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Abstract

The glyoxylate bypass allows Escherichia coli to grow on carbon sources with only two carbons by bypassing the loss of
carbons as CO2 in the tricarboxylic acid cycle. The flux toward this bypass is regulated by the phosphorylation of the enzyme
isocitrate dehydrogenase (IDH) by a bifunctional kinase–phosphatase called IDHKP. In this system, IDH activity has been
found to be remarkably robust with respect to wide variations in the total IDH protein concentration. Here, we examine
possible mechanisms to explain this robustness. Explanations in which IDHKP works simultaneously as a first-order kinase
and as a zero-order phosphatase with a single IDH binding site are found to be inconsistent with robustness. Instead, we
suggest a robust mechanism where both substrates bind the bifunctional enzyme to form a ternary complex.
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Introduction

Robustness in biological systems has seen a renewal of research

interest in recent years [1–12]. To define robustness, one needs to

specify what feature is robust and with respect to which variations.

Classic experimental studies have shown that metabolic fluxes are

often insensitive to the levels of enzymes in the pathway, as

reviewed in [13]. Metabolic control theory addresses this by

suggesting that control of flux is distributed amongst many

enzymes, and thus no single enzyme is rate limiting.

In the last decade, studies have added a new level of

understanding on robustness by providing detailed molecular

mechanisms that can preserve the essential function of a system in

the face of large variations in the protein levels. For example, specific

mechanisms explain how exact adaptation in bacterial chemotaxis is

robust with respect to chemotaxis protein levels [2,3], and how

patterning in drosophila embryos is robust with respect to

morphogen production rates [12,14,15]. A recent review summa-

rizes experiments and theoretical mechanisms for robustness [10].

Recently, an intriguing class of robust mechanisms has been

found, based on bifunctional enzymes that carry out two opposing

reactions (such as both modifying a target protein, and removing

the modification) [8,11]. These robust mechanisms seem to apply

to a class of bacterial two-component signaling system. These

systems show robustness of input-output relations, in the sense that

output responds to input signals in a way that is not disrupted by

variations in protein levels.

Here, we extend this line of research to one of the best studied

regulation steps in E. coli metabolism, the IDHKP/IDH system.

This system raised our interest because it employs a bifunctional

enzyme that carries out two opposing reactions, hinting at a robust

mechanism. However, it has several biochemical differences from

previously studied systems [8,11], suggesting that it may show a

new type of robust mechanism.

The need for precise regulation in the IDHKP/IDH system is

evident from its biological function. The IDH system regulates the

partitioning of carbon flux between the TCA cycle and the

glyoxylate bypass (Figure 1). Precise regulation of flux to the

glyoxylate bypass is essential when the bacterium grows on

substances such as acetate that contain only two carbon atoms.

Without the glyoxylate bypass, both carbon atoms would be

converted to CO2 by the TCA cycle, thereby leaving no carbon

available for biosynthesis of cell constituents. Hence, growth on

acetate and other two-carbon compounds requires directing some of

the carbon flux to the glyoxylate bypass, thereby avoiding carbon

loss.

The precise partitioning of carbon flux between the cycle and

the bypass is achieved by regulating the activity of the enzyme

IDH (isocitrate dehydrogenase), which stands at the entry to the

bypass. The activity of IDH is determined by its phosphorylation

state: only unphosphorylated IDH is active. During growth on

substances with more than two carbon atoms, IDH is mostly

unphosphorylated and hence active. Thus, most of the carbon flux

is directed to the more efficient TCA cycle. On the contrary,

during growth on acetate, most of IDH is phosphorylated and

hence inactive, so that a large part of the carbon flux is directed to

the bypass [16–19].

To regulate the IDH phosphorylation level, E. coli employs a

bifunctional enzyme. This enzyme catalyzes both the phosphoryla-

tion of IDH, and its dephosphorylation, and is called IDHKP (IDH

Kinase/Phosphatase) [20]. IDHKP uses ATP as the phosphoryl

donor for the kinase reaction, and also requires ATP as a cofactor for

the dephosphorylation reaction [20–22]. The activity of IDHKP is

allosterically regulated by the levels of various metabolites in the cell

that act as the input signals to this system [21].

