the movement of the mouth and other regions of the face resulting in visual motion cues.
These visual cues enhance intelligibility and detection of auditory speech. As such, face-to-face speech is fundamentally a
multisensory phenomenon. If speech is fundamentally multisensory, it should be reflected in the evolution of vocal
communication: similar behavioral effects should be observed in other primates. Old World monkeys share with humans
vocal production biomechanics and communicate face-to-face with vocalizations. It is unknown, however, if they, too,
combine faces and voices to enhance their perception of vocalizations. We show that they do: monkeys combine faces and
voices in noisy environments to enhance their detection of vocalizations. Their behavior parallels that of humans
performing an identical task. We explored what common computational mechanism(s) could explain the pattern of results
we observed across species. Standard explanations or models such as the principle of inverse effectiveness and a ‘‘race’’
model failed to account for their behavior patterns. Conversely, a ‘‘superposition model’’, positing the linear summation of
activity patterns in response to visual and auditory components of vocalizations, served as a straightforward but powerful
explanatory mechanism for the observed behaviors in both species. As such, it represents a putative homologous
mechanism for integrating faces and voices across primates.
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Introduction

When we speak, our face moves and deforms the mouth and

other regions [1,2,3,4,5]. These dynamics and deformations lead

to a variety of visual motion cues (‘‘visual speech’’) related to the

auditory components of speech and are integral to face-to-face

communication. In noisy, real world environments, visual speech

can provide considerable intelligibility benefits to the perception of

auditory speech [6,7], faster reaction times [8,9], and is hard to

ignore—integrating readily and automatically with auditory

speech [10]. For these and other reasons, it’s been argued that

audiovisual (or ‘‘multisensory’’) speech is the primary mode of

speech perception and is not a capacity that is simply piggy-backed

onto auditory speech perception [11].

If the processing of multisensory signals forms the default mode of

speech perception, then this should be reflected in the evolution of

vocal communication. Naturally, any vertebrate organism (from

fishes and frogs, to birds and dogs) that produces vocalizations will

have a simple, concomitant visual motion in the area of the mouth.

However, in the primate lineage, both the number and diversity of

muscles innervating the face [12,13,14] and the amount of neural

control related to facial movement [15,16,17,18] increased over

time relative to other taxa. This ultimately allowed the production of

a greater diversity of facial and vocal expressions in primates [19],

with different patterns of facial motion uniquely linked to different

vocal expressions [20,21]. This is similar to what is observed in

humans. In macaque monkeys, for example, coo calls, like the /u/

in speech, are produced with the lips protruded, while screams, like

the /i/ in speech, are produced with the lips retracted [20].

These and other homologies between human and nonhuman

primate vocal production [22] imply that the mechanisms underlying

multisensory vocal perception should also be homologous across primate

species. Three lines of evidence suggest that perceptual mechanisms

may be shared as well. First, nonhuman primates, like human infants

[23,24,25], can match facial expressions to their appropriate vocal

expressions [26,27,28,29]. Second, monkeys also use eye movement

strategies similar to human strategies when viewing dynamic,

vocalizing faces [30,31,32]. The third, indirect line of evidence comes

from neurophysiological work. Regions of the neocortex that are

modulated by audiovisual speech in humans [e.g., 8,33,34,35,36,37],

such as the superior temporal sulcus, prefrontal cortex and auditory

cortex, are similarly modulated by species-specific audiovisual

communication signals in the macaque monkey [38,39,40,41,42,43].

However, none of these behavioral and neurophysiological results

from nonhuman primates provide evidence for the critical feature of

human audiovisual speech: a behavioral advantage via integration of the
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two signal components of speech (faces and voices) over either

component alone. Henceforth, we define ‘‘integration’’ as a statistically

significant difference between the responses to audiovisual versus

auditory-only and visual-only conditions[44].

For a homologous perceptual mechanism to evolve in monkeys,

apes and humans from a common ancestor, there must be some

behavioral advantage to justify devoting the neural resources

mediating such a mechanism. One behavioral advantage con-

ferred by audiovisual speech in humans is faster detection of

speech sounds in noisy environments—faster than if only the

auditory or visual component is available [8,9,45,46]. Here, in a

task operationalizing the perception of natural audiovisual

communication signals in noisy environments, we tested macaque

monkeys on an audiovisual ‘coo call’ detection task using

computer-generated monkey avatars. We then compared their

performance with that of humans performing an identical task,

where the only difference was that humans detected /u/ sounds

made by human avatars. Behavioral patterns in response to

audiovisual, visual and auditory vocalizations were used to test if

any of the classical principles or mechanisms of multisensory

integration [e.g. 47,48,49,50,51,52,53] could serve as homologous

computational mechanism(s) mediating the perception of audio-

visual communication signals.

We report two main findings. First, monkeys integrate faces and

voices. They exhibit faster reaction times to faces and voices

presented together relative to faces or voices presented alone —and

this behavior closely parallels the behavior of humans in the same

task. Second, after testing multiple computational mechanisms for

multisensory integration, we found that a simple superposition

model, which posits the linear summation of activity from visual and

auditory channels, is a likely homologous mechanism. This model

explains both the monkey and human behavioral patterns.

Materials and Methods

Ethics statement
All experiments and surgical procedures were performed in

compliance with the guidelines of the Princeton University

Institutional Animal Care and Use Committee. For human

participants, all procedures were approved by the Institutional

Review Board at Princeton University. Informed consent was

obtained from all human participants.

Subjects
Nonhuman primate subjects were two adult male macaques

(Macaca fascicularis). These monkeys were born in captivity and

provided various sources of enrichment, including cartoons

displayed on a large screen TV as well as olfactory, auditory

and visual contact with conspecifics. The monkeys underwent

sterile surgery for the implantation of a head-post.

The human participants consisted of staff or graduate students

(n = 6, 4 males, mean age = 27) at Princeton University. Two of

the subjects were authors on the paper (CC, LL). The other four

human subjects were naı̈ve to the purposes and goals of the

experiment.

Avatars
We would like to briefly explain here why we chose to use

avatars. First, it is quite difficult to record monkey vocalizations

which only contain mouth motion without other dynamic motion

components such as arbitrary head motion and rotation— which

themselves may lead to audiovisual integration [54]. Second, start

and end positions of the head from such videos of vocalizations, at

least for monkeys, tend to be very variable which would add

additional visual motion cues. Third, we wanted constant lighting

and background and the ability to modulate the size of the mouth

opening and thereby parameterize visual stimuli. Fourth, the goal

of this experiment was to understand how mouth motion

integrated with the auditory components of vocalizations and we

wanted to avoid transient visual stimuli. Real videos would not

have allowed us to control for these factors; avatars provide us with

considerable control.

Monkey behavior
Experiments were conducted in a sound attenuating radio

frequency (RF) enclosure. The monkey sat in a primate chair fixed

74 cm opposite a 19 inch CRT color monitor with a 128061024

screen resolution and 75 Hz refresh rate. The 128061024 screen

subtended a visual angle of ,25u horizontally and 20u vertically.

All stimuli were centrally located on the screen and occupied a

total area (including blank regions) of 6406653 pixels. For every

session, the monkeys were placed in a restraint chair and head-

posted. A depressible lever (ENV-610M, Med Associates) was

located at the center-front of the chair. Both monkeys spontane-

ously used their left hand for responses. Stimulus presentation and

data collection were performed using Presentation (Neurobehav-

ioral Systems).
Stimuli: Monkeys. We used coo calls from two macaques as

the auditory components of vocalizations; these were from

individuals that were unknown to the monkey subjects. The

auditory vocalizations were resized to a constant duration of 400

milliseconds using a Matlab implementation of a phase vocoder

[55] and normalized in amplitude. The visual components of the

vocalizations were 400 ms long videos of synthetic monkey agents

making a coo vocalization. The animated stimuli were generated

using 3D Studio Max 8 (Autodesk) and Poser Pro (Smith Micro),

and were extensively modified from a stock model made available

by DAZ Productions (Silver key 3D monkey). As a direct stare or

eye contact in monkeys means a challenge or a threat, the

direction of the gaze of monkey avatars was averted slightly to a

target approximately 20 degrees to the left of straight ahead. To

increase the realism of the monkey avatars, we used the base skin

Author Summary

The evolution of speech is one of our most fascinating and
enduring mysteries—enduring partly because all the
critical features of speech (brains, vocal tracts, ancestral
speech-like sounds) do not fossilize. Furthermore, it is
becoming increasingly clear that speech is, by default, a
multimodal phenomenon: we use both faces and voices
together to communicate. Thus, understanding the
evolution of speech requires a comparative approach
using closely-related extant primate species and recogni-
tion that vocal communication is audiovisual. Using
computer-generated avatar faces, we compared the
integration of faces and voices in monkeys and humans
performing an identical detection task. Both species
responded faster when faces and voices were presented
together relative to the face or voice alone. While the
details sometimes appeared to differ, the behavior of both
species could be well explained by a ‘‘superposition’’
model positing the linear summation of activity patterns in
response to visual and auditory components of vocaliza-
tions. Other, more popular computational models of
multisensory integration failed to explain our data. Thus,
the superposition model represents a putative homolo-
gous mechanism for integrating faces and voices across
primate species.

Face/Voice Integration in Humans and Monkeys
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texture extracted from photographs of real macaques. When

presented on the screen, the monkey avatar was 6.5’’ wide (12.25u)
at the shoulder and 4.5’’ (8.55u) tall from the top of the head to the

bottom of the screen. The face itself was 2.75’’ wide (5.25u)
between the eyes and 3’’ (5.72u) tall from the top of the head to the

bottom of the chin, with the width of the face tapering as it neared

the mouth. The audiovisual stimuli were generated by presenting

both visual and auditory-only components with an 85-millisecond

lag between the onset of mouth opening and the sound of the

vocalization. Such a lag is within the natural range for macaque

monkeys [40].

