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Modularity and Dynamics of Cellular
Networks
Yuan Qi, Hui Ge*

Understanding how the phenotypes and behaviors of
cells are controlled is one of the major challenges in
biological research. Traditionally, focus has been

given to the characterization of individual genes/proteins or
individual interactions during cellular events. However, many
phenotypes and behaviors cannot be attributed to isolated
components. Rather, they arise from characteristics of
cellular networks, which represent connections between
molecules in cells. We review the recent progress on analyzing
the architecture and dynamics of cellular networks. We also
summarize how computational modeling yields insight about
cell signaling pathways.

The responses of cells to genetic perturbations or
environmental cues are controlled by complex networks,
including interconnected signaling pathways and cascades of
transcriptional programs. The advance of genome
technologies has made it possible to analyze cellular events on
a global scale. A number of high-throughput techniques, such
as DNA microarrays, chromatin immunoprecipitations, and
yeast two-hybrid and mass-spectrometry analyses have been
applied to cellular systems [1–10]. These experiments have
provided first-draft catalogs of essential components,
transcriptional regulatory diagrams, and molecular
interaction maps for a number of organisms.

In addition to providing a candidate list of biomolecules
involved in biological processes, the high-throughput
technologies offer unprecedented opportunities to derive
underlying principles of how complex cellular networks are
built and how network architectures contribute to
phenotypes. A series of important questions in this area have
been addressed recently (Figure 1). For example, what are the
characteristics of cellular network structures that distinguish
them from randomly generated networks? Are the network
structures relevant for biological functions? If so, are they
evolutionarily conserved and how do they evolve? Are some
topological patterns preferred at certain times or conditions?
These questions are analogous to those asked in the field of
genome sequence analysis, such as identifying biologically
relevant sequence motifs and domains, investigating the
evolutionary conservation between sequences from different
species, and understanding temporal or spatial specificities of
regulatory sites. In this paper, we survey recent progress on
addressing these questions and use mammalian cell signaling
as case studies to discuss how computational analyses of
networks shed light on specific biological processes.

Modularity of Cellular Networks

Unlike random networks, cellular networks contain
characteristic topological patterns that enable their
functionality. To find the basic building blocks of cellular
networks, simple units consisting of a few components were
enumerated and some of them were found to be significantly

overrepresented [11]. These recurring units were defined as
network motifs. For instance, transcriptional network motifs
include feed-forward loops, single-input motifs, and multi-
input motifs (Figure 2) [3,5,12]. A feed-forward loop describes
a situation in which a transcription factor (TF) regulates a
second TF, and these two TFs jointly regulate a common
target gene. A single-input motif contains one TF which
regulates a set of target genes, such as subunits of a protein
complex. A multi-input motif consists of multiple TFs that
regulate a set of target genes, providing the possibility of
combinatorial controls. These motifs are found in multiple
organisms such as bacteria, yeast, and human. This structural
conservation suggests functional importance of network
motifs for transcriptional regulation.
The components of cellular networks, including proteins,

DNA, and other molecules, act in concert to carry out
biological processes. These functionally related components
often interact with one another, forming modules in cellular
networks [13]. While motifs represent recurrent topological
patterns, modules are bigger building units that exhibit a
certain functional autonomy. Modules may contain motifs as
their structural components. Modules may maintain certain
properties such as robustness to environmental perturbations
and evolutionary conservations [13].
Modularity exists in a variety of biological contexts,

including protein complexes, metabolic pathways, signaling
pathways, and transcriptional programs. For transcriptional
programs, modules are defined as sets of genes controlled by
the same set of TFs under certain conditions [14]. Gene
expression experiments often do not reveal direct
regulations. However, if we assume that the expression
profiles of regulators provide information about their
activities, expression data contains information about
regulatory relationships between regulators and their target
genes. Bayesian networks, directed probabilistic graphical
models (Box 1), were applied to obtain a modular map of
Saccharomyces cerevisiae transcriptional regulatory networks
based on multiple microarray datasets [14]. Protein–DNA
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binding data provides direct physical evidence of regulatory
interactions. Therefore, combining genome-wide protein–
DNA binding data with gene expression data improves the
detection of transcriptional modules over using either data
source alone (Figure 3) [15]. While each module has a distinct
combination of regulators, modules that share regulators can
be grouped together [14,15].

