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Quantitative computational models play an increasingly important role in modern biology. Such models typically
involve many free parameters, and assigning their values is often a substantial obstacle to model development.
Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data
often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model
that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly
constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues
roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether
such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy
spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In
particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many
parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with
collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such
measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm
this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal
in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that
modelers should focus on predictions rather than on parameters.
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Introduction

Dynamic computational models are powerful tools for
developing and testing hypotheses about complex biological
systems [1-3]. It has even been suggested that such models will
soon replace databases as the primary means for exchanging
biological knowledge [4]. A major challenge with such models,
however, is that they often possess tens or even hundreds of
free parameters whose values can significantly affect model
behavior [5,6]. While high-throughput methods for discover-
ing interactions are well-developed [7], high-throughput
methods for measuring biochemical parameters remain
limited [8]. Furthermore, using values measured in vitro in
an in vivo application may introduce substantial inaccuracies
[9,10]. On the other hand, collectively fitting parameters
[11,12] by optimizing the agreement between the model and
available data often yields large parameter uncertainties [13-
15]. In approaches typically more focused on steady-state
distributions of fluxes in metabolic networks, metabolic
control analysis has been used to quantify the sensitivity of
model behavior with respect to parameter variation [16], and
flux-balance analysis and related techniques have probed the
robustness of metabolic networks [17,18].

One way to cope with the dearth of reliable parameter
values is to focus on predictions that are manifestly
parameter-independent [19], but these are mostly qualitative.
An alternative is not to forsake quantitative predictions, but
to accompany them with well-founded uncertainty estimates
based on an ensemble of parameter sets statistically drawn
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from all sets consistent with the available data [20].
(Uncertainties in the model structure itself may be important
in some cases. Here we focus on parameter uncertainties, as
they are often important on their own.) Brown et al. took this
approach in developing a computational model of the well-
studied growth-factor-signaling network in PCI2 cells [21].
They collectively fit their model’s 48 parameters to 68 data
points from 14 cell-biology experiments (mostly Western
blots). After the fit, all 48 parameters had large uncertainties;
their 95% confidence intervals each spanned more than a
factor of 50. Surprisingly, while fitting this modest amount of
data did not tightly constrain any single parameter value, it
did enable usefully tight quantitative predictions of behavior
under interventions, some of which were verified experi-
mentally.

In calculating their uncertainties, Brown et al. found that
the quantitative behavior of their model was much more
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sensitive to changes in certain combinations of parameters
than others. Moreover, the sensitivity eigenvalues were
approximately equally spaced in their logarithm, a pattern
deemed “sloppy.” Such sloppy sensitivities were subsequently
seen in other multiparameter fitting problems, from intera-
tomic potentials [22] to sums of exponentials [23]. The fact
that sloppiness arises in such disparate contexts suggests that
it may be a universal property of nonlinear multiparameter
models. (Here the term “universal” has a technical meaning
from statistical physics, denoting a shared common property
with a deep underlying cause; see [23]. Universality in this
sense does not imply that all models must necessarily share
the property.)

In this work, we begin by empirically testing 17 systems
biology models from the literature, examining the sensitivity
of their behavior to parameter changes. Strikingly, we find
that Brown et al.’s model is not unique in its sloppiness; every
model we examine exhibits a sloppy parameter sensitivity
spectrum. (Thus, in the models we’ve examined, sloppiness is
also universal in the common English sense of ubiquity.) We
then study the implications of sloppiness for constraining
parameters and predictions. We argue that obtaining precise
parameter values from collective fits will remain difficult even
with extensive time-series data, because the behavior of a
sloppy model is very insensitive to many parameter combi-
nations. We also argue that, to usefully constrain model
predictions, direct parameter measurements must be both
very precise and complete, because sloppy models are also
conversely very sensitive to some parameter combinations.
Tests over our collection of models support the first
prediction, and detailed analysis of the model of Brown et
al. supports the second contention.