Task structure for monkeys. Monkeys were trained to

detect two coo vocalizations according to a redundant target free-

response paradigm [56]; detection was indicated by a lever-press.

Redundant target paradigms refer to experimental designs where

two or more targets appear simultaneously and responses to any

target are considered as hits (see for example, [51,57,58,59]). They

could be from different modalities (visual and auditory) or from the

same modality (color and shape). In our case, the redundant

targets were motion of the mouth and the sound of the coo

vocalization. Free response paradigms refer to the absence of

explicit trial markers [56,60]. We chose a free response paradigm

because it mimics natural audiovisual communication—faces are

usually continuously visible and move during vocal production.

Coo vocalizations were presented at different loudness levels (50–

85 dB) and at random intervals in ,63 dB spectrally pink

background noise; each vocalization was paired with a synthetic

monkey face whose mouth opened in a manner concordant with

the loudness of the vocalizations. During every block of the

experimental session, a face was always visible, but, only moved for

its corresponding identity matched vocalization. The identity of

the avatar was counter-balanced across blocks of 60 trials with an

inter-block interval ranging from 10–12 seconds in duration. The

stimuli-- auditory-only, visual-only and audiovisual conditions--

were presented at an inter-sound-interval drawn from a uniform

distribution between 1 and 3 seconds. Monkeys were trained to

respond to the coo vocalization events in visual, auditory or

audiovisual conditions while withholding responses when no

stimuli were presented. A press of the lever within a window of

135 to 2000 milliseconds after onset of the vocalization event led to

a juice reward. Lever presses outside this window were defined as

false alarms and a timeout ranging anywhere from 3 to 5.5 seconds

was imposed. Any press during this timeout period led to a

renewal of the timeout with the duration again randomly drawn

from a uniform distribution from 3 to 5.5 seconds. The monkeys

had to wait the entire duration of this timeout period before a new

stimulus was presented. A session usually lasted from 300 to 600

trials spanning durations of 25 to 50 minutes.

Reaction times and accuracy. Reaction times (RT) were

measured as the first depression of the lever after onset of the

stimulus. In a free response paradigm, one can define hits, misses

and false alarms. A response within the 135 – 2000-millisecond

window after the onset of the stimulus was rewarded with a drop of

juice and defined as a hit. An omitted response in this window was

classified as a miss [56,60]. A response outside this 2 second period

where no vocalizations was defined as a false alarm. Hit rate was

defined as the ratio of hits to hits plus misses. For each SNR and

condition, the accuracy was defined as the ratio of hits to hits plus

misses expressed as a percentage. The false alarm rate was defined

as number of false alarms divided by the sum of hits and false

alarms. We only took sessions where false alarm percentages were

low (in the 10 – 20 %) range keeping with prior standards in the

literature [61]. Monkeys were trained until false alarms were

around 10–20 %. Hit rate and False alarm rate from two example

sessions from monkey 1 are shown in Figures S1A, B along with

the quantification of the average false alarm rate across sessions

(Figure S1C).

Training. Monkeys were shaped through standard operant

conditioning techniques over several months (8 months for monkey

1 and 5 months for monkey 2) to respond to vocalization events but

withhold responses during the inter-stimulus interval. Training was

performed by first shaping the monkey to press a lever for juice

reward, then to a sound with a large signal to noise and a large

window for gaining a reward. Once the monkey had learned to

respond reliably to vocalizations (.80 % hit rate) but withheld

responses during the inter-stimulus interval (,20 % false alarms),

different SNRs were introduced along with a concomitant

restriction of the response window to two seconds. Static and

moving faces were then introduced and auditory and audiovisual

stimuli were randomly presented. Finally, the control condition of

visual-only, that is, facial motion without any accompanying

vocalization was introduced, leading monkeys to respond reliably

to visual-only, auditory-only and audiovisual coo vocalizations.

Human behavior
Experiments were conducted in a psychophysics booth. The

human sat in a comfortable chair approximately 65 cm opposite a

17 inch LCD color monitor with a 128061024 screen resolution

and 75 Hz refresh rate. The 128061024 screen subtended a visual

angle of 28 degrees horizontally and 24 degrees vertically. All

stimuli were centrally located on the screen and occupied an area

of 6406653 pixels. All stimulus presentation and data collection

were performed using Presentation (Neurobehavioral Systems).

Stimuli: humans. For humans, vocalization stimuli were /

u/sounds made by two female undergraduates at Princeton

University recorded using a Canon Vixia HD100 digital

camcorder. These vocalizations were resized to a constant length

of 400 milliseconds and normalized in amplitude. For visual

stimuli, we again used 400 ms synthetic avatars created using the

Poser Pro program. In particular, we modified the stock poser

model (Sydney, Smith micro pro) and used the animation available

for making an /u/ sound. Two avatars were created by altering

the shape of the face and the hair to generate two different avatars.

The human avatar was 5’’ wide (11.95u) and 6’’ tall from the top of

the head (14 degrees). The face itself was 5’’ wide (11.95u) between

the eyes and 5.5’’ (13u) tall from the top of the head to the bottom

of the chin, with the width of the face decreasing in width near the

mouth. Each avatar was paired with a vocalization and this

identity correspondence was always maintained.

Task structure for humans. For humans, we used an

almost identical task structure as the monkeys with minor

modifications. In particular, we reduced the timeout periods for

false alarms as humans very rarely made them. Second, blocks

were longer with number of trials ranging from 90 to 105 trials per

block. Each session contained 4 blocks. Again, the order of avatars

was randomized and counterbalanced across avatars. Each human

subject completed at least 2 sessions, leading to approximately 60

trials per modality and SNR level. Humans pressed the spacebar

button on the keyboard to denote successful detection. We

measured accuracy and RTs as described above for monkeys.

Statistical analysis of behavioral performance
Comparison between audiovisual, auditory-only and

visual-only RTs. We used non-parametric tests for comparing

the RT distributions for visual, auditory and audiovisual

vocalizations. For single subjects (both monkeys and humans),

RTs were compared first by using a Kruskal-Wallis non-

parametric ANOVA comparing whether RT distributions were

Face/Voice Integration in Humans and Monkeys
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significantly different between visual-only, auditory-only and

audiovisual conditions. Post-hoc tests were conducted using

Mann-Whitney tests comparing whether these distributions were

different on a single subject and SNR basis. For the monkeys, we

chose the Mann-Whitney test over paired t-tests because the RT

distributions were not normal and also had different number of

trials for different conditions (because of misses, etc). In addition,

for humans, we performed, a paired samples t-test comparing

normalized RTs for the audiovisual to the auditory-only and

visual-only conditions.

Standard error for means and medians. We computed

bootstrap error bars by resampling the raw RT distributions with

replacement 1000 times and estimating the standard deviation of

the mean of the resampled data.

Bootstrap test for benefits in monkeys. To test if values of

benefits for monkeys were significantly different from 0, we

calculated the difference between mean RT of the audiovisual and

the minimum of the mean RTs of the auditory-only and visual-

only conditions. We then computed a sampling distribution for

these benefits by resampling from the audiovisual and the

condition of interest. The difference of the means was

considered statistically significantly if the 95% bootstrap

confidence interval did not include zero.

Deriving a window of integration using pooled data from

monkeys and humans. We used the session-by-session

variability of monkeys and variance across humans to derive a

window of integration. For example, Monkey 1’s RTs on three

successive days for the loudest SNR of 22 dB were as follows. Day1:

V – 598 ms, A – 526 ms, AV – 470. Day 2: V – 779 ms, A –

498 ms, AV – 492 – ms. Day 3: V – 611 ms, A – 492 ms, AV –

438 ms. The benefits, in each of these cases are, 55 ms, 5 ms and

53 ms. The corresponding differences between the visual-only and

auditory-only RTs are 71 ms, 281 ms and 118 ms. Thus, when the

discrepancy between visual and auditory-only RT was too large

(.250 ms) then the benefit was at most 5 ms. On the other hand,

when the visual-only and auditory-only RTs were closer (,80 to

120 ms) then the benefit was robust and was 55 ms in magnitude.

Race model
Our audiovisual detection experiment is an extension of the

classical redundant signals paradigm. In such experiments, it is

common to observe that RTs to multisensory targets presented

simultaneously are faster than unisensory RTs. This effect is

usually termed the ‘‘redundant signals effect’’. One important class

of explanations for the redundant signals effect is the ‘‘race

model’’. According to the race model (or a ‘‘parallel first

terminating’’ model), redundancy benefits are not due to an

actual integration of visual and auditory cues. To illustrate, assume

that the time to detect and respond to a single target—e.g., the

facial motion--varies according to a statistical distribution.

Similarly, the time to detect and respond to the auditory-only

vocalization also varies according to a statistical distribution.

Whenever, both facial motion and the vocalization are presented

together, the stimulus that is processed faster in a given trial

determines the response time. As the RT distributions typically

overlap with one another, slow processing times are removed.

Thus, RTs to redundant stimuli are always faster than those for

the single stimuli. A standard way to test whether this principle can

explain RT data is to use the race model inequality [57], which

posits that the cumulative RT distribution for the redundant

stimuli never exceeds the sum of the RT distributions for the

unisensory stimuli. That is, if FAV (t), FV (t) and FA (t) are the

estimated cumulative distributions (CDF) of the RTs for the three

different modalities

FAV tð Þƒ FA tð ÞzFV tð Þ

then one cannot rule out race models as an explanation for the

facilitation of RT. On the other hand, if this inequality is violated

in a given data set, then parallel processing cannot completely

account for the benefits observed for multisensory stimuli and an

explanation based on co-activation is necessary. We computed the

CDFs of our conditions and then computed the difference between

the actual CDF of the audiovisual condition and the CDF

predicted by the race model. The maximum positive point of this

difference was taken as the index of violation, R. Positive values of

R means that the race model is rejected. If this value is 0, then the

race model is upheld.