The robustness of IDH activity has been experimentally tested

by Laporte et. al. [23]. It was found that during growth on acetate,

the concentration of active (unphosphorylated) IDH is extremely
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robust: The level of active IDH changes by less than 20% upon

15-fold variation in total IDH concentration.

What is the mechanism for this robustness? It was suggested in

[23] that the robustness of active IDH levels may result either from

regulation of the activity of IDHKP by putative modulators

sensitive to the metabolic state of the cell, or by a specific

mechanism whereby the enzyme IDHKP works simultaneously as a first-

order kinase and as a zero-order phosphatase. We quote from [23]:

‘‘The second mechanism for maintaining a constant level of

isocitrate dehydrogenase activity rests upon the inherent

kinetic parameters of the modifying enzymes. During log

phase growth on acetate, the kinase is operating essentially in

the first order region and the phosphatase is saturated with

substrate [18]. As a result, the velocity of the phosphatase is

independent of substrate concentration over a wide range.

Consequently, the steady-state concentration of the phospha-

tase’s substrate will vary, but the substrate of the kinase,

isocitrate dehydrogenase, will remain nearly constant.’’

The simplest model corresponding to the argument above is as

follows:

I�?
E

/�
E

Ip: ð1Þ

I denotes active IDH, Ip denotes phosphorylated IDH, and E

denotes the bifunctional enzyme IDHKP. The arrows in (1) do not

denote full chemical reactions. Rather, they symbolize enzyme

catalysis steps. The behavior of the model depends on the details of

the actual chemical reactions involved. The simplest mass-action

kinetic system corresponding to (1) is

IzE�?
k1

/�
k{1

EI

k4: ;k2

EIp
�?
k{3

/�
k3

IpzE

: ð2Þ

This system assumes a single binding site (shared by I and Ip) on

the bifunctional enzyme E.

An intuitive analysis of (1) would involve assigning, in the usual

way, Michaelis-Menten rate functions f1 and f2 to the ‘‘reactions’’

I?Ip and Ip?I , respectively:

f1~
V1

max½I �
K1

Mz½I �
,

f2~
V2

max½Ip�
K2

Mz½Ip�
,

ð3Þ

where

V1
max~k2½E�T ,

V2
max~k4½E�T ,

ð4Þ

K1
M~

k{1zk2

k1

,

K2
M~

k{3zk4

k3
,

ð5Þ

and [E]T is the time-conserved total concentration of E:

½E�T~½E�z½EI �z½EIp�: ð6Þ

Note that this analysis ignores the possibility of I and Ip competing

for the active site of E.

Subsequently, assume that the rate constants in (2) are such that

E works as a first-order kinase and a zero-order phosphatase

Author Summary

To grow well, the cell needs to produce a balanced set of
building blocks by means of its metabolic network.
Regulatory circuits are used to maintain appropriate fluxes
as metabolites flow through the branching pathways in the
network. Here, we asked how such regulatory circuits can
work precisely, despite the fact that they are made of proteins
whose levels vary from cell to cell and in the same cell over
time. We used a well-studied circuit, at a key branch point
called the glyoxylate bypass, as a model system. Previous
experiments showed that this system is remarkably robust to
changes in the levels of its proteins. Here, we propose a
mechanism to explain this robustness, based on a bifunc-
tional enzyme that catalyzes two opposing reactions. We
show that a simple explanation based on enzyme saturation
is inconsistent with more rigorous mathematical analysis. Our
proposed mechanism suggests several experimentally test-
able predictions. It shows how a systems-level feature
(robustness) may arise from seemingly unrelated biochemical
details. Because analogous designs with bifunctional en-
zymes are found in other systems in different organisms, the
present mechanism might apply more broadly.