Motifs and modules are also found in protein–protein
interaction (PPI) networks and metabolic networks [8,9,16–
19] (Box 1), which may be indicative of multi-subunit protein
complexes or members of metabolic pathways. For these

networks, modules can be defined as subnetworks whose
components’ entities (e.g., proteins or metabolites) are more
likely to be connected to each other than to entities outside
the subnetworks [19]. For example, recent analyses of affinity
purification/mass spectrometry of the yeast proteome
identified several hundred novel core complexes and
conditional binding modules based on co-occurrence of
proteins from multiple purifications [8]. The proteins
assigned to the same core complex or binding module tend to
share similar temporal expression profiles and subcellular
localizations, which supports the functional relevance of
modular organization.
The modular organization of cellular networks provides

testable hypotheses that lead to biological insights. First,
genes in a given module are hypothesized to be functionally
coherent. For instance, PPI modules contained proteins
involved in common functions such as RNA polyadenylation
and chromatin remodeling [17], suggesting strong
correspondence between network topology and functionality.
Thus, uncharacterized genes or proteins belonging to
modules could be functionally annotated accordingly.
Second, module structures provide key regulatory
information. Using yeast gene expression data, Segal and
coworkers [14] inferred regulatory modules that contained
regulators and their potential target genes, and predicted
conditions under which the regulatory relationships are
relevant. The regulatory roles of several previously

Figure 1. An Overview of Biological Network Analyses Based on ‘‘Omic’’ Data

Recent high-throughput technologies have produced massive amounts of gene expression, macromolecular interaction, or other type of ‘‘omic’’ data.
Using a computational modeling approach, the architecture of cellular networks can be learned from these ‘‘omic’’ data, and topological or functional
units (motifs and modules) can be identified from these networks. Comparisons of cellular networks across different species may reveal how network
structures evolve. In particular, the evolutionary conservation of motifs and modules can be an indication of their biological importance. A dynamic
view of cellular networks describes active network components and interactions under various conditions and time points. Network motifs and
modules can also be time-dependent or condition-specific.
doi:10.1371/journal.pcbi.0020174.g001

Figure 2. Network Motifs Found in E. coli Transcriptional Regulatory

Networks

(Left) Feed-forward loop: TF X regulates TF Y, and both X and Y jointly
regulate gene Z.
(Middle) Single-input motif: TF X regulates genes Z1, Z2. . . and Zn.
(Right) Multi-input motif: a set of TFs X1, X2. . . and Xn regulate a set of
target genes Z1, Z2. . . and Zm. (Reproduced from [12].)
doi:10.1371/journal.pcbi.0020174.g002
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uncharacterized TFs and signaling molecules were
subsequently verified by checking the transcriptional changes
of potential target genes upon disruption of regulator
functions. For example, Ypl230w, a putative zinc-finger TF,
was predicted to play a regulatory role during entry into
stationary phase. Ypl230w deletion strain showed no obvious
defects under normal conditions. During entry into
stationary phase, however, expression levels of predicted
Ypl230w target genes changed significantly in the deletion
strain compared with normal strains, validating the
condition-specific regulatory module. Third, connections

between modules highlighted the fact that cellular processes
are orchestrated events [14,15,17,20]. For example,
connections between glycolysis and lipid metabolism modules
revealed their transcriptional coordination [20]. Examination
of the target genes in the modules suggested the coupling of
glycolysis and phospholipids signaling, which is supported by
recent literature.
It should be noted that common assumptions made in the

effort to identify modules do not always hold true. In
transcriptional module identification, for instance, protein–
DNA interactions indicate physical attachment but not