Tests of race model violations for single subjects. We

needed to test whether these race model violations were

statistically significant. To test the violations of the race model

on a single subject basis, we compared the true value of R to one

computed by a bootstrap method that performs artificial iterations

of our multisensory experiments. A variant of this conservative

bootstrap method using the area instead of the maximum was

originally outlined in seminal studies of behavioral multisensory

integration in humans [51]. The entire experiment (i.e. AV, V, A)

was simulated 10,000 times for each monkey and each SNR with

the following steps carried out for each simulation. Simulated RTs

for the auditory-only and visual-only conditions were obtained by

randomly sampling (with replacement) from the observed

distributions of auditory and visual-only RTs for that subject.

For the audiovisual condition, in accordance with the race model,

the simulated RT was obtained by sampling two RTs (one from

the visual RT distribution, one from the auditory RT distribution),

and then selecting the minimum of the two values. In addition, as

the maximum value for the race model inequality is obtained

when the times for the two racers are strongly negatively

correlated with one another, we adopted a criterion that

introduces a strong negative correlation in the simulation. This

was accomplished by randomly selecting an RT from one

distribution (e.g., visual-only) that is at a percentile P in the

distribution and then sampling the auditory distribution with

percentile 100 – P. Thus fast responses to visual motion are paired

with slow responses to auditory vocalizations and vice versa,

providing a strong and conservative test of the race model. After

sampling the appropriate number of trials for each condition, the

CDFs and the index of violation (Rb) for each experiment was

obtained. The distribution of Rb was then compared to the real

value of R. A p-value as a test of significance was obtained by

computing the number of simulated values (Rb) that exceeded the

true value R estimated from the data.

Tests of race model violations for humans. When data

from multiple subjects are available (as in the case of our human

data), instead of using bootstrap models, one can test the race

model by obtaining the cumulative distribution functions for all

subjects and evaluating the consistency of violations of the race

model across subjects. To achieve this, we again adapted a

permutation test recently developed for testing the violations of the

race model. Here we briefly describe the procedure; further details

are provided in [62]. We first estimated for each participant, the

cumulative distribution function for each SNR for auditory, visual

and audiovisual conditions, we then computed the difference d for

each participant i as

di tð Þ~ Fi
AV tð Þ{Fi

A tð Þ{Fi
V tð Þ

Face/Voice Integration in Humans and Monkeys
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where F denotes the estimate of the true cumulative distribution

function. When di is positive it means that the race model is

violated and when di is negative it means that the pattern of RTs

are not different from those predicted by a race model. If di follows

an approximate normal distribution and sd is the standard

deviation estimated from the sample data, one can then use a

one sample t-test to test if this is significant at a single t. However, a

more robust way that controls for type I error for multiple time

points is to use a permutation test. The assumption for this

permutation test is as follows. If the race model holds, then the sign

of d will be random across participants with some participants

showing violations of the race model (d is positive) and some

showing no violation of the race model (d is negative). The average

across participants would then be equal to 0. We therefore used a

permutation test where we randomly multiplied the participant-

specific value of d by +1 or -1 (with probability 0.5) and then

calculated the t values for multiple time points (280 – 350 ms, into

8 bins). The test statistic for multiple time points then corresponds

to the maximum of the t values (so-called tmax statistic). We

repeated this permutation 10001 times to generate a distribution

of the test statistic and computed a p value by identifying the

proportion of permuted test statistics that exceeded the true value

of the test statistic.

Superposition models of audiovisual integration
Several models of audiovisual integration have been proposed

over the years, but superposition models are simple and possess

considerable explanatory power. Here we briefly describe the

model, and detailed explanations are available elsewhere [63,64].

We first consider the case of single modality trials (visual or

auditory). We assume that the onset of the stimulus (i.e. visual

mouth motion or the auditory vocalization) induces a neural

renewal counting process (for examples, action potentials or spikes,

but it could be any event which is counted) that counts up to a

critical number of events, c. The assumption is that, as soon as a

critical number of events, c, have been registered at some decision

mechanism, a response execution process, M, which consumes an

amount of time with a mean mM, is started. The main postulate of

the superposition model is that in the audiovisual condition the

renewal processes generated by either the visual and the auditory

signals are superposed, thereby reducing the waiting time for the

critical count. Specifically, if NV (t) and NA (t) are themselves

counting processes for the visual-only and auditory-only condi-

tions, and the two stimuli are presented simultaneously, that is with

0 lag, then the new process for the audiovisual stimulus is given as

NAV tð Þ~ NA tð Þz NV tð Þ

It is immediately apparent that this audiovisual process will

reach the critical level of c counts faster than the individual

auditory and visual processes. If the auditory-only and visual-only

stimuli are presented with a lag of say t, as in our case with visual

mouth motion preceding the auditory vocalization by t millisec-

onds, then the process becomes,

NAV tð Þ~ NA t-tð ÞzNV tð Þ

To specify this model fully and test and fit to data, one must

specify an inter-arrival distribution. Usually this is assumed to be

exponential in nature that leads to a homogenous Poisson

counting process. For t = 0, the waiting time for the cth event is

well defined and follows a gamma distribution with mean c/l and

variance c/l2, where l (l.0) is the intensity parameter of the

Poisson process. For example, the auditory and visual-only RT

would then be

E½RTA�~
c

lA

zmM

E½RTV �~
c

lV

zmM

The mean audiovisual RT would be given by the following

simple expression. It is the waiting time for the cth with the visual

and auditory rates summed and is given as follows.

E½RTAV �~
c

lV zlA

zmM

When this model is to be applied when there are differences in

the SOAs, that is, t.0, the waiting time for the cth event is no

longer gamma distributed and instead follows a more complicated

distribution. Fortunately, this model has been completely expli-

cated and published expressions are already available [63,64]. The

audiovisual RT in this case is the expected value of the waiting

time to the cth count.

Prediction of audiovisual RTs. We assumed that across all

conditions and intensities, the values of c and mM are constant

across conditions. These assumptions are reasonable for the

following reasons. A constant c means the criterion is constant

across conditions and intensities. A constant value of mM means

that the average motor time is constant across all these conditions.

For the five auditory-only and visual-only conditions, we estimated

for each of the different SNRs, using the real values of RTs, RTA,

RTV, the values of the rate parameters lA and lV for each of the

different intensities then are given by the following expressions.

1

lAi

~
E½RTAi

�{mM

c

1

lVi

~
E½RTVi

�{mM

c

i denotes the ith SNR or mouth opening size. We then estimated

the audiovisual RTs according to the equation for RTAV, we

allowed the value of c to vary from (2 to 50) and mM from (150 to

450) and found the best values of c and mM which minimized the

least square error between the true audiovisual R and the

predicted value of the RT according to the equation. We chose

these values of c and mM and then created simulated audiovisual

RTs.

Simulation of auditory, visual and audiovisual reaction

times. To derive simulated auditory, visual and audiovisual

RTs and benefit curves, we first found the relationship between

lAi and SNR at each of the different measured SNRs and then

interpolated to get smooth estimates of lA and SNR. We

performed a similar analysis to get an estimate of lV and values

of c and M were derived from the true data. We then again

estimated the value of the audiovisual RT and derived the benefit

values in a similar way as the real data.

Face/Voice Integration in Humans and Monkeys
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Results

Monkeys were trained, and humans were asked, to detect

auditory, visual or audiovisual vocalizations embedded in noise as

fast and as accurately as possible. This task was similar to a

redundant signals paradigm [57], and was designed to approxi-

mate a natural face-to-face vocal communication event in close

encounters. In such settings, the vocal components of the

communication signals are degraded by environmental noise.

The face and its motion, on the other hand, are usually perceived

clearly. In the task, monkeys responded to ‘coo’ calls that are

affiliative vocalizations commonly produced by macaque monkeys

in a variety of contexts [65,66, Figure 1A]; humans were asked to

detect the acoustically similar vowel sound /u/ (Figure 1B). All

vocalizations had five different levels of sound intensity and were

embedded in a constant background noise. The signal-to-noise

ratio (SNR) ranged from 210 dB to +22 dB relative to a

background noise of 63 dB. For dynamic faces, we used computer-

generated monkey and human avatars (Figures 1C, D). The use of

avatars allowed us to restrict facial motion to the mouth region,

ensure constant lighting and background, and to parameterize the

size of the mouth opening while keeping eye and head positions

constant. The degree of mouth-opening was in accordance with

the intensity of the associated vocalization: greater sound intensity

was coupled to larger mouth openings by the dynamic face

(Figure 1E). Two coos and two /u/ sounds were paired with two

monkey and human avatars, respectively, and this pairing was kept

constant. Furthermore, species-stimuli pairings were kept constant:

monkeys only saw and heard monkey vocalizations, and humans

only saw and heard human vocalizations. Previous psychophysical

and fMRI experiments have successfully used computer-generated

human avatars to probe the processing of audiovisual speech

[54,67,68,69].

During the task, one avatar face would be continuously on the

screen for a block of trials (n = 60); the background noise was also

continuous (Figure 1F). In the ‘‘visual only (V)’’ condition, this

avatar would move its mouth without any corresponding auditory

component; that is, it silently produced a coo for monkey avatars

or an /u/for human avatars. In the ‘‘auditory-only (A)’’ condition,

the vocalization normally paired with the other avatar (which is not

on the screen) is presented with the static face of the avatar. Finally,

in the ‘‘audiovisual (AV)’’ condition, the avatar moves its mouth

accompanied by the corresponding vocalization and in accordance

(degree of mouth opening) with its intensity. Each condition (V, A,

or AV) was presented after a variable interval (drawn from a

uniform distribution) between 1 and 3 seconds. Subjects indicated

the detection of an event (visible mouth motion, auditory signal or

both) by pressing a lever (monkeys) or a key (humans) within 2

seconds following the onset of the stimulus. Every 60 trials, a brief

pause was imposed, followed by a new block in which the avatar

face was switched on the screen, and the identity of the coo or /u/

sound used for the auditory-only condition was switched as well.