Sloppiness, while not unique to biology, is particularly
relevant to biology, because the collective behavior of most
biological systems is much easier to measure in vivo than the
values of individual parameters. Much work has focused on
optimizing experimental design to best constrain model
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parameters with collective fits [24-26]. We argue against this
focus on parameter values, particularly when our under-
standing of a system is tentative and incomplete. Concrete
predictions can be extracted from models long before their
parameters are even roughly known [21], and, when a system
is not already well-understood, it can be more profitable to
design experiments to directly improve predictions of
interesting system behavior [27] rather than to improve
estimates of parameters.

Results

Systems Biology Models Have Sloppy Sensitivity Spectra

Our collection of 17 systems biology models [2,21,25,28-41]
was drawn primarily from the BioModels database [42], an
online repository of models encoded in the Systems Biology
Markup Language (SBML) [43]. The collected models encom-
pass a diverse range of biological systems, including circadian
rhythm, metabolism, and signaling. All the models are
formulated as systems of ordinary differential equations,
and they range from having about ten to more than 200
parameters. In most cases, these parameters were not
systematically fit or measured in the original publication.

We quantified the change in model behavior as parameters
0 varied from their published values 0" by the average squared
change in molecular species time courses:

T * 2
1 1 /[M@t)——y(@t) i

2 = _
rO=yN, T, o,

(1)

0

a kind of continuous least-squares fit of parameters 0 to data
simulated from published parameters 0°. Here y,.(0,t) is the
time course of molecular species s given parameters 0 in
condition ¢, and T, is the “measurement” time for that
condition. We took the species normalization &, to be equal
to the maximum value of species s across the conditions
considered; other consistent normalizations yield the same
qualitative conclusions.

For each model, the sum in Equation 1 runs over all
molecular species in the model and (except where infeasible)
over all experimental conditions considered in the corre-
sponding paper for each model—an attempt to neutrally
measure system behavior under conditions deemed signifi-
cant by the original authors. (The total number of conditions
and species are denoted by N, and Nj, respectively.) SBML
files and SloppyCell [44] scripts for all models and conditions
are available in Dataset S1.

To analyze each model’s sensitivity to parameter variation,
we considered the Hessian matrix corresponding to x*

H_)(2 d2 X2

ik = dlogb;dlogh, 2)

We took derivatives with respect to log 0 to consider relative
changes in parameter values, because biochemical parameters
can have different units and widely varying scales. Analyzing
HY corresponds to approximating the surfaces of constant
model behavior deviation (as quantified by v?) to be Ny-
dimensional ellipsoids, where N, is the number of parameters
in the model. Figure 1A schematically illustrates these
ellipsoids and some of their characteristics. (Details of

October 2007 | Volume 3 | Issue 10 | €189



Sloppy Systems Biology

B Eigenvalues
0 J O Y O Y O 1
H10 — — =
~< - S
=< - = B
14| | H - | | | =
10'2—_: B _:72:7 % =
=_ =
C 3 = I 7))
1072 —l= =—=_"—£
= __= = 2 ——_|_[EE= —— ==
10-1 = _::; — l 10-4__ = |=— —|= =
= 1054 — = -
10-2_ — == g _ N —
= 3 _ - _
— T 8 10-6 —
10384 = = —
= abcdefghi|j

nopq

abcdefghijklm

Figure 1. Parameter Sensitivity Spectra

The quantities we calculate from H” are illustrated in (A), while (B) and (C) show that all the models we examined have sloppy sensitivity spectra.
(A) Analyzing H*' corresponds to approximating the surfaces of constant model behavior change (constant ) as ellipsoids. The width of each principal
axis is proportional to one over the square root of the corresponding eigenvalue. The inner ellipsoid’s projection onto and intersection with the 0, axis
are denoted by P, and /;, respectively.

(B) Plotted are the eigenvalue spectra of H* for our collection of systems biology models. The many decades generally spanned indicate that the
ellipses have a very large aspect ratio. (The spectra have each been normalized by their largest eigenvalue. Not all values are visible for all models.)
(C) Plotted is the spectrum of / / P for each parameter in each model in our collection. Generally very few parameters have / / P ~ 1, suggesting that the
ellipses are skewed from the bare parameter axes. (Not all values are visible for all models.)