Figure 3. Yeast Transcriptional Regulatory Modules

Nodes represent modules, and boxes around the modules represent module groups. Directed edges represent regulatory relationship. The functional
categories of the modules are color-coded. (Reproduced from [15].)
doi:10.1371/journal.pcbi.0020174.g003
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necessarily transcriptional activation or repression. Another
example is that mRNA expression levels may not effectively
reflect TF activities. Systematic profiling of the yeast
transcriptome and proteome revealed modest correlation
between mRNA expression levels and protein expression
levels [21,22]. In addition, post-transcriptional regulation by
microRNAs and other noncoding RNAs occurs extensively
[23–26], and post-translational modification controls protein
activities [10] as well. These effects, once they can be
quantitatively determined, should be incorporated into the
model.

The error-prone nature and varying scales of high-
throughput data increase the difficulty of accurately finding
motifs and modules. Current PPI maps may contain a large
number of false positives and false negatives. In yeast two-
hybrid experiments, for example, proteins are assayed for

interactions under nonphysiological conditions. Therefore,
the physiological relevance of these interactions is not clear.
Recent efforts have categorized or quantified the confidence
of two-hybrid interactions [27,28], but the confidence has not
yet been used in motif or module finding. Computational
approaches that employ probabilistic structure priors of
degree distributions [29] or integrate additional types of
‘‘omic’’ data [30] have also been applied to de-noise PPI maps.

Modules in Evolution

The organization of cellular networks can be examined
from an evolutionary perspective. Investigations of PPI
networks revealed that proteins belonging to fully connected
subgraphs are more likely to be evolutionarily conserved than
randomly selected proteins [18]. In return, evolutionary

Figure 4. Dynamic Properties of Network Motifs

(Upper panels) Shows a feed-forward loop, where Y is an accumulation of X over time, and the product of X and Y passes a threshold (thin horizontal
line) to activate Z. This loop rejects impulsive perturbations in X, and responds only to persistent activation. This is because Y increases gradually to pass
the threshold. A similar rejection of impulsive fluctuations can be achieved by a feed-forward chain, where X activates Y and Y activates Z. However, a
feed-forward chain responds slower (thin red curve) to the off signal than to the loop.
(Lower panels) Shows a single-input motif, where X regulates Z1, Z2, and Z3 (n¼ 3). When X changes over time, Z1, Z2, and Z3 are activated and
deactivated in order, based on their thresholds. In particular, Z1, which has the lowest threshold, is activated first and deactivated last. (Reproduced
from [12].)
doi:10.1371/journal.pcbi.0020174.g004
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conservation can help to identify modular structures and
reveal undescribed functionality and interactions. Sharan
and coworkers [31] integrated PPI networks with sequence
data to find network regions that were conserved across
multiple species. In these conserved regions, novel PPIs were
predicted for yeast, and a significant proportion were
experimentally verified. These PPIs would not have been
found by investigating networks in a single species alone.

Module evolution of transcriptional regulatory programs
has also been probed. In an analysis of expression profile
compendia, Stuart and coworkers [32] defined metagenes as
sets of orthologs in multiple species. Metagenes coexpressed
across species were more likely to be functionally related than
those coexpressed in any single species. Based on this notion,
functional modules were constructed by clustering
coexpressed metagenes [32] (Box 1). The cell proliferation
module, for example, contained genes that were not
previously known to be involved in this process. Five of them
were subjected to experimental tests, and the results provided
supportive evidence for their roles in cell proliferation.
Though transcriptional modules are conserved across species,
Tanay and coworkers [33] showed that cis-regulatory
elements controlling gene expression of some conserved
modules might have diverged during evolution. By
comparative genomics analysis, they suggested an
intermediate redundant regulatory program, which enabled a
gradual switch from one regulatory program to another while
maintaining functionality. Such hypotheses are still to be
verified by additional experimental data. Protein–DNA
binding data for TFs across different species will provide
evidence on the extent to which the regulatory programs are

conserved, and whether intermediate programs exist during
the evolution of transcriptional regulation. The study of
conserved modules from multiple species can potentially
elucidate how relevant biological functions are kept in
modules while individual genes may have acquired new
properties during evolution.