Accuracy and reaction time
We measured the accuracy of the monkeys and humans

detecting vocalizations in the audiovisual, auditory-only and

visual-only conditions. Figure 2A shows the detection performance

of Monkey 1 averaged over all sessions (both coo calls) as a

function of SNR for the three conditions of interest. In the case of

the visual-only condition, the size of mouth opening has a constant

relationship with the auditory SNR and it is thus shown on the

same x-axis. In the auditory-only condition, as the coo call

intensity increased relative to the background noise, the detection

accuracy of the monkey improved. In contrast, modulating the size

of the mouth opening in the visual-only condition had only a weak

effect on the detection accuracy. Finally, the detection accuracy for

audiovisual vocalizations was mildly enhanced relative to the

visual-only condition and with very little modulation as a function

of the SNR. The same pattern was seen for Monkey 2 (Figure 2B).

When the data was pooled over all the SNRs, accuracy was

significantly better for both monkeys in the audiovisual condition

compared to either unisensory condition (paired t-tests, Monkey
1: AV vs V, t (47) = 3.77, p,.001, AV vs A, t (47) = 19.94,

p,.001; Monkey 2: AV vs V, t (47) = 15.85, p,.001, AV vs A, t

(47) = 8.1, p,.001).

This general pattern was replicated in humans (n = 6). Figure 2C

shows the performance of a single human observer on this same

task detecting the /u/ sound. Excluding the lowest SNR value in

the auditory-only condition, accuracy is almost at ceiling for all

three stimulus conditions. The average accuracy over the 6 human

subjects as a function of SNR is shown in Figure 2D. Performance

pooled across all SNRs was maximal for the audiovisual condition

and was enhanced relative to the auditory-only condition (t (5)

= 2.71, p = 0.04). It was not significantly enhanced relative to the

visual-only condition (t (5) = 0.97, p = 0.37). The lack of enhance-

ment relative to the visual-only condition is likely because the

visual-only performance itself was close to ceiling for humans.

In both species, the similarities in detection accuracy for visual-

only and audiovisual conditions (Figures 2A–D) suggest that they

were perhaps not integrating auditory and visual signals but

instead may have adopted a unisensory (visual) strategy. According

to this strategy, they used visible mouth motion only for both the

visual and audiovisual conditions, and used the sound only when

forced to do so in the auditory-only condition. We therefore

examined the reaction times (RTs) to distinguish between a

unisensory versus an integration strategy. Figures 3A, B show the

mean RT as a function of the SNR and modality computed by

pooling RT data from all the sessions for Monkeys 1 and 2. RTs

for the auditory-only vocalization increased as the SNR decreased

(i.e. the sound was harder to hear relative to the background). In

contrast, RTs to the visual-only condition only increased weakly

with an increase in the mouth opening size — a result consistent

with the accuracy data. Although the audiovisual accuracy was

only modestly better than the visual-only accuracy (Figure 2A,B),

audiovisual RTs decreased relative to both auditory-only and

visual-only RTs for several SNR levels. To illustrate, a non-

parametric ANOVA (Kruskal-Wallis) computed for Monkey 1,

which compared the ranks of the RTs for the auditory-only, visual-

only and audiovisual conditions for the highest SNR (+22dB), was

significant (x2 = 490.91, p,.001). Post-hoc Mann-Whitney U tests

revealed that the RT distribution for the audiovisual condition was

significantly different from the auditory-only distribution and the

visual-only distribution for all SNRs; that is, RTs in the

audiovisual condition were faster than visual and auditory RTs.

In Monkey 2, the audiovisual RT distribution was different from

the auditory-only distribution for all SNRs (p,0.001), and was

significantly different from the visual-only distribution for all but

the lowest SNR (210 dB, p = 0.68). It is notable that at the highest

SNR (+22 dB; largest mouth opening), the RTs of both monkeys

seem more like the auditory-only RTs, while at the lowest SNR

(210 dB; smallest mouth opening), the RTs seem to be more

similar to the visual-only RTs.

Humans also show a RT benefit in the audiovisual versus

unisensory conditions, with a similar, but not identical, pattern to

that observed in monkeys. Figure 3C shows the average RTs of a

single human subject as a function of the SNR. Similar to

monkeys, decreasing the SNR of the auditory-only condition leads

to an increase in the RTs, and RTs for the visual-only condition

Face/Voice Integration in Humans and Monkeys
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were only weakly modulated by the size of the mouth opening. For

a range of SNRs, the audiovisual RTs were faster than auditory-

and visual-only RTs. Figure 3D shows the average RTs over all 6

subjects. Paired t-tests comparing audiovisual RTs to auditory-

only and visual-only RTs reveal that they were significantly

different in all but the lowest SNR condition (p = 0.81 for the

210 dB condition, p,0.05 for all other conditions, df = 5).

Though the RT patterns from human participants seem dissimilar

Figure 1. Stimuli and Task structure for monkeys and humans. A: Waveform and spectrogram of coo vocalizations detected by the monkeys.
B: Waveform and spectrogram of the /u/ sound detected by human observers. C: Frames of the two monkey avatars at the point of maximal mouth
opening for the largest SNR. D: Frames of the two human avatars at the point of maximal mouth opening for the largest SNR. E: Frames with maximal
mouth opening from one of the monkey avatars for three different SNRs of + 22 dB, +5 dB and – 10 dB. F: Task structure for monkeys. An avatar face
was always on the screen. Visual, auditory and audiovisual stimuli were randomly presented with an inter stimulus interval of 1–3 seconds drawn
from a uniform distribution. Responses within a 2 second window after stimulus onset were considered to be hits. Responses in the inter-stimulus
interval are considered to be false alarms and led to timeouts.
doi:10.1371/journal.pcbi.1002165.g001
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to the monkey RT patterns (e.g., in monkeys the auditory-RT

curve crossed the visual-only RT curve but for humans there was

no cross over), we can show that the two species are adopting a

similar strategy by exploring putative mechanisms. We do so in the

next sections.

A race model cannot explains benefits for audiovisual
vocalizations

Our analysis of RTs rules out the simple hypothesis that

monkeys and humans are defaulting to a unisensory strategy (using

visual in all conditions except when forced to use auditory

information). Another hypothesis is that a ‘‘race’’ mechanism is at

play [59]. A race mechanism postulates parallel channels for visual

and auditory signals that compete with one another to terminate in

a motor or decision structure and thereby trigger the behavioral

response. We chose to test this model to ensure that the observers

were actually integrating the faces and vocalizations of the avatar.

A simple physiological correlate of such a model would be the

existence of independent processing pathways for the visual mouth

motion and an independent processing pathway for the auditory

vocalization. In the race scenario, there would be no cross-talk

between these signals. Race models are extremely powerful and

are often used to show independent processing in discrimination

tasks [70,71,72]. In our task, independent processing would mean

that in the decision structure, two populations of neurons received

either auditory or visual input. These two independent populations

count spikes until a threshold is reached; the population that

reaches threshold first triggers a response. Such a model can lead

to a decrease in the RTs for the multisensory condition, not

through integration, but through a statistical mechanism: the

mean of the minimum of two distributions is always less than or

equal to the minimum of the mean of two distributions.

Figure 4A shows a simulation of this race model. The

audiovisual distribution, if it is due to a race mechanism, is

obtained by taking the minimum of the two distributions and will

have a lower mean and variance compared to the individual

auditory and visual distributions. Typically, to test if a race model

can explain the data, cumulative distributions of the RTs

(Figure 4B) are used to reject the so-called race model inequality

[51,57]. The inequality is a strong, conservative test and provides

an upper bound for the benefits provided by any class of race

models. Reaction times faster than this upper bound mean that the

race model cannot explain the pattern of RTs for the audiovisual

condition; the RT data would therefore necessitate an explanation

based on integration.

Figure 2. Detection accuracy for monkeys and humans. A: Average accuracy across all sessions (n = 48) for Monkey 1 as a function of the SNR
for the unisensory and multisensory conditions. Error bars denote standard error of mean across sessions. X-axes denote SNR in dB. Y-axes denote
accuracy in %. B: Average accuracy across all sessions (n = 48) for Monkey 2 as a function of the SNR for the unisensory and multisensory conditions.
Conventions as in A. C: Accuracy as a function of the SNR for the unisensory and multisensory conditions from a single human subject. Conventions
as in A. D: Average accuracy across all human subjects (n = 6) as a function of the SNR for the unisensory and multisensory conditions. Conventions as
in A.
doi:10.1371/journal.pcbi.1002165.g002
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Figure 4C plots the cumulative distributions for RTs collected in

the intermediate SNR level and for ISIs between 1000 and

1400 ms for Monkey 1; the prediction from the race model is

shown in grey. We used this ISI interval because, in monkeys only,

the ISI influenced the pattern of audiovisual benefits (see Text S1
and Figure S2). Maximal audiovisual benefits were for ISIs in

the 1000–1400 ms range. The cumulative distribution of audio-

visual RTs is faster than can be predicted by the race model for

multiple regions of RT distribution, suggesting that the RTs

cannot be fully explained by this model. To test whether this

violation was statistically significant, we compared the violation

from the true data to one using conservative bootstrap estimates.

Several points for the true violation were much larger than the

violation values estimated by bootstrapping (Figure 4D). Audio-

visual RTs are therefore not explained by a race model. For the

entire range of SNRs and this ISI for the monkeys, maximal race

model violations were seen for the intermediate to high SNRs (+5,

+13 and + 22 dB; Figure 4E). For the softer SNRs (210,24 dB), a

race model could not be rejected as an explanation. The amount

of race model violation for the entire range of ISIs and SNRs is

provided in Figure S3. For both monkeys, longer ISIs resulted in

weaker violations of the race model and rarely did the p-values

from the bootstrap test reach significance.