Figure 1. The glyoxylate bypass. IDH denotes the unphosphory-
lated and active form of isocitrate dehydrogenase. IDH-P denotes the
phosphorylated and inactive form.
doi:10.1371/journal.pcbi.1000297.g001

Robustness in Glyoxylate Bypass Regulation

PLoS Computational Biology | www.ploscompbiol.org 2 March 2009 | Volume 5 | Issue 3 | e1000297



[18,24–27]: that is,

½I �vvK1
M ,

½Ip�wwK2
M :

ð7Þ

Then, using (7) in (3) gives

f1&
V1

max

K1
M

½I �,

f2&V2
max:

ð8Þ

At steady-state, the rates of enzyme-catalyzed phosphorylation

and dephosphorylation are equal:

f1~f2: ð9Þ

Using (4), (5), and (8) in (9) yields

½I �& k4

k2

k{1zk2

k1

: ð10Þ

Inspection of (10) shows that, under the assumptions made, [I] is

insensitive to changes in [I]T. Thus, the robustness of [I] with

respect to [I]T is apparently explained.

In the present study we show that the full mass-action kinetic

model (2) cannot give rise to equation (10), regardless of the choice

of parameters. In fact, we demonstrate that for all parameter

choices, the ratio [I]/[Ip], not [I], is robust at steady state. Thus, (2)

cannot account for the experimentally observed robustness of [I].

From this it follows that the use of Michaelis-Menten rate

functions (3) to derive (10) is inconsistent with the ‘‘parent’’ mass-

action model (2), due to competition of I and Ip for the active site of

E.

We then propose mass-action models that explain how

robustness might arise in the IDHKP/IDH system. A common

feature of these models is the formation of a ternary complex

between I, Ip, and E.

Results

Mass-Action System (2) Does Not Give Rise to Robustness
of [I]

Our goal, in this section, is to show that mass-action system (2)

cannot give rise to equation (10), and to robustness. This, once

demonstrated, implies that there is a flaw in the derivation of

equation (10), namely, in the assumption that the Michaelis-

Menten approximation without competition applies.

We begin by writing the differential equations corresponding to

mass-action system (2).

½ _II �~k{1½EI �zk4½EIp�{k1½E�½I �,

½ _IIp�~k{3½EIp�zk2½EI �{k3½E�½Ip�,

½ _EE�~(k{1zk2)½EI �z(k{3zk4)½EIp�{k1½E�½I �{k3½E�½Ip�,

½E _II �~k1½E�½I �{(k{1zk2)½EI �,

½E _IIp�~k3½E�½Ip�{(k{3zk4)½EIp�:

ð11Þ

Equations (11) are consistent with (6), as well as with the

conservation of total I:

½I �T~½I �z½Ip�z½EI �z½EIp�: ð12Þ

From the second and fifth equations in (11) we have that

d

dt
Ip

� �
z EIp

� �� �
~k2 EI½ �{ k4 EIp

� �
: ð13Þ

Considering the last two equations of (11) and equation (13) at

steady-state we obtain the ratio between the active and the inactive

forms of I:

Ip

� �
~a I½ �, ð14Þ

where

a~
k1k2

k3k4

k{3zk4

k{1zk2
: ð15Þ

Equation (14) shows that system (2) implies that the ratio [I]/

[Ip] is robust: [I]/[Ip] = a21. Robustness of [I]/[Ip] obtains

because it does not depend on protein levels, only on rate

constants. This happens regardless of the choice of parameters in the

system. Moreover, if we assume that enzyme E is rare compared

to its substrate,

½I �Tww½E�T , ð16Þ

we can approximate

I½ �T& I½ �z Ip

� �
: ð17Þ

Using (17) in (14) we find that the unphosphorylated (and thus

active) form I depends on the total I level:

½I �& 1

1za
½I �T ð18Þ

In other words, not only system (2) fails to show robustness of I

activity in the face of variations in the total I protein level, but

also the dependence of [I] on [I]T at steady-state is linear.