Cellular Networks as a Dynamic System

A living cell is a dynamic system, where gene activities and
interactions exhibit temporal profiles and spatial
compartmentalizations. Interactions presented in a static
network may not necessarily occur simultaneously. A typical
example is Cdc28p, a cyclin-dependent kinase with a constant
expression profile, which interacts with a variety of cyclins at
different phases of the cell cycle [34]. Dynamic descriptions of
networks are necessary for an accurate understanding of
cellular events. By integrating yeast PPI networks with gene
expression data, Han and coworkers [35] suggested that some
modules are active at specific times and locations. In a study
that described dynamic protein complex formation during
cell cycles [34], it was found that constitutively expressed and
cell cycle–regulated proteins together form protein
complexes at particular time points during the cell cycle. This
suggested a general mechanism of ‘‘just-in-time-assembly,’’
where only some subunits of protein complexes are regulated
during cell cycle progression and the synthesis of these
subunits control the timing of complex assembly. ‘‘Just-in-
time-assembly’’ may be a more efficient way of regulation
compared with ‘‘just-in-time-synthesis,’’ in which case all
subunits of protein complexes are regulated and synthesized
at the same time during the cell cycle.
Network topologies reveal dynamic properties that

contribute to cellular functions. Though network motifs are
generally overrepresented in static transcriptional networks,
the frequency of presence for each motif type varies under
different conditions. By integrating TF binding data with
gene expression data, Luscombe and coworkers [36]
constructed condition-specific transcriptional subnetworks
for yeast, and these subnetworks each showed preference for
certain types of network motifs, highlighting the different
dynamic properties required for each condition. Specifically,
‘‘endogenous’’ subnetworks favored feed-forward loops which
are suitable for keeping long-lasting signals to drive multi-
staged, endogenous processes, such as the cell cycle, while
removing sporadic noise. ‘‘Exogenous’’ subnetworks favored
single-input motifs which are suitable for initiating a quick
and coordinated response to external stimuli (Figure 4). The
condition-specific preference of network motifs also suggests
that even though motifs may be used as building blocks to

Figure 5. Bayesian Network Modeling of Molecular Interactions in Cell

Signaling

Nodes in the network represent key signaling molecules. Directed edges
represent predicted causal relationships between signaling molecules.
Edges are categorized into different classes: (i) well-established
interactions in the literature (‘‘expected’’); (ii) interactions that have been
reported but weakly supported (‘‘reported’’); (iii) well-established
interactions that Bayesian networks failed to predict (‘‘missing’’); (iv)
predicted causal relationship in a direction opposite to the literature
(‘‘reversed’’). (Reproduced from [39].)
doi:10.1371/journal.pcbi.0020174.g005

Figure 6. Clustering Methods

Genes that share similar expression profiles across conditions are
grouped together by clustering.
doi:10.1371/journal.pcbi.0020174.g006
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reconstruct regulatory networks, caution should be taken in
bottom-up reconstruction efforts, since the building blocks
may vary according to the biological functions.

Time-series or condition-specific data are required for
further in-depth understanding of cellular dynamics.
Currently most of these data come from mRNA expression,
which is not fully correlated with protein activities [21,22].
Also, these data often reflect composition of cell populations
that may not be well-synchronized. More advanced
technologies for single cells could significantly propel
research in this area [37]. Computationally, general graphical

models such as dynamic Bayesian networks may be applied to
analyze the dynamics of cellular network structures.