For humans, we observed similar robust violations of the race

model. Figure 4F shows the average amount of race model

violation across subjects as a function of SNR. Since humans

showed much less dependence on the ISI, we did not bin the data

as we did for monkeys. Similar, to monkeys, maximal violation of

the race model was seen for loud and intermediate SNRs. For 3

out of the 5 SNRs (+22, +13, +5 dB), a permutation test comparing

maximal race model violation to a null distribution was significant

(p,0.05). In conclusion, for both monkeys and humans, a race

model cannot explain the pattern of RTs at least for the loud and

intermediate SNRs.

These results strongly suggest that monkeys do integrate visual

and auditory components of vocalizations and that they are similar

to humans in their computational strategy. In the next sections,

we therefore leveraged these behavioral data and attempt to

identify a homologous mechanism(s) that could explain this

pattern of results. Our search was based on the assumption that

classical principles and mechanisms of multisensory integration

[48,49,50,51,73], originally developed for simpler stimuli, could

Figure 3. RTs to Auditory, visual and audiovisual vocalizations. A: Mean RTs obtained by pooling across all sessions as a function of SNR for
the unisensory and multisensory conditions for Monkey 1. Error bars denote standard error of the mean estimated using bootstrapping. X-axes
denote SNR in dB. Y-axes depict RT in milliseconds. B: Mean RTs obtained by pooling across all sessions all sessions as a function of SNR for the
unisensory and multisensory conditions for Monkey 2.Conventions as in A. C: Mean RTs obtained by pooling across all sessions as a function of SNR
for the unisensory and multisensory conditions for a single human subject. Conventions as in A. D: Average RT across all human subjects as a function
of SNR for the unisensory and multisensory conditions. Error bars denote SEM across subjects. Conventions as in A.
doi:10.1371/journal.pcbi.1002165.g003
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potentially serve as starting hypotheses for a mechanism mediating

the behavioral integration of the complex visual and auditory

components of vocalizations.

Mechanism/Principle 1: Principle of inverse effectiveness
The first mechanism we tested was whether the integration of

faces and voices demonstrated in our data followed the ‘‘principle

of inverse effectiveness’’ [49,50]. This idea, originally developed to

explain neurophysiological data, suggests that maximal benefits

from multisensory integration should occur when the stimuli are

themselves maximally impoverished [49,50,74,75]. That is, the

weaker the magnitude of the unisensory response, the greater

would be the gain in the response due to integration. In our case

with behavior, this principle makes the following prediction. As the

RTs and accuracy were the poorest for the lowest auditory SNR,

the benefit of multisensory integration should be maximal when

Figure 4. Race models cannot explain audiovisual RTs. A: Schematic of a race mechanism for audiovisual integration. The minimum of two
reaction time distributions is always faster and narrower than the individual distributions. B: Race models can be tested using the race model
inequality for cumulative distributions. The graph shows the cumulative distributions for the density functions shown in A along with the race model
inequality. C: Cumulative distributions of the auditory, visual and audiovisual RTs from monkey 1 for one SNR (+5dB) and one inter stimulus interval
(ISI) window (1000 – 1400 ms) along with the prediction provided by the race model. X-axes depict RT in milliseconds. Y-axes depict the cumulative
probability. D: Violation of race model predictions for real and simulated experiments as a function of RT for the same SNR and ISI shown in C. X-axes
depict RT in milliseconds. Y-axes depict difference in probability units. E: Average race model violation as a function of SNR for the ISI of 1000 to
1400 ms for Monkey 1. Error bars denote the standard error estimated by bootstrapping. * denotes significant race model violation using the
bootstrap test shown in D. F: Average race model violation across human subjects as a function of SNR. X-axes depict SNR; y-axes depict the amount
of violation of the race model in probability units. * denotes significant race model violation according to the permutation test.
doi:10.1371/journal.pcbi.1002165.g004
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the lowest auditory SNR is combined with the corresponding

mouth opening. Our metric for multisensory benefit was defined

as the speedup for the audiovisual RT relative to the fastest mean

RT in response to the unisensory signal (regardless of whether it

was the auditory- or visual-only condition). The principle of

inverse effectiveness would thus predict greater reaction time

benefits with decreasing SNR for both monkeys and humans.

Figures 5A and B plot this benefit as a function of SNR for

Monkeys 1 and 2. For monkeys, the maximal audiovisual benefit

occurs for intermediate SNRs. The corresponding pattern of

benefits for humans is shown in Figure 5C. For humans, this

benefit increases as the SNR increases and starts to flatten for the

largest SNRs. This pattern of benefits reveals that the maximal

audiovisual RT benefits do not occur at the lowest SNRs. This is

at odds with the principle of inverse effectiveness [49,50]. If our

results had followed this principle, then the maximal benefit

relative to both unisensory conditions should have occurred at the

lowest SNR (lowest sound intensity coupled with smallest mouth

opening). Neither monkey nor human RTs followed this principle

and therefore it cannot be a homologous mechanism mediating

the integration of faces and voices in primates.

One potential caveat is that we are testing the principle of inverse

effectiveness using absolute reaction time benefits whereas the

original idea was developed using proportional referents. Thus, we

re-expressed the benefits as a percent gain relative to the minimum

of the auditory and visual reaction times for each SNR. We

observed that, even when converted to a percent benefit relative to

the minimum reaction time for each SNR, the inverted U-shape

pattern of gains for monkeys (Figures S4A, B), as well as increasing

gain with SNR for humans (Figure S4C), was replicated. Thus,

whether one uses raw benefits or a proportional measure, RT

benefits from combining visual and auditory signals could not be

explained by invoking the principle of inverse effectiveness.

Mechanism/Principle 2: Physiological synchrony
If inverse effectiveness could not explain our results, then what

other mechanism(s) could explain the patterns of reaction time

benefits? Monkey performance at intermediate SNRs (where the

maximal benefits were observed; Figures 3A, B), the visual-only and

auditory-only reaction time values were similar to each other.

Similarly, for humans at intermediate to large SNRs (where

maximal benefits were observed for humans), the visual-only and

auditory-only reaction time values were similar to one another. This

suggests a simple timing principle: the closer the visual-only and

auditory-only RTs are to one another, the greater is the

multisensory benefit. A similar behavioral result has been previously

observed in the literature, albeit with simpler stimuli, and a

mechanism explaining this behavior was (somewhat confusingly)

dubbed ‘‘physiological synchrony’’ [51,73]. According to this

mechanism, developed in a psychophysical framework, perfor-

mance benefits for the multisensory condition are modulated by the

degree of overlap between the theoretical neural activity patterns

(response magnitude and latency) elicited by the two unisensory

stimuli [51,73]. Maximal benefits occur during ‘‘synchrony’’ of

these activity patterns; that is, when the latencies overlap. To put it

another way, maximal RT benefits will occur when the visual and

auditory inputs arrive almost at the same time.

To test this idea, we transformed the benefit curves shown in

Figures 5A-C by plotting the benefits as a function of the absolute

value of the difference between visual-only and auditory-only RTs.

That is, instead of plotting the benefits as a function of SNR (as in

Figures 5A–C), we plotted them as a function of the difference

between the visual-only and auditory-only RTs for each SNR. If

our intuition is correct, then the closer the auditory- and visual-

only RTs are (i.e., the smaller the difference between them), then

the greater would be the benefit. Figure 6A plots the benefit in

reaction time as a function of the absolute difference between

visual- and auditory-only RT for monkeys 1 & 2. The

corresponding plot for humans is shown in Figure 6B. By and

large, as the difference between RTs increase, the benefit for the

audiovisual condition decreases with the minimum benefit

occurring when visual- and auditory-only RTs differ by more

than 100 to 200 milliseconds. Thus, physiological synchrony can

serve as a homologous mechanism for the integration of faces and

voices in both monkeys and humans.

Although the original formulation of the principle suggested

‘‘synchrony’’, it seemed too restrictive. The reaction time data—at

least for integrating faces and voices—suggest that there is a range

of reaction time differences over which multisensory benefits can

be achieved. That is, there is a ‘‘window of integration’’ within

Figure 5. Benefit in RT for the audiovisual condition compared to unisensory conditions. A: Mean benefit in RT for the audiovisual
condition relative to the minimum of mean visual-only and auditory-only RTs for monkey 1. X-axes depict SNR. Y-axes depict the benefit in
milliseconds. Error bars denote standard errors estimated through bootstrap. B: Mean benefit in RT for the audiovisual condition relative to the
minimum of mean visual-only and auditory-only RTs for monkey 2. Conventions as in A. C: Mean benefit in RT for the audiovisual condition relative to
the minimum of the mean visual-only and auditory-only conditions averaged across subjects. Axis onventions as in A. Error bars denote standard
errors of the mean.
doi:10.1371/journal.pcbi.1002165.g005
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which multisensory benefits emerge. We use the term ‘‘window of

integration’’ as typically defined in studies of multisensory

integration: It is the time span within which auditory and visual

response latencies must fall so that their combination leads to

behavioral or physiological changes significantly different from

responses to unimodal stimuli. Such windows have been

demonstrated in physiological [49,76] as well as in psychophysical

studies of multisensory integration[48,77]. To explore the extent of

this ‘‘window of integration’’, we elaborated upon the analysis

shown in Figures 6A and B to the whole dataset of sessions and

SNRs. For all the sessions and SNRs (48 sessions and 5 SNRs for 2

monkeys), we computed a metric that was the difference between

the mean visual-only and auditory-only RTs. This gave us 480

values where there was a difference between visual and auditory

RTs and, corresponding to this value, the benefit for the

audiovisual condition. After sorting and binning these values, we

then plotted the audiovisual benefit as a function of the difference

between the mean visual-only and auditory-only RTs. Figure 6C

shows this analysis for monkeys. Only in an intermediate range,

where differences between unisensory RTs are around 100 –

200 ms, is the audiovisual benefit non-zero—with a maximal

benefit occurring at approximately 0 ms. In addition, this window

is not symmetrical around zero. It is 200 ms long when visual RTs

are faster than auditory RTs and around 100 ms long when

auditory-only RTs are faster than visual-only RTs. We repeated

the same analysis for humans and the results are plotted in

Figure 6D. For humans, a similar window exists: when visual

reaction times are faster than auditory reaction times then the

window is approximately 160 ms long. We could not determine

the extent of the window because, in humans, auditory RTs were

never faster than visual RTs.