The models are plotted in order of increasing number of free parameters and are: (a) eukaryotic cell cycle [28], (b) Xenopus egg cell cycle [29], (c)
eukaryotic mitosis [30], (d) generic circadian rhythm [31], (e) nicotinic acetylcholine intra-receptor dynamics [32], (f) generic kinase cascade [33], (9)
Xenopus Wnt signaling [34], (h) Drosophila circadian rhythm [35], (i) rat growth-factor signaling [21], (j) Drosophila segment polarity [36], (k) Drosophila
circadian rhythm [37], (I) Arabidopsis circadian rhythm [2], (m) in silico regulatory network [25], (n) human purine metabolism [38], (0) Escherichia coli

carbon metabolism [39], (p) budding yeast cell cycle [40], (q) rat growth-factor signaling [41].

doi:10.1371/journal.pcbi.0030189.g001

calculating H* and related quantities are found in Methods.
Dataset S1 includes H*' for each model.)

The principal axes of the ellipsoids are the eigenvectors of
HY, and the width of the ellipsoids along each principal axis
is proportional to one over the square root of the
corresponding eigenvalue. The narrowest axes are called
“stiff,” and the broadest axes “sloppy” [20]. The eigenvalue
spectra for the models in our collection are shown in Figure
1B (each normalized by its largest eigenvalue). In every case,
the eigenvalues span many decades. All but one span more
than 10° indicating that the sloppiest axes of the ellipsoids
illustrated in Figure 1A are generally more than 1,000 times
as long as the stiffest axes. In each spectrum the eigenvalues
are also approximately evenly spaced in their logarithm;
there is no well-defined cutoff between “important” and
“unimportant” parameter combinations.

The Hessian matrix is a local quadratic approximation to
the generally nonlinear %% function. Principal component
analysis of extensive Monte Carlo runs in the Brown et al.
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model, however, indicates that the sloppiness revealed by H*
is indicative of full nonlinear X2 function [20].

Along with their relative widths, the degree to which the
principal axes of the ellipsoids are aligned to the bare
parameter axes is also important. We estimated this by
comparing the ellipsoids’ intersections I; with each bare
parameter axis ¢ and projections P; onto each bare parameter
axis i. If I; | P; = 1, then one of the principal axes of the
ellipsoids lies along bare parameter direction i. Figure 1C
plots the I/ P spectrum for each model. In general, very few
axes have I | P =~ 1; the ellipses are skewed from single
parameter directions.

Naively, one might expect the stiff eigenvectors to embody
the most important parameters and the sloppy directions to
embody parameter correlations that might suggest removable
degrees of freedom, simplifying the model. Empirically, we
have found that the eigenvectors often tend to involve
significant components of many different parameters; plots
of the four stiffest eigenvectors for each model are in Text S1.
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Figure 2. Sloppiness and Uncertainties

As in Figure 1A, the contours represent surfaces of constant model
behavior deviation. The clouds of points represent parameter set
ensembles.

(A) Collective fitting of model parameters naturally constrains the
parameter set ensemble along stiff directions and allows it to expand
along sloppy directions. The resulting ensemble may be very large, yet
encompass little variation in model behavior, yielding small prediction
uncertainties despite large parameter uncertainties. (£, denotes the 95%
confidence for the value of 6.

(B) If all parameters are directly measured to the same precision, the
parameter set ensemble is spherical. The measurement precision
required for well-constrained predictions is set by the stiffest direction.
(Q) If one parameter (here 6,) is known less precisely than the rest, the
cloud is ellipsoidal. If not aligned with a sloppy direction, the cloud will
admit many model behaviors and yield large prediction uncertainties.
(Note that the aspect ratio of the real contours can be greater than
1,000.)

doi:10.1371/journal.pcbi.0030189.9g002

This is understandable theoretically; the nearly degenerate
sloppy eigenvectors should mix, and the stiff eigenvectors can
include arbitrary admixtures of unimportant directions to a
given important parameter combination. (Indeed, in analo-
gous random-matrix theories, the eigenvectors are known to
be uncorrelated random vectors [45].) While the relatively
random eigenvectors studied here may not be useful in
guiding model reduction, more direct explorations of
parameter correlations have yielded interesting correlated
parameter clusters [46].