Understanding Cell Signaling from a Network
Perspective

Having reviewed recent progress in learning the global
architecture of cellular networks, we proceed to discuss
mammalian cell signaling as a case study where
computational models provided specific biological insights.
Signaling pathways can be viewed as a module where multiple
inputs take their effects through intertwined networks to

Box 1. Summary of Computational Methods in Network Modeling Using ‘‘Omic’’ Data
(a) Clustering
Clustering methods are widely used to find modules in transcriptional regulation. An expression profile dataset can be represented

as a two-dimensional matrix where rows index genes and columns index experimental conditions. Clustering methods partition genes
into groups such that genes in each group show similar expression across conditions or through a time series [47] (Figure 6). Since
regulation by common TFs may only occur under certain conditions, bi-clustering methods [48] have been developed to identify
genes that express similarly under a subset of conditions. It should be noted that genes with similar expression may not all be co-
regulated, and that clustering does not necessarily identify the corresponding regulators. Therefore, genes clustered together may not
fully represent modules in transcriptional regulatory networks.

Traditional clustering methods, such as K-means, require a predefined and fixed number of gene clusters, which may be hard to
assign in practice and greatly influence the results. They also do not model temporal dependence between expression profiles. To
address these issues, Schliep and coworkers [49] and Beal and Krishnamurthy [50] applied Hidden Markov Models to cluster gene
expression time course data. Specifically, both of them used Hidden Markov Models to model temporal dependence of gene
expression, instead of treating different time points independently. While Schliep and coworkers proposed a heuristic approach to
determine the number of clusters, Beal and Krishnamurthy used a nonparametric prior distribution on mixture weights, such that the
genes can be clustered without a predefined number of clusters.

(b) Topology-based analysis
Interaction networks are often visualized as graphs where nodes represent genes/proteins and edges represent interactions.

Modular structures can be inferred based on topological features of the networks. For example, densely connected subgraphs can be
exhaustively identified in PPI networks (Figure 7). These suggest the existence of multi-protein complexes [16]. Also, modules can be
identified using topological distances in the networks. More specifically, the distance between two nodes is defined as the length of
the shortest path(s) between them. A matrix of distances between all pair-wise combinations of nodes can be used for clustering [17].
The underlying assumption is that proteins in a module have similar distances to proteins outside of the given module.

(c) Probabilistic graphical models
Nodes of probabilistic graphical models represent variables, and edges represent independency relations among the variables

(Figure 8). According to the directionality of edges, graphical models can be classified into two major categories: Bayesian networks
and Markov random fields. A Bayesian network is a directed acyclic graphical model: if there is an edge from node X pointing to
another node Y, then values of variable Y depend directly on values of X and X is called a parent of Y. Coupled with intervention data,
Bayesian networks can be used to learn causal relationships, and are thus suitable to model transcriptional regulatory networks
[14,51,52] or signaling pathways [39]. In contrast, the edges in Markov random fields are undirected, which makes them suitable to
model PPI networks or other networks of symmetric interactions [53].

To use graphical models, we need to systematically learn the structures of networks based on biological data and to estimate the
parameters of these networks [54]. The learned graphical models reveal how proteins and genes interact, which can be applied to
answer different biological queries as an inference problem. For example, when the activities of a protein are suppressed, cells may
respond by changing the expression levels of other genes. Such responses can be predicted based on a learned regulatory network.

While the task of learning Bayesian networks has been well-addressed [51,55], learning Markov random fields is still in its early stage
[56,57]. If we use graphical models to model large-scale biological networks containing structural loops such as PPI networks, the
inference problem is not trivial. Monte Carlo methods or approximate inference methods can be used to solve such problems [55,58–
62].