More generally, the inconsistency between (10) and (18) implies

that the Michaelis-Menten approximation, which applies to each

phosphorylation and dephosphorylation reaction alone, cannot

apply when both reactions are simultaneously catalyzed by the

same bifunctional enzyme with a single site for which I and Ip

compete.

Remark. Inequality (16) is reminiscent of the criterion

½E�Tvv½S�zKM , which guarantees the validity of the quasi

steady-state assumption for the simple Michaelis-Menten reaction

EzS�?
k1

/�
k{1

ES DA
k2

P. [Here ½E�T is the time-conserved quantity

½E�z½ES�, and KM~(k{1zk2)=k1:]. In system (2), however, the

quasi steady-state assumption is not required for deriving (18), and

therefore, (16) is not employed to insure quasi steady-state. Rather,

(16) is used to guarantee the approximate conservation law (17),

which is necessary for arriving at (18). The quasi steady-state

approximation, and the more general total quasi steady-state

approximation are described in [28,29].

Robustness in Glyoxylate Bypass Regulation
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A Putative Mass-Action Model That Explains the
Robustness of [I]

Our aim, in this section, is to construct a mass-action model that

can explain how a high degree of robustness of [I] with respect to

variations in [I]T can be achieved.

Following Goldbeter and Koshland [26], we will view

phosphorylation and dephosphorylation as irreversible modifica-

tions, and will not explicitly account for ATP, ADP and

phosphoryl ions. This allows a clear understanding of the model.

The model begins with the bifunctional enzyme E that

phosphorylates I and dephosphorylates Ip, as described in the

reactions in (2). To obtain robustness requires several additional

assumptions. Most importantly, we need to suppose that E has two

distinct binding sites: one for I and one for Ip. This is suggested by

the fact that mutant E. coli strains have been isolated where E has

greatly reduced phosphatase activity but retains the kinase activity

[22]. Kinetic studies on these mutants show that they have a 40-

fold reduction in their affinity to Ip, whereas their affinity to I

remains virtually the same as in the wild-type [22].

In addition, we assume that the ternary complex EIpI can form

and has kinase activity. In our initial analysis, we shall also assume

that the ternary complex EIpI has only kinase activity, and that the

ternary complex forms in an ordered fashion, that is, first E binds Ip

and then EIp binds I (both assumptions will later be relaxed.) Thus,

we propose the following mass-action model:

IzE�?
k1

/�
k{1

EI

k4: ;k2

EIp
�?
k{3

/�
k3

IpzE

IzEIp
�?
k5

/�
k{5

EIpI �?k6
EIpzIp:

ð19Þ

The differential equations corresponding to the mass-action

reactions of (19) are

½ _II �~k{1½EI �zk4½EIp�zk{5½EIpI �{k1½E�½I �{k5½EIp�½I �,

½ _IIp�~k{3½EIp�zk2½EI �zk6½EIpI �{k3½E�½Ip�,

½ _EE�~(k{1zk2)½EI �z(k{3zk4)½EIp�{k1½E�½I �{k3½E�½Ip�,

½E _II �~k1½E�½I �{(k{1zk2)½EI �,

½E _IIp�~k3½E�½Ip�{(k{3zk4)½EIp�{k5½EIp�½I �z(k{5zk6)½EIpI �,

½E _IIpI �~k5½EIp�½I �{(k{5zk6)½EIpI �:

ð20Þ

Summing equations in (20) shows conservation over time of the

total I protein level,

½I �T~½I �z½Ip�z½EI �z½EIp�z2½EIpI �, ð21Þ

and total E protein level,

E½ �T~ E½ �z EI½ �z EIp

� �
z EIpI
� �

ð22Þ

As before, we will consider the physiologically relevant case where

the substrate I is much more abundant than the enzyme E and

thus

½I �Tww½E�T : ð23Þ

Using (21) and (23) we see that equation (17) is valid in the present

case. (Note that here, as in the case of system (2), the use of (23) is

required for deriving the approximate conservation law (17), and

not for ensuring quasi steady-state.)