These characteristic parameter sensitivities that evenly
span many decades and are skewed from bare parameter axes
define a “sloppy” model [20]. Figure 1B and 1C shows that
every model we have examined has a sloppy sensitivity
spectrum. Next we discuss some broad questions about the
relation between model predictions, collective fits, and
parameter measurements and see how the sloppy properties
of these models may suggest answers.

Consequences of Sloppiness
The difficulty of extracting precise parameter values from
collective fits in systems biology modeling is well-known [26].
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Sloppiness offers an explanation for this and predicts that it
will be true even for fitting to complete data that the model
can fit perfectly. In a collective fit, the parameter set
ensemble samples from all sets of parameters for which the
model behavior is consistent with the data. Because sloppy
models are very insensitive to parameter combinations that
lie along sloppy directions, the parameter set ensemble can
extend very far in those directions, as illustrated schemati-
cally in Figure 2A. As a result, individual parameters can be
very poorly determined (e.g., confidence interval indicated by
%, in Figure 2A). Below, we discuss a test of this prediction
over all the models in our collection.

Unless one has direct interest in the kinetic constants for
the underlying reactions, uncertainties in model predictions
are generally more important than uncertainties in model
parameters. The parameter set ensemble illustrated in Figure
2A yields large uncertainties on individual parameters, but
can yield small uncertainties on predictions. While the fitting
process allows the ensemble to expand along sloppy
directions, the fit naturally constrains the ensemble along
stiff directions, so that model behavior varies little within the
ensemble, and predictions can be consequently tight.

Direct parameter measurements, on the other hand, will
have uncertainties that are uncorrelated with the model’s
underlying stiff and sloppy directions. For example, if all
parameter measurements are of the same precision, the
parameter set ensemble is spherical, as illustrated in Figure
2B. For tight predictions, this ensemble must not cross many
contours, so the required precision is set by the stiffest
direction of the model. Consequently, high precision param-
eter measurements are required to yield tight predictions.
Moreover, these measurements must be complete. If one
parameter is known less precisely, the parameter set
ensemble expands along that parameter axis, as illustrated
in Figure 2C. If that axis is not aligned with a sloppy
direction, model behavior will vary dramatically across the
parameter set ensemble and predictions will have corre-
spondingly large uncertainties. Below we discuss tests of both
these notions, exploring the effects of direct parameter
measurement uncertainty on predictions of a particular
model.

Parameter Values from Collective Fits

Does the sloppiness of these models really prevent one
from extracting parameters from collective fits? Here we
discuss a test of this prediction using an idealized fitting
procedure.

Our % measure of model behavior change (Equation 1)
corresponds to the cost function for fitting model parameters
to continuous time-series data that the model fits perfectly at
parameters 9*; H” is the corresponding Fisher information
matrix (Equation 2). We used this idealized situation to test
the prediction that collective fits will often poorly constrain
individual parameters in our collection of sloppy models.

We defined the relative 95% confidence interval size X; as
the ratio between parameter i at the upper and lower
extremes of the interval, minus 1. (A parameter value
constrained after the fit to lie between 10 and 1,000 would
have X =~ 100, while one constrained between 1.0 and 1.5
would have X = 0.5.) We assumed 100 times as many data
points (each with 10% uncertainty) as the number of
parameters in each model. Figure 3 shows histograms of the
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Figure 3. Fitting Parameters to Idealized Data

Shown are histograms of the relative confidence interval size X for each
parameter in each model of our collection, after fitting 100 times as
many time-series data points (each with 10% uncertainty) as parameters.
In most cases, a large number of parameters are left with greater than
100% uncertainty. (A parameter constrained with 95% probability to lie
between 1 and 100 would have £ =~ 100.) Labels are as in Figure 1.
doi:10.1371/journal.pcbi.0030189.g003

quadratic approximation to X for each parameter in each
model after fitting such data (see Methods). For most of the
models, Figure 3 indicates that such fitting leaves many
parameters with greater than 100% uncertainty (X > 1).
Indeed, even fitting this large amount of ideal data can leave
many parameter values very poorly determined, as expected
from the sloppiness of these models and our discussion of
Figure 2A.