(d) Integration of various data sources
Individual high-throughput biological datasets are usually both incomprehensive and error-prone. Therefore, data integration

becomes indispensable in order to model cellular networks accurately and to make functional inferences [45]. For example, both yeast
two-hybrid [63,64] and affinity-purification/mass-spectrometry experiments [8,9] have been applied to the mapping of PPI networks.
Overlapping the two data sources enables the identification of high-confidence interactions [65]. In addition, yeast two-hybrid detects
binary relationships while affinity-purification/mass-spectrometry detects proteins as members of a complex. Integrating these two
types of data helps to model the actual topology of protein complexes [66]. Furthermore, if temporal, spatial, or conditional expression
data are available, it may be possible to provide a dynamic view of protein complexes under physiological conditions (Figure 9).
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produce multiple outcomes. Motifs such as feed-forward
loops and feedback loops are also enriched in signaling
networks, and these motifs affect information propagation of
the specific biological process [38]. In a system that is not
fully characterized, connections between cellular
components can be derived as a first step to understanding
how the signaling pathways are wired. To this end, Sachs and
coworkers [39] measured phosphorylation states of key
signaling molecules in single cells under a variety of
conditions. A Bayesian network was constructed to elucidate
the causal relationships between these key molecules (Figure
5). The predicted relationships recaptured most of the well-
established interactions and contained several causal
relationships that were only weakly supported previously.
These causal relationships were subsequently confirmed by
experiments.

Based on experimental data about signaling pathways, is it
possible to predict the responses and behaviors of cells? Janes
and coworkers [40] explored this by modeling signal
transduction leading to the apoptosis/survival decision
switch. Data inputs included the kinase activities and
phosphorylation states of signaling proteins over a time
course; outputs consisted of a variety of indications for
apoptosis. A computational method, partial least squares
regression, which models the relationship between inputs and
phenotypic outputs, accurately predicted the apoptotic
outcomes under previously untested conditions. The pro-
apoptotic and anti-apoptotic roles of signaling molecules
were correctly inferred from the model. Some signaling
molecules may play seemingly self-contradictory roles in
apoptosis. By taking dynamic data as inputs, the model

accounted for such differential effects of MAPK-activated
protein kinase 2 at different time points.
These model-driven approaches should complement

hypothesis-driven approaches in making novel discoveries
about signaling pathways. Despite exciting progress, much
remains to be improved in modeling cell signaling. One
general concern is that conclusions drawn from these
analyses are highly dependent on the modeling assumptions.
For example, the apoptosis prediction model assumed a
linear relationship between cytokine inputs and phenotypic
outputs, while biological systems are often nonlinear [40]. On
the experimental side, traditional approaches to identify
protein post-translational modification can be time-
consuming and thus limit the rate and scale of data
generation. Recent advances in proteomic technology allow
the identification of phosphorylation states in a high-
throughput manner [41–44]. This may enable the model-
driven approaches to be applied to many more modules.

Conclusion

Modularity and dynamics both underlie the functionality of
cellular networks, ranging from transcriptional regulation to
cell signaling. Technological innovations in both data
generation and computational methods may advance our
understanding significantly. Furthermore, integrating
currently available data from various sources helps us to gain
a more accurate and comprehensive understanding of
cellular processes [45,46] (Box 1). Currently, the data quality
and coverage of high-throughput datasets impose limitations
on inferring accurate networks. Many computational
methods used for analyzing biological systems do not make

Figure 9. Integration of Multiple Datasets

The integration of a variety of datasets, including binary interactions, protein complexes, and expression profiles enables the identification of
subnetworks that are active under certain conditions.
doi:10.1371/journal.pcbi.0020174.g009

Figure 8. Probabilistic Graphical Models

Directed acyclic graphical models are called Bayesian networks. In the
shown Bayesian network, values of variable Y depend directly on values
of X, and values of variable Z1 and Z2 depend directly on values of Y.
doi:10.1371/journal.pcbi.0020174.g008

Figure 7. Topology-Based Network Analysis

Densely connected subgraphs can be identified from interaction
networks, suggesting the existence of multi-component complexes.
doi:10.1371/journal.pcbi.0020174.g007
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full use of available data and/or make strong assumptions that
might not be realistic. With progress toward solving these
problems, the phenotypes and behaviors of cells could
potentially be predicted with higher confidence, and we
might realize the promise to re-engineer cellular networks to
produce desired properties. &
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