To summarize, combining visual and auditory cues leads to a

speedup in the detection of audiovisual vocalizations relative to the

auditory-only and visual-only vocalizations. Our analysis of the

patterns of benefit for the audiovisual condition reveals that

maximal benefits do not follow a principle of inverse effectiveness.

However, the principle of physiological synchrony that incorpo-

rates a time window of integration provided a better explanation of

these results.

Mechanism/Principle 3: A linear superposition model
The principle of physiological synchrony with a time window of

integration provides an insight into the processes that lead to the

integration of auditory and visual components of communication

signals. The issue however is that although this insight can be used

to predict behavior, it does not have any immediate mechanistic

basis. We therefore sought a computational model that could

plausible represent the neural basis for these behavioral patterns.

Figure 6. Time window of integration. A: Reaction time benefits for the audiovisual condition in monkeys decrease as the absolute difference
between visual-only and auditory-only RTs decrease. X-axes depict difference in ms. Y-axes the benefit in milliseconds. B: Reaction time benefits for
the audiovisual condition in humans also decrease as the absolute difference between visual-only and auditory-only RTs decrease. Conventions as in
A. C: Mean benefit in the RT for the audiovisual condition relative to minimum of the auditory-only and visual-only RTs as a function of the difference
between mean visual-only and auditory-only RTs for monkey 1. X-axes depict reaction time difference in ms. Y-axes depict benefit in ms. D: Mean
benefit in the RT for the audiovisual condition relative to minimum of the auditory-only and visual-only RTs as a function of the difference between
mean visual-only and auditory-only RTs for humans. Conventions as in C.
doi:10.1371/journal.pcbi.1002165.g006
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We specified two criteria for the model based on our results. First,

audiovisual RTs should be faster than auditory- and visual-only

RTs. Second, it should be consistent with, and perhaps subsume,

the principle of physiological synchrony with a time window of

integration—benefits accrued by combining visual and auditory

cues should occur when the visual- and auditory-only RTs are

almost equal to one another. If these two criteria are validated,

then the model would be a straightforward homologous mecha-

nism.

Superposition models are one class of integration models that

could incorporate our criteria [53,63,64]. According to these

models, activation from different sensory channels is linearly

combined until it reaches a criterion/threshold and thereby

triggers a response. We will use a model formulation based on

counters for simplicity [63]. According to this counter model, the

onset of a stimulus would lead to a sequence of events occurring

randomly over time. Let N (t) denote the number of events that

have occurred by time t after stimulus presentation. After the

number of counts reaches a criterion, c, it triggers a response. Let

us assume that there are separate counters for visual and auditory

conditions, NV (t) and NA (t). During the audiovisual condition, a

composite counter, NAV (t) = NA (t) + NV (t), comprised of both

the visual and auditory signals, counts to the criterion, c

(Figure 7A). This composite, multisensory counter would reach

the criterion faster than either of the unisensory counters alone.

Figure 7B shows that a computer simulation of a counter

composed of superposed activity from both visual and auditory

cues would reach criterion faster than the unisensory ones alone.

Using the RT data from Monkey 1, we set the parameters of the

superposition model for the auditory- and visual-only RTs and

then used the model to estimate the audiovisual RTs (Figure 7C).

From this, the model produced audiovisual RTs that were faster

than both the auditory-only and visual-only RTs—like the pattern

of results we observed for monkeys (Figures 3A, B). As Figure 7C

shows, except for the lowest SNR, there is a good one to one

correspondence between the model’s prediction of audiovisual

RTs and the actual raw data. Thus, this model can at least

generate the patterns of reaction times observed in response to

audiovisual vocalization.

We next estimated the benefits in RT for the audiovisual

condition relative to the visual-only and auditory-only condition

from the simulated model (Figure 7D). The benefit curve has the

same inverted U-shaped profile as the real patterns of benefit

shown in Figure 5A. We repeated this analysis for the human RTs

and the pattern of results is shown in Figure 7E–F. Figure 7E

shows the predicted reaction time of the average participant as a

function of SNR along with actual data. The predicted reaction

times are very similar to the actual RTs observed for humans in

Figure 3D. As with the monkey behavioral data, the fits performed

worst for the softest SNR. Like the benefit patterns shown in

Figure 5C, the benefit for the AV condition increases as SNR

increases (Figure 7F). This replication by the model of the pattern

of monkey and human data—faster audiovisual RTs and maximal

benefit when visual and auditory RTs are well matched—suggests

that a superposition model is a viable homologous mechanism.

Discussion

The goal of our study was threefold. First, do monkeys integrate

the visual and auditory components of vocalizations? Second, is

monkey behavior similar to that of humans perfoming an identical

task? Third, is there a homologous mechanism for the processing

of audiovisual communication signals? We trained monkeys and

asked humans to detect vocalizations by monkey and human

avatars, respectively, in a noisy background. We measured their

accuracy and reaction times. We found that monkeys do integrate

the visual and auditory components of vocalizations (as measured

by faster reaction times for the audiovisual relative to the

unisensory conditions). Similar speedups in reaction times were

observed also for human subjects. Rejection of the race model

demonstrated that the behavioral patterns must be explained by

an integrative process (one requiring the use of both unisensory

channels together to drive behavioral change), and not one based

on competing independent unisensory channels. We then tested

whether classical principles of multisensory integration could serve

as homologous mechanisms for the integration of faces and voices.

The ‘‘principle of inverse effectiveness’’ failed to explain the data

for either primate species. Both monkey and human RTs were

better explained by the principle of ‘‘physiological synchrony’’ that

incorporated a time window of integration. We found that a

simple computational model positing the linear superposition of

activity induced by visual and auditory cues could explain the

pattern of results in monkeys as well as humans. Critically, its

explanatory power was such that it could explain the small

differences in behavior observed for monkeys and humans.

Furthermore, the superposition model is completely consistent

with the principles of physiological synchrony with a time window

of integration. The superposition model, therefore, is an excellent

candidate for a homologous mechanism used by monkeys and

humans to integrate faces and voices.

Monkeys like humans can integrate visual and auditory
components of vocalizations

Monkeys and humans share many homologous mechanisms for

the production of vocalizations [22]. In humans, these production

mechanisms deform the face in such a manner that facial motion

enhances the detection and discrimination of vocal sounds by

receivers [6,7,8,9,78,79,80,81]. Often this enhanced behavior

takes the form of decreased reaction times to audiovisual versus

unisensory presentations of speech [8,9]. While nonhuman

primates could theoretically use the same or very similar facial

motion to enhance their auditory perception, there has been no

evidence of this to date. Several studies demonstrated that, like

human infants, monkeys and apes can match facial expressions to

vocal expressions [26,27,28,29], and that eye movement patterns

generated by viewing vocalizing conspecifics is similar between

monkeys and humans [30,31,32]. None of these nonhuman

primate studies, however, demonstrated a behavioral advantage for

perceiving audiovisual vocalizations over unisensory expressions.

Demonstration of such an advantage is necessary to invoke the

hypothesis that a multisensory integration mechanism for

communication signals is homologous across species. In the

current study, we provide the first demonstration that monkeys

exhibit a behavioral advantage for audiovisual versus unisensory

presentations of vocalizations. The patterns of both accuracy and

reaction time benefits were similar to humans performing an

identical task.

Although we have emphasized throughout the similarities in the

patterns of behavior for monkeys and humans, it is important to

note that there were also differences. The most important

difference was that humans were consistently faster for the

visual-only vocalization compared to the auditory-only vocaliza-

tion across the range of auditory intensities. Monkeys, on the other

hand, responded faster to some auditory-only conditions versus

visual-only conditions across the range of intensities. These

differences ultimately led to differences in the amount of

integration. Such differences could potentially arise due to the

differences in auditory stimuli (/u/ sounds in humans vs coo calls
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Figure 7. Superposition models can explain audiovisual RTs. A: Illustration of the superposition model of audiovisual integration. Ticks
denote events which are registered by the individual counters. B: Simulated individual trials from the audiovisual, auditory-only and visual-only
counters. X-axes denotes RT in milliseconds, y-axes the number of counts. C: Simulated and raw mean RTs using parameters estimated from the
visual-only and auditory-only conditions for monkey 1. X-axes denote simulated SNR in dB. Y-axes denote RTs in ms estimated using a superposition
model. The raw data are shown as circles along with error bars. The estimated data for the audiovisual condition is shown in a red line. D: Simulated
benefits for audiovisual RTs relative to the auditory-only and visual only conditions as a function of SNR. Note how the peak appears at intermediate
SNRs. E: Simulated and raw mean RTs using parameters estimated from the real visual- and auditory-only conditions for humans. X-axes denote
simulated SNR in dB. Y-axes denote RTs in ms estimated using a superposition model. The raw data are shown as circles along with errorbars. The
estimated data for the audiovisual condition is shown in red. Conventions as in C. F: Simulated benefits for human audiovisual RTs relative to the
auditory-only and visual only conditions as a function of SNR, note how as in real data, benefit increases with increasing SNR and plateaus for large
SNRs. Conventions as in D.
doi:10.1371/journal.pcbi.1002165.g007
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in monkeys) or the amount of attentional engagement. We have

suggested acoustic equivalence of ‘‘coos’’ and /u/ vocalizations,

but they are not communicatively equivalent. Coos are common

vocalizations in monkeys with behavioral significance including a

positive emotional valence. In contrast, the /u/ sound we used

with humans does not have any behavioral significance. With

regard to engagement, we trained our monkeys using standard

operant conditioning techniques. This meant the use of timeouts

as negative reinforcement whenever the monkeys made false

alarms. As a result, when compared to human performance,

monkeys may adopt a more conservative criterion for the

detection of these sounds to avoid false alarms. Despite these

caveats, it is worth emphasizing that positing a linear superposition

of visual and auditory signals reconciled these dissimilar results

from the two species.