The fact that nonlinear multiparameter models often allow
a wide range of correlated parameters to fit data has long
been appreciated. As one example, a 1987 paper by
Brodersen et al. on ligand binding to hemoglobin and
albumin empirically found many sets of parameters that
acceptably fit experimental data, with individual parameter
values spanning huge ranges [13]. Our sloppy model
perspective ([20,21,23], Figure 1) shows that there is a deep
underlying universal pattern in such least-squares fitting.
Indeed, an analysis of the acceptable binding parameter sets
from the 1987 study shows the same characteristic sloppy
eigenvalue spectrum we observed in Figure 1B (Text Sb).

Predictions from Direct Parameter Measurements

Figure 2B and 2C suggest that direct parameter measure-
ments must be both precise and complete to usefully
constrain predictions in sloppy systems. Here we discuss a
test of this notion in a specific model.

We worked with the 48-parameter growth-factor-signaling
model of Brown et al., shown schematically in Figure 4A [21].
The parameters in this model were originally collectively fit
to 14 time-series cell-biology experiments. We focused on this
model because it is instructive to compare our results
concerning direct parameter measurements with prior results
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from collective fitting. For our analysis, we assumed that
hypothetical direct parameter measurements would be
centered about the original best-fit values.

One important test of the model was a prediction of the
time-course of ERK activity upon EGF stimulation, given
inhibition of the PI3K branch of the pathway. The yellow
shaded region in Figure 4B shows the uncertainty bound on
this prediction from the original collective fit, calculated by
exhaustive Monte Carlo [21]. The tightness of this prediction
is remarkable considering the huge uncertainties the collec-
tive fit left in the individual parameter values (yellow circles
in Figure 4C). Not a single parameter was constrained to
better than a factor of 50.

How precise would direct parameter measurements have to
be to yield as tight a prediction as the collective fit? For this
prediction, the PI3K branch (inhibited) and C3G branch
(NGF-dependent) of the pathway are irrelevant in the model;
the remaining reactions involve 24 parameters. To achieve
the red prediction in Figure 4B, all 24 involved parameters
must be measured to within a factor of plus or minus 25%
(Figure 4C, red squares). With current techniques, measuring
even a single in vivo biochemical parameter to such precision
would be a challenging experiment. Such high precision is
required because, as illustrated in Figure 2B, the measure-
ments need to constrain the stiffest combination of model
parameters.

What if a single parameter is left unmeasured? For
example, consider high-precision measurements of 23 of
the 24 involved parameters, all but the rate constant for the
activation of Mek by Rafl. For this unmeasured parameter,
we assumed that an informed estimate could bound it at 95%
confidence to within a total range of 1,000 (e.g., between 1 5"
and 1,000 s ). The resulting prediction (blue in Figure 4B)
has very large uncertainty and would likely be useless. Note
that these hypothetical measurements constrain every indi-
vidual parameter value more tightly than the original
collective fit (blue triangles versus yellow circles in Figure
4C), yet the prediction is much less well-constrained. Neither
this parameter nor this prediction is unique. Uncertainty for
this prediction is large if any one of about 18 of the 24
involved parameters is unmeasured (Text S2). Furthermore,
other possible predictions in this model are similarly fragile
to single unmeasured parameters (Text S3).

To usefully constrain Brown et al.’s model, direct param-
eter measurements would need to be both precise and
complete. By contrast, collective parameter fitting yielded
tight predictions with only a modest number of experiments.
These results are expected given the model’s sloppiness.

Discussion

By examining 17 models from the systems biology
literature [2,21,25,28-41], we showed that their parameter
sensitivities all share striking common features deemed
“sloppiness”; the sensitivity eigenvalues span many decades
roughly evenly (Figure 1B) and tend not to be aligned with
single parameters (Figure 1C). We argued that sloppy
parameter sensitivities help explain the difficulty of extract-
ing precise parameter estimates from collective fits, even
from comprehensive data. Additionally, we argued that direct
parameter measurements should be inefficient at constrain-
ing predictions from sloppy models. We then showed that
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Figure 4. Parameter and Prediction Uncertainties

(A) Our example prediction is for ERK activity upon EGF stimulation given
PI3K inhibition in this 48-parameter model of growth-factor signaling in
PC12 cells [21].