By summing the second, fifth and sixth equations in (20) we find

that

d

dt
Ip

� �
z EIp

� �
z EIpI
� �� �

~k2 EI½ �zk6 EIpI
� �

{k4 EIp

� �
: ð24Þ

We now consider the last three equations in (20) and

equation (24) at steady state. This gives a balance of phosphor-

ylation and dephosphorylation rates,

k2 EI½ �zk6 EIpI
� �

~k4 EIp

� �
, ð25Þ

and a set of relations between the concentrations of complexes and

the product of the concentrations of their constituent elements:

½EI �~ k1

k{1zk2
½E�½I �,

EIp

� �
~

k3

k{3zk4
½E� Ip

� �
,

EIpI
� �

~
k3

k{3zk4

k5

k{5zk6
½E� Ip

� �
½I �:

ð26Þ

Using (26) and (17) in (25) we obtain a quadratic equation for

the steady-state value of [I]:

½I �2{ ½I �Tzb
� �

½I �zc½I �T~0, ð27Þ

where the parameters b and c are functions of the rate constants of

the system:

b~
k4

k6

k{5zk6

k5
z

k2

k6

k1

k{1zk2

k{3zk4

k3

k{5zk6

k5
,

c~
k4

k6

k{5zk6

k5
:

ð28Þ

Note for later use that

bwc: ð29Þ

From (27) and (29) we see that there is a unique solution for the

steady-state value of [I], which satisfies the requirement ½I �ƒ½I �T :

½I �~ ½I �Tzb

2
1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

4c½I �T
½I �Tzb
� �2

s !
: ð30Þ

Inspection of (30) shows that [I] is robust with respect to changes

in [E]T , because [E]T does not appear in the equation for [I]. In

Robustness in Glyoxylate Bypass Regulation
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general, [I] depends on [I]T, but robustness results when

½I �Twwb, ð31Þ

which implies, by (29), that

½I �Twwc: ð32Þ

As a result one obtains from neglecting b with respect to [I]T in

(30), and then Taylor-expanding the resulting expression with

respect to the small parameter c=½I �T , That

½I �~c 1zc=½I �Tz . . .
� �

ð33Þ

This shows that for large values of [I]T compared to b and c, [I]

(and thus I activity) is highly robust with respect to variations in the

total I level.

Ordered Binding and Kinase-Only Activity of the Ternary
Complex Are Not Essential for Robustness

What happens if we relax the assumptions that the ternary

complex can form only in the ordered fashion of (19) and has

only kinase activity? We then need to consider the mass-action

system

IzE�?
k1

/�
k{1

EI

k4: ;k2

EIp
�?
k{3

/�
k3

IpzE

IzEIp
�?
k5

/�
k{5

EIpI

k6

8
EIpzIp

:

k8

EIzI

,

k7:;k{7

EIzIp

ð34Þ

which gives rise to the ordinary differential equations

_II
� �

~k{1½EI �zk4 EIp

� �
z k{5zk8ð Þ EIpI

� �
{k1½E�½I �{k5 EIp

� �
½I �,

_IIp

� �
~k{3 EIp

� �
zk2½EI �zk6 EIpI

� �
zk{7 EIpI

� �
{k3½E� Ip

� �
{k7½EI � Ip

� �
,

_EE
� �

~ k{1zk2ð Þ½EI �z k{3zk4ð Þ EIp

� �
{k1½E�½I �{k3½E� Ip

� �
,

E _II
� �

~k1½E�½I �z k{7zk8ð Þ EIpI
� �

{ k{1zk2ð Þ½EI �{k7½EI � Ip

� �
,

E _IIp

� �
~k3½E� Ip

� �
{ k{3zk4ð Þ EIp

� �
{k5 EIp

� �
½I �z k{5zk6ð Þ EIpI

� �
,

E _IIpI
� �

~k5 EIp

� �
½I �zk7½EI � Ip

� �
{ k{5zk6zk{7zk8ð Þ EIpI

� �
:

ð35Þ

Here, an analytic expression for [I] as a function of [I]T is no

longer obvious, even if (23) is used. Nevertheless, in cases where

(23) and (31) apply, and the ternary complex has stronger kinase

than phosphatase activity (k6wk8), numerical analysis of (35)

suggests that the steady-state value of [I] is approximately robust

over a large range of [I]T values (see Methods). Moreover, if the

ternary complex has much more kinase activity than phospha-

tase activity (k6wwk8), we have that the steady-state value of [I]

is well approximated by the leading term in (33):

½I �&c ð36Þ

(see Methods). Thus, even if the assumptions that the ternary

complex must form in the ordered fashion of (19) and that the

ternary complex has only kinase activity are relaxed, approxi-

mate robustness occurs over a large range of [I]T values.

We note that if we maintain the assumption of ordered binding,

but now with E binding I first and then EI binding Ip to form EIpI,

simulations suggest that, subject to (23), (31) and k6wk8,

robustness of [I] with respect to [I]T is lost, and in fact ½I �!½I �T
(see Methods).

Finally, we observe that (34) is symmetric with respect to

exchanging the index ‘‘p.’’ Thus, if I is exchanged with Ip, EI is

exchanged with EIp, EIIp is identified with EIpI, and the rate

constants are suitably relabeled, then (34) remains invariant. This

implies that if the ternary complex has more phosphatase than

kinase activity then Ip becomes the approximately robust species.

Intuitive Explanation for the Robustness in the Proposed
Mechanism

Let us intuitively understand the origin of robustness in (19).

When [I]T is sufficiently large, that is, when ½I �Twwc, most of I is

phosphorylated and found in the form Ip. Hence, E is saturated

with Ip. This implies that most of the kinase activity is carried out

by the abundant ternary complex EIpI, whereas the phosphatase

activity is carried out only by the binary complex EIp. This

situation can be approximately described by the mass-action

system

IpzE�?
k3

/�
k{3

EIp �?
k4

IzE,

IzEIp
�?
k5

/�
k{5

EIpI �?k6
EIpzIp:

ð37Þ

Because at steady-state the rates of phosphorylation and dephos-

phorylation are equal, and because these rates are proportional to

[EIpI] and [EIp], respectively, it follows that at steady state

EIpI
� �

! EIp

� �
: ð38Þ

Because E is saturated with Ip and EI is neglected, the ternary

complex is effectively formed in an ordered fashion, with Ip binding

first and I binding second. This, through the second equation in (37),

constrains the equilibrium concentration of EIpI to be proportional

to the product of the concentrations of its constituent species: that is,

EIpI
� �

! EIp

� �
½I �: ð39Þ

Using (39) in (38) gives

EIp

� �
½I �! EIp

� �
, ð40Þ

which, following the cancellation of [EIp] from both sides of (40),

yields the robust result

½I �~c: ð41Þ

This shows that [I] is independent of the total level of both proteins in

the system ([I]T and [E]T). The ‘‘cancellation principle’’ used above

Robustness in Glyoxylate Bypass Regulation
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[11] is related to that which demonstrates how robustness

[8,11,30,31] may arise in the EnvZ/OmpR system of E. coli.

It is important to note that the activity of I is still a function of

the allosteric inputs to the enzyme E, through the rate constants

that determine the parameter c. One may say that equation (41)

describes a robust input-output relation [11] between IDH activity

(output) and the allosteric effectors of IDHKP (inputs). This input-

output relation is not affected by fluctuations in the total levels of

the enzymes in the system.

Discussion

This study suggests a new mechanism for the robustness in the

glyoxylate bypass regulation of E. coli. The experimentally

observed robustness of IDH activity in this system does not

necessarily follow from intuitive arguments about first- and zero-

order kinetics of the bifunctional regulator IDHKP. Rather,

robustness requires specific biochemical features. These features

work together to allow IDH activity to be highly insensitive to

variations in the levels of the proteins in the system. While IDH

activity is robust to protein levels, it is still responsive to input

signals that affect rate constants. Thus the system may be said to

have a robust input-output relation [11], where IDH levels

respond to input signals in a reliable way that is not disrupted by

fluctuation in enzyme levels.