Two other design features of our study are worth pointing out

before we discuss the broader implications of our results. First, we

used a fixed delay between the mouth motion and the onset of the

vocalization. Under natural conditions, delays between onset of

mouth opening and sound onset, which we term time-to-voice

(TTV), are wide ranging and can vary from utterance to utterance

and speaker to speaker [5]. At the neural level, different TTVs

modulate the degree of integration in local field potential signals

recorded from the upper bank of the superior temporal sulcus of

monkeys [40]. Thus, how this variable would affect behavioral

integration of faces and voices in monkeys and humans is not

tested in our experiments or in any other study.

A second design feature that we used consisted of the presence of

a static face on the screen during the auditory-only vocalization.

This face was also identity-incongruent with the auditory vocaliza-

tion. Thus, both of these features could potentially slow down

auditory-only RTs by creating confusion: the face doesn’t move

when it should during a vocalization and/or the face doesn’t match

the identity of the voice. However, we believe this concern is

mitigated by the more naturalistic conditions that our design mimics

and more pressing problems that it avoids. Our paradigm is

naturalistic in the following sense: faces in noisy, cocktail-party like

scenarios do not appear and disappear. Furthermore, monkeys like

humans can recognize indexical cues in vocalizations (cues that

indicate body size, age, identity, etc) and match them to faces

[82,83]. Thus, in our paradigm, it is not odd to hear one individual’s

voice while seeing another individual’s face, a typical occurrence

under natural conditions. The key to the face-voice integration is

combining motion of the face to the correct, corresponding voice. If

we did not present a static face during the auditory-only condition

and observed an audiovisual benefit, then the benefits could be

attributed to differences in overall attention or arousal (a frequent

criticism of physiological studies of AV integration). Moreover, if we

adopted a design where audiovisual vocalizations involved the

sudden onset of a face followed by its mouth motion, then any RT

benefits for audiovisual compared to auditory-only vocalizations

would be uninterpretable: we could not be sure if it was due to the

integration of facial motion with the sound or from the integration

of the sound with the sudden onset of the face.

Whatever influences our design may actually have on our

participants’ RTs; we can model the outcome of hypothetically

faster RTs that may arise with a study design that did not use a

static, incongruent face in the auditory-only conditions. Since our

data demonstrate that the principle of physiological synchrony

with a time window of integration, we can actually perform a

thought experiment to see what would happen if our auditory RTs

are sped up. Simply put, the result would be that the point at

which visual and auditory RT curves cross will be at a different

SNR and this point of crossing would be the new point of maximal

integration. Figure S5 shows that if we sped up all auditory RTs

by 40, 80 and 120 ms in the model relative to the original data, the

point of maximal integration shifts to lower SNRs.

Integration of complex versus simple multisensory
signals

We demonstrated that combining visual mouth motion with

auditory vocalizations speeds up reaction times in monkeys and

humans. Faster reaction times to multisensory signals compared to

unisensory signals are a frequent outcome in human psychophys-

ical studies [51,57,58,59,84,85,86,87]. The first such demonstra-

tion, nearly a hundred years ago, showed that there was a speedup

in responses for bi- and tri-modal stimuli compared to unimodal

stimuli [87]. Since then, this seminal result has been replicated in a

variety of settings almost always with the use of simple stimuli

[51,57,85,88,89,90,91]. In particular, shortened reaction times are

observed in response to multimodal stimuli using both saccades

and lever presses as dependent measures [85,92]. Physiologically,

there are similar results. Neurons in the superior colliculus of

anaesthetized cats respond faster to audiovisual compared to

auditory and visual stimuli [93]. Our results confirm that similar

behavioral advantages exist when combining the visual and

auditory components of complex social signals encountered in

everyday settings.

While there are certainly similarities in the integration pro-

cesses for simple and complex signals like speech, there are also

differences. An important issue which has been repeatedly

demonstrated is that there are differences in the window of

integration for simple versus complex stimuli[94]. For the

integration of simple stimuli, tolerance of asynchrony between

visual and auditory cues is very small leading to a narrow window of

integration [94]. In contrast, for speech stimuli, observers are able to

tolerate very large asynchronies and still bind them into a common

percept[47]. We return to this issue later in the Discussion.

Behavioral detection of audiovisual communication
signals cannot be explained by the principle of inverse
effectiveness

For both monkeys and humans, we found that the maximal

benefit obtained by combining visual and auditory cues was for

intermediate values of SNR. This is at odds with the principle of

inverse effectiveness [49,50]. This idea was originally formulated

in the context of electrophysiological experiments and suggests

that the maximal benefit (greater proportional response magni-

tude) from multisensory stimulus inputs would be achieved by

combining visual and auditory cues that, individually, elicit weak

responses. Support for the inverse effectiveness rule is also evident

at the behavioral level in both monkeys and humans in detection

tasks involving simple stimuli [85,92,95,96]. If this principle held

true for detecting vocalizations, then we would have observed

maximal reaction time savings for the lowest SNR, with the benefit

decreasing with increasing SNR. On the contrary, monkeys’

detection of vocalizations generated a non-monotonic curve with

peak multisensory benefits occurring at intermediate SNRs. For

humans, the multisensory benefit increased with increasing SNRs.

Thus, for the multisensory integration of vocalizations (with

reaction times as a behavioral measure), neither in monkeys nor in

humans does the principle of inverse effectiveness explain the

behavior. Other results from the speech processing literature

support our assertion. For example, in studies of speech

intelligibility, maximal benefits gained by integration of auditory

speech with visual speech are found when the auditory speech is

presented in an intermediate, versus high, level of noise [7,81].
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Similarly, the McGurk effect occurs even under clear listening

conditions (i.e., noisy signals aren’t required to generate the

illusory percept) [10], and vision can boost the comprehension of

extended auditory passages even under excellent listening

conditions [97].

As mentioned before, there are several studies which claim to

support this principle in behavior [75,85,92,95,96,98,99,100],

so why do we not see support for the principle of inverse

effectiveness in our data or in other studies [51,57,88,92,101]? We

think that this principle is sensitive to the way multisensory

stimuli are parameterized and tested in different experiments.

In particular, the choice of stimuli, levels of intensity and the

pairing of stimuli could all affect whether this principle will be

apparent in the resultant data. To illustrate what we mean, we

tested two hypothetical scenarios, where inverse effectiveness can be

observed using RTs and compare it to a scenario resembling our

experimental data. For each scenario, we constructed auditory and

visual RTs to have a certain profile with respect to different intensity

levels. Then, given that the superposition model is an excellent

explanation of our RT data, as well as RTs to simple stimuli

[53,62,63,64,86], we used it to simulate the expected audiovisual

reaction times for these same intensity levels. We then examined if

the multisensory benefits were consistent with the principle of inverse

effectiveness or not. The first scenario is a case wherein RTs to both

senses increase with decreases in intensity level, but at every intensity

level, they are still roughly equal to one another (Figure S6A). In

this scenario, RTs to visual and auditory stimuli increase with

decreasing intensity and visual and auditory RTs are largely similar

at every intensity level. Keeping with multisensory integration,

audiovisual RTs are faster than both auditory-only and visual-only

RTs. Critically, in line with our intuition, the multisensory benefit

increases with the decrease in SNR — and is thus consistent with the

principle of inverse effectiveness (Figure S6B).

We can also outline a second scenario where this principle

would be observed to be in action. This is the case when the

stimuli are such that the RT of one modality approaches the RT of

the other modality only for the lowest intensity levels. Figure S6C
shows a simulation of this scenario. The auditory-only RTs are

much faster than the visual-only RTs for the highest intensity

levels. However, as the stimulus intensity decreases, the auditory-

and visual-only RTs approach each other. Again, audiovisual RTs

are faster than auditory- and visual–only RTs. Like the previous

scenario, as intensity decreases, the benefit increases and is thus

consistent with the principle of inverse effectiveness (Figure S6D).

A recent study showing support for inverse effectiveness had visual

and auditory RTs closely following this scenario [99]. The third

scenario is one that is a simulation of our data (Figure S6E). In

this case, visual RTs do not change much with intensity level, but

auditory RTs increase with a decrease in intensity. Audiovisual

RTs are again faster than auditory and visual-only RTs. Critically,

these data result in a pattern of benefits that is non-monotonic and

takes the form of an inverted U; it is not consistent with the

principle of inverse effectiveness (Figure S6F).

In summary, given that the superposition model is an excellent

fit to data, simulations of this model using the scenarios above

suggest that observing the principle of inverse effectiveness in

behavior is to some extent dependent upon the way the

parameters of the stimuli that are used in an experiment. Different

multisensory stimuli (speech versus non-speech) as well as the

choice of intensity levels are bound to have different effects on

multisensory benefit. Thus, the principle of inverse effectiveness

may be operational only under some situations. We would

however note that, this framework of superposition only explains

the inconsistencies about inverse effectiveness in RT output. A

similar careful analysis is needed to explain accuracy of subjects as

well as performance in tasks such as localization [75,98].

Audiovisual integration of communication signals
adheres to the principle of ‘‘physiological synchrony’’
with a time window of integration

We showed that maximal benefits from integration of visual and

auditory components of communication signals occurred when the

reaction times to visual and auditory cues are themselves very

similar to one another. This is consistent with the idea of

‘‘physiological synchrony’’, a principle proposed to explain behav-

ioral data. The principle of physiological synchrony was first

formulated based on psychophysical experiments using punctate,

simple stimuli [51,73]. In these experiments, it was noted that

maximal multisensory benefits occurred when the stimulus-onset

asynchrony between visual and auditory stimuli was adjusted to be

equal to the difference between visual-only and auditory-only RTs.