(B) Shaded regions are 95% confidence intervals calculated via
exhaustive Monte Carlo for our example prediction given various
scenarios for constraining parameter values.

(C) Plotted is the relative size X of the 95% confidence interval for each
parameter.

The scenarios represented are: (red, squares) all model parameters
individually measured to high precision, (blue, triangles) all parameters
precisely measured, except one estimated to low precision, (yellow,
circles) all parameters collectively fit to 14 real cell-biology experiments.
Precisely measured individual parameter values enable a tight prediction,
(B) middle red band; but even one poorly known parameter can destroy
predictive power, (B) wide blue band. In contrast, the collective fit yields
a tight prediction, (B) tightest yellow band; but only very loose
parameter constraints, (C) circles. The large parameter uncertainties
from the collective fit, (C) circles, calculated here by Monte Carlo are
qualitatively similar to those seen in the linearized fit to idealized data
(Figure 3, model (i)). (For clarity, the dashed red lines trace the boundary
of the red confidence interval.)

doi:10.1371/journal.pcbi.0030189.9g004
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collective parameter fits to complete time-series data do
indeed yield large parameter uncertainties in our model
collection (Figure 3). Finally, we confirmed for the 48-
parameter signaling model of Brown et al. [21] that direct
parameter measurements must be formidably precise and
complete to usefully constrain model predictions (Figure 4).

What causes sloppiness? (1) Fundamentally, sloppiness
involves an extraordinarily singular coordinate transforma-
tion in parameter space between the bare parameters natural
in biology (e.g., binding affinities and rate constants) and the
eigenparameters controlling system behavior, as discussed in
[23]. Both experimental interventions and biological evolu-
tion work in the bare parameter space, so this parameter-
ization is fundamental to the system, not an artifact of the
modeling process. (2) Sloppiness depends not just upon the
model, but also on the data it is fit to; exhaustive experiments
designed to decouple the system and separately measure each
parameter will naturally not yield sloppy parameter sensitiv-
ities. (3) In biological systems fit to time-series data, Brown
and Sethna [20] note that sloppiness may arise due to
underdetermined systems, proximity to bifurcations, and
separation of time or concentration scales, but they doubt
that these can explain all the sloppiness found in their model.
Our analysis includes complete data on all species, and hence
is overdetermined. Small eigenvalues near bifurcations are
associated with dynamic variables, and not the system
parameters we investigate. To study the effect of time and
concentration scales, we calculated H™ for a version of the
Brown et al. model in which all concentrations and rate
constants were scaled to 1. The resulting model remains
sloppy, with eigenvalues roughly uniformly spanning five
decades (Text S4). (4) Motivated by simple example systems,
we have argued elsewhere that sloppiness emerges from a
redundancy between the effects of different parameter
combinations [23]. We are presently investigating decom-
positions of parameter space into sloppy subsystems [46] and
the use of physically or biologically motivated nonlinear
coordinate changes to remove sloppiness or motivate simpler
models. These potential methods for model refinement,
however, demand a complete and sophisticated understand-
ing of the system that is unavailable for many biological
systems of current interest.

Parameter estimation has been a serious obstacle in systems
biology modeling. With tens of unknown parameters, a
typical modeling effort might draw some values from the
literature (possibly from in vitro measurements or different
cell lines) [33,38], set classes of constants to the same value
(e.g., phosphorylation rates) [31,32,41], and adjust key
parameters to qualitatively best fit the existing data
[2,37,40]. In retrospect, these approaches may be successful
because the models are sloppy—they can be tuned to reality
by adjusting one key parameter per stiff direction, independ-
ently of how reliably the other parameters are estimated.

Computational modeling is a potentially invaluable tool for
extrapolating from current experiments and distinguishing
between models. But we cannot trust the predictions of these
models without testing how much they depend on uncertain-
ties in these estimated parameters. Conversely, if we insist
upon a careful uncertainty analysis, it would seem unneces-
sary to insist upon tight prior estimates of the parameters,
since they do not significantly enhance model predictivity.
Because the behavior of a sloppy model is dominated by a few
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stiff directions that nonetheless involve almost all the
parameters, direct parameter measurements constrain pre-
dictions much less efficiently than comparably difficult
experiments probing collective system behavior.