The present mechanism for robustness relies, in addition to the

known features of the system, on the assumption that the ternary

complex EIpI exists. In addition, robustness in the present model

requires that the ternary complex has more kinase than

phosphatase activity. This role for a ternary complex in robustness

adds to previous observations that relate ternary complexes to

robustness and bistability [11,32,33].

The present model may explain a seemingly paradoxical aspect

of the system. This effect occurs when E. coli is shifted from

glycerol to acetate (where robustness has been observed). Despite

the fact that IDH activity decreases in acetate compared to

glycerol, the total IDH protein level increases due to upregulated

gene expression [19]. The present model may explain this puzzle

by showing that robustness under acetate conditions requires that

[I]T levels are sufficiently high.

The present model is quite general: it may apply to other

systems with a bifunctional enzyme that catalyzes antagonistic

reactions. A possible example is the pyruvate, ortho-phosphate

dikinase (PPDK) enzyme of plants [34].

The details of the proposed mechanism can be tested

experimentally. To test for the existence of the ternary complex,

one may construct two tagged versions of IDH, each with a different

tag, and test if they co-immunoprecipitate only in the presence of

the bifunctional enzyme IDHKP and ATP. Another experiment

involves labeling in-vitro preparations of I with CFP (cyan

fluorescent protein) and Ip with YFP (yellow fluorescent protein),

and adding saturating amounts of both to IDHKP and ATP. In

the proposed mechanism, this should result in FRET (fluorescent

resonance energy transfer) via the ternary complex.

If the ternary complex is shown to exist, then the next step is to test

whether it has more kinase than phosphatase activity. One possible

way to do this is to prepare CFP-I and YFP-Ip where the phosphate is

radioactive. One then adds saturating amounts of CFP-I and YFP-Ip

to IDHKP and ATP where the c-phosphate is radioactive. Then, we

expect that CFP-Ip would form faster than YFP-I. This could be

checked by immunoprecipitating and measuring the immunopre-

cipitates for radioactivity and color at several time points.

Finally, the current robust model was derived using mass-action

kinetics and not Michaelis-Menten approximations. For bifunc-

tional enzymes, care must be taken to explicitly consider

competitive and cooperative effects before applying Michaelis-

Menten approximations, as standard Michaelis-Menten behavior

will not necessarily arise from ‘‘parent’’ mass-action systems.

Further research can aim to specify conditions where Michaelis-

Menten approximations are applicable, and to define the general

classes of systems that can show robust properties [35].

Methods

We studied mass-action system (34) using numerical simulations.

We considered three scenarios: (a) The ternary complex forms in a

random order. (b) The ternary complex forms in an ordered

fashion, with E binding Ip first and then EIp binding I. (c) The

ternary complex forms in an ordered fashion, but now with E

binding I first and then EI binding Ip. All simulations were

performed using Matlab. In each iteration, we studied (a), (b) and

(c) in the following way: First, we chose each rate constant (with

the exception of k8) in mass-action system (34) from a lognormal

distribution with (natural) log mean equal to 0 and (natural) log

standard deviation equal to 1. To ensure that k6wk8, we chose k8

randomly from the interval [0.1k6, 0.9k6]. The parameters b and c

were calculated according to (28). To ensure that (23) is met, the

conserved total enzyme concentration [E]T was chosen randomly

from the interval [0.1c,c], and [I]T was assigned the values

r1 = 1000b, 1100b,…,2000b = r2. For each value of [I]T, we chose

the initial conditions in the standard way, with E(0) = [E]T,

I(0) = [I]T, and the initial concentrations of the remaining chemical

species set to 0. The differential equations (35), which correspond

to scenario (a) of random binding, were then integrated for each

value of [I]T using the ‘‘ode23s’’ differential equation solver. The

corresponding steady-state values of [I] were extracted. To analyze

case (b), we repeated the exact same procedures as in (a), but with

k7 and k27 set equal to 0. Similarly, to analyze case (c), we repeated

the procedures in (a), but now with k5 and k-5 set equal to 0. We

performed a total of 10,000 simulation runs for each of the three

scenarios.