That is, ‘‘synchrony’’ was defined by theoretical neurophysiological

activity (with reaction times as a proxy) rather than physical

synchrony defined by the stimulus-onset asynchrony. According to

this idea, performance benefits for the multisensory condition are

modulated by the degree of temporal overlap between the theoretical

neurophysiological activity patterns elicited by the two unisensory

stimuli [51,73]. Maximal benefits occur during synchrony of these

neural activity patterns; that is, when their latencies over-lap.

It is worth repeating that this notion of physiological synchrony

is a behavioral construct derived by considering RTs. RTs are a

simple but powerful metric for indexing this behavior. However,

they are the output of a complex mixture of sensory processing,

motor preparation, temporal expectation, attention and other

cognitive processes. Thus, the physiological synchrony mecha-

nism, although it explains patterns of behavior using RTs to

sensory stimuli does not necessarily predict that the integration is

occurring in a purely sensory circuit. The neural locus where

integration is taking place is not known. Sensory, premotor and/or

motor circuits involved in multisensory processing are very likely

all involved in generating behavioral responses during this task.

We found that there was a time window within which

differences in reaction times between visual and auditory signals

could lead to integration. This notion of a ‘‘temporal window of

integration’’ is a recurring concept in behavioral and neurophys-

iological experiments of multisensory integration [48,76,77,84,89,

102,103]. For example, participants perceive the McGurk effect

when the stimulus-onset asynchrony between visual and auditory

cues is in a window approximately 400 milliseconds wide, beyond

which the illusion disappears [48]. Similarly, studies of orienting

responses to audiovisual stimuli using saccades show that speedup

of saccadic RTs occur in a variety of experimental settings within a

time window of 150–250 ms [77,84,89,104,105]. Finally, neuro-

physiologically, maximal integration in multisensory neural re-

sponses in the superior colliculus is observed when the stimulus

onset asynchrony is adjusted such that the discharge patterns to

visual and auditory signals themselves overlap with each other [76].

A linear superposition model of integration is a putative
homologous mechanism

We showed that a simple computational model of integration—a

linear superposition model—explained the behavioral patterns

observed for the integration of audiovisual vocalizations by monkeys

and humans. The main tenet of this model is that the information

from the two unisensory channels is integrated at a specific

processing stage by the linear summation of channel-specific activity

patterns. Superposition models have been successfully used to
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predict the reaction times of observers in other multisensory

detection tasks, albeit with much simpler stimuli [53,62,63,64,86].

Physiologically, support for this principle was suggested in studies of

the sensitivity of multisensory neurons in superior colliculus [76].

Our results suggest that this model can be readily extended to the

integration of visual and auditory components of vocalizations, at

least during behaviors involving speeded detection. Indeed,

invoking this mechanism reconciled the observed dissimilarity in

RTs from monkeys and humans. In addition, it automatically

subsumes the principle of physiological synchrony and generates

appropriately asymmetric time windows of integration. Whether

this model works well for other tasks such as multisensory spatial

orientation [75,98], is an open question. Nevertheless, for the task

presented in this study, i.e. the detection of vocalizations in noise, it

is a parsimonious homologous mechanism.

That a linear, additive model could provide a good explanation

for the detection of audiovisual vocalizations might seem irrecon-

cilable with typical notions of multisensory integration that

emphasize ‘‘super-additivity’’ or non-linear responses [49,50].

Recent studies, however, report that multisensory neurons can

integrate their inputs in an additive manner both in terms of spiking

activity [See for e.g. 50,52,106], as well at the level of synaptic input

[107]. Our emphasis on the superposition model as a homologous

mechanism has another important implication. First, there are a

remarkable number of nodes on which visual and auditory inputs

that are sensitive to faces and voices, respectively, could converge.

Any or all of these sites could be responsible for the behavioral

advantage we report here. For example, neurons in the amygdala

and association areas such as the upper bank of STS and prefrontal

cortex respond to both the visual and auditory components of

vocalizations. In some cases, we know that they integrate these

vocalization-related cues [40,42,43,108,109]—at least during the

passive reception of these signals. For example, in keeping with the

linear superposition model we posited here, approximately 7% of

ventrolateral prefrontal cortical neurons integrate visual and

auditory components of vocalizations linearly [43].

The superposition model subsumes the time window of

integration. The basis of superposition models is that they require

activity patterns to overlap with one another and add together to

generate benefits. Thus, activity patterns that overlap with one

another have a higher probability of leading to integration,

whereas activity patterns that do not overlap will not lead to

integration. This implies that the measured window of integration

is going to depend on the inherent statistics of the visual and

auditory signals and the response profiles to the two signals in

some neural structure on which they converge. The narrowness

and the latency of these response profiles will thus determine the

window of integration. Thus, in any given experiment, choices of

the strength and duration of these visual and auditory signals

would automatically result in corresponding changes in latencies

and response profiles. A flash is highly likely to be processed in

primary visual cortex and a moving face through a combination of

face- and motion-sensitive neural structures. A similar argument

can be made for auditory stimuli. Thus, unless the response

profile(s) in some integrative structure(s) mediating detection of

these various stimuli are identical, the windows of integration are

bound to be different for simple stimuli such as flashes and tone

pips versus more complex audiovisual vocalizations and speech

signals. This might be a partial explanation for one of the best

known findings in the multisensory literature — asymmetric broad

windows for speech [47,48], versus the small windows for simple

stimuli [94] .

Finally, the superposition model is similar in many respects to a

Bayesian model of bimodal integration. For example, in models

developed by Ernst and colleagues [110,111], maximal benefit due

to bimodal discrimination occurs when the difficulty of each

modality is roughly equated [112]. This is remarkably similar to

the notion of physiological synchrony. Thus, Bayesian models

could, presumably, be adapted to explain the reaction times and

would also subsume the time window of integration concept.

However, the advantage the superposition model has is that its

neurophysiological implementation is immediately apparent.

Bayesian models, in contrast, are usually more abstract, and it is

unclear what their neural implementation would look like.

Supporting Information

Figure S1 Hit rate and False Alarm rate of one monkey.
A: Hit rate and false alarm rate from a single session. X-axes

denotes bin number. Y-axes denotes percentage. B: Hit rate and

false alarm rate from another session. Conventions as in A. C:
Average hit rate and false alarm rate across all sessions for monkey

1. X-axes depict different types of metrics (Hit rate, False Alarm

rate). Y-axes depict percentage. Error bars denote twice the

standard error.

(PDF)

Figure S2 Reaction time as a function of the inter
stimulus interval for monkeys and humans. A: Mean

reaction times of monkey 1 as a function of the inter-stimulus

interval for the three conditions of interest, auditory-only, visual-

only and audiovisual for the +5 dB SNR condition. X-axes depict

ISI in milliseconds. Y-axes depict reaction times in milliseconds.

Error bars denote standard errors estimated using a bootstrap

method. B: Mean gain in reaction times for monkey 1 for the

audiovisual condition relative to the auditory-only condition as a

function of the inter-stimulus interval for three SNRs (+22 dB, +5

dB, 210 dB). X-axes depict ISI in milliseconds. Y-axes depict the

gain in reaction times in milliseconds. Error bars denote standard

error of the mean estimated using a bootstrap method. C: Same

analysis as A but for Monkey 2. D: Same analysis as B but for

Monkey 2. E: Same analysis as A for human subjects. F: Same

analysis as B for human subjects.

(PDF)

Figure S3 Race models cannot explain audiovisual
reaction times for monkeys. A: Contour plot of the violation

of race model as a function of both ISI and SNR for the reaction

time data from Monkey 1. X-axes depict ISI in milliseconds. Y-

axes depict SNR. Color bar denotes the amount of violation of the

race model. B: Same analysis as A, but for monkey 2. Conventions

are as in A.

(PDF)

Figure S4 Proportional benefit in RT for the audiovisual
condition compared to unisensory conditions. A: Mean

benefit in RT for the audiovisual condition expressed as a

percentage of speedup relative to the minimum of mean visual-

only and auditory-only RTs for monkey 1. X-axes depict SNR. Y-

axes depict the benefit in percent. Error bars denote standard

errors estimated through bootstrap. B: Same analysis as in A

except for Monkey 2. Conventions as in A. C: Same analysis as in

A except averaged across human subjects. Conventions as in A.

(PDF)

Figure S5 Speeding up auditory RTs shifts the point of
maximal integration. Left panels – Simulated reaction times

to visual, auditory and audiovisual conditions. X-axes depict SNR

in dB. Y-axes the RT in milliseconds. From top to bottom,

auditory-only RTs are sped up by 0, 40, 80 and 120 ms. Right
panels – Benefit in simulated RT for the audiovisual compared to
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the auditory and visual-only conditions as a function of SNR for

the scenarios shown in the left panel. X-axes depict SNR in dB. Y-

axes the benefit in RT in milliseconds. One can see that the point

of maximal integration and the shape of the benefit curve changes.

(PDF)

Figure S6 Scenarios demonstrating the sensitivity of the
principle of inverse effectiveness to stimulus character-
istics. A, C, E – Simulated reaction times to visual, auditory and

audiovisual conditions. X-axes depict SNR in dB. Y-axes the RT

in milliseconds. B,D,F – Benefit in simulated RT for the

audiovisual compared to the auditory and visual-only conditions

as a function of SNR for the scenarios shown in A,C,E. X-axes

depict SNR in dB. Y-axes the benefit in RT in milliseconds. Note

how in the first two scenarios (A,C and B, D) the simulated benefits

follow the principle of inverse effectiveness. However for the last

scenario (E,F), the simulated benefits do not follow it.

(PDF)

Text S1 Effect of ISI on auditory, visual and audiovisual
RTs. A section describing how audiovisual integration in RTs are

modulated by the inter-stimulus interval.

(PDF)
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