In scenario (a) (random binding), we find that over the range [r1,

r2] the steady-state value of [I] is well approximated by a linear

function of [I]T: ½I �~p½I �Tzq. The goodness of fit as measured by

R2 was greater than 0.95 for 9,987 of the 10,000 iterations. For the

13 cases where R2 was less than 0.95, we repeated the simulations

with [I]T in the range [10r1, 10r2]. R2 exceeded 0.98 in all 13 cases.

For each choice of parameters, the fractional change in the steady-

state value of [I] with respect to [I]T was calculated as follows:

L:
D½I �
½I �

�
D½I �T
½I �T

����
����~ ½I �(r2)

½I �(r1)
{1

����
����: ðM1Þ

Thus, L measures the percent change in the steady-state value of

[I] as a result of doubling [I]T. (L~0 corresponds to perfect

robustness of [I] with respect to [I]T.) We find that in over 95% of

the simulations, Lv0:01: In over 99.7% of the simulations

Lv0:1. For all cases where L was found to exceed 0.1, we

repeated the simulations with [I]T in the range [10r1, 10r2]. In all

cases, the approximate linear dependence of [I] on [I]T was

maintained, and L was now less than 0.1. In 24 out of 25 cases

Lv0:01: We therefore conclude that in a large range of [I]T

values, the steady-state value of [I] is approximately robust with

respect to [I]T.

Next, we focused on the case where the ternary complex has

much more kinase than phosphatase activity (k6wwk8): To study

the limiting value of [I] as [I]T grows large, we performed 1,000

simulations as in scenario (a) above, but with k8~10{3k6. For
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each simulation, we evaluated the mean deviation of the steady-

state value of [I] from the value c, as predicted by the leading term

in (33). The deviation was calculated by the formula

d~ v½I �w{cj j=c, ðM2Þ

where ,[I]. is the mean of the steady-state value of [I] over the

range [r1,r2] of [I]T values. We found that in 983 out of 1000

simulations d was less than 0.01. For the 17 cases where d
exceeded 0.01, we repeated the simulations with [I]T in the range

[10r1, 10r2]. In all 17 cases d was now less than 0.01. We therefore

conclude that, in a large range of [I]T values, [I] is approximately

equal to c, provided that the ternary complex has much more

kinase than phosphatase activity.

We note that repeating the simulations of scenario (a), but with

the ternary complex having more phosphatase than kinase activity

(k8wk6), causes the robustness of [I] to be lost.

In scenario (b) (ordered binding with E binding Ip first and then

EIp binding I), we find that over the range [r1, r2], [I] is

approximately a linear function of [I]T. In all 10,000 cases, R2

exceeded 0.95, and in all cases L was less than 0.012. We therefore

conclude that approximate robustness obtains in scenario (b).

In scenario (c) (ordered binding with E binding I first and then

EI binding Ip), we find that over the range [r1, r2] the steady-state

value of [I] is a linear function of [I]T to very good approximation:

In every case, R2 was greater than 0.998. In all cases, L was found

to be in the range [0.69, 1.58], and in 9,998 of the 10,000 cases, L
was found to be in the range [0.9, 0.1]. We therefore conclude that

in case (c) robustness of the steady-state value of [I] with respect to

[I]T is lost. Moreover, the fact that in the vast majority of cases L
was approximately equal to 1 indicates that [I] is roughly

proportional to [I]T.

In summary, we conclude that over the range of parameters

tested, robustness of [I] requires that the ternary complex EIpI be

assembled either in a random fashion or sequentially, with E

binding Ip first and then EIp binding I, and that the ternary

complex’s kinase activity exceed its phosphatase activity. This is

summarized in Table 1.
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