Our suggestion of making predictions from models with
very poorly known parameters may appear dangerous. A
model with tens or hundreds of unmeasured parameters
might seem completely untrustworthy; we certainly believe
that any prediction derived solely from a best-fit set of
parameters is of little value. Uncertainty bounds derived from
rigorous sensitivity analysis, distinguish those
predictions that can be trusted from those that cannot. Of
course, successful fits and predictions may arise from models
that are incorrect in significant ways; for example, one model
pathway with adjusted parameters may account for two
parallel pathways in the real system. A model that is wrong in
some details may nevertheless be useful in guiding and
interpreting experiments. For computational modeling to be
useful in incompletely understood systems, we must focus not
on building the final, perfect, model with all parameters
precisely determined, but on building incomplete, tentative,
and falsifiable models in the most expressive and predictive
fashion feasible.

Given that direct parameters measurements do not
efficiently constrain model behavior, how do we suggest that
experimentalists decide what experiment to do next? If the
goal is to test the assumptions underlying a model, one should
look for predictions with tight uncertainty estimates that can
be readily tested experimentally. If the goal is to reduce
uncertainty in crucial model predictions, one must invoke the
statistical methods of optimal experimental design, which we
have studied elsewhere [27] and which may be conveniently
implemented in modeling environments that incorporate
sensitivity analysis (such as SloppyCell [44]).

In our approach, the model and its parameters cannot be
treated in isolation from the data that informed model

however,

development and parameter fitting. This complicates the task
of exchanging knowledge in the modeling community. To
support our approach, standards such as SBML [43] that
facilitate automated model exchange will need to be
extended to facilitate automated data exchange.

Every one of the 17 systems biology models we studied
exhibits a sloppy spectrum of parameter sensitivity eigenval-
ues; they all span many decades roughly evenly and tend not
be aligned with single parameters. This striking and appa-
rently universal feature has important consequences for the
modeling process. It suggests that modelers would be wise to
try collective parameter fits and to focus not on the quality of
their parameter values but on the quality of their predictions.

Methods

. . 2
Hessian computations. /% can be calculated as

2 1
I—Ii),(k :m Z ;)

Second derivative terms (d> 5.(07,) | dlogh; dlogﬂ) might be
expected but they vanish because we evaluate HX at 0", Equatlon
3 is convenient because the first derivatives (dyx,(G ;1) I dlog 0)) can be
calculated by integrating sensitivity equations. This avoids the use of
finite-difference derivatives, which are troublesome in sloppy
systems.

d}’u dysz(e s )dt
dloge dlogb,

(3)
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The projections P; of the ellipsoids shown in Figure 2A onto
bare parameter axis i are proportional to /(i #7),,. The intersections
I; with axis ¢ are proportional to ,/1/m%, with the same proportionality
constant. )

Parameter uncertainties. To rescale H” so that it L()rresp()nds to
fitting NV, data points, each with uncertamty a fractlonfof the species’
maximal value, we multiply HY by N, | f% In the quadratic
approximation, the one-standard-deviation uncertainty in the loga-
rlthm of Parameter 0; after such a collective fit is given by
GIOg o, = (f*/Na)(inv HY ) The relative size of the 95% confidence
1nterval is then X; = exp(4610g9) 1.

Prediction uncertainties. The red and blue prediction uncertain-
ties shown in Figure 4B were calculated by randomly generating 1,000
parameter sets consistent with the stated parameter uncertainties.
(For each parameter i, the logarithm of its value is drawn from a
normal distribution with mean logG? and standard deviation Gjgp,
specified by the desired X.) For each parameter set, the Erk time
course was calculated, and at each time-point the shaded regions in
the figure contain the central 95% of the time courses.

Software. All computations were performed in the open-source
modeling environment SloppyCell, version 0.81 [44]. SBML files and
SloppyCell scripts to reproduce all presented calculations are in
Dataset S1.

Supporting Information

Dataset S1. SBML Files, SloppyCell Scripts, and H* Hessians
Found at doi:10.1371/journal.pcbi.0030189.sd001 (1.1 MB ZIP).

Text S1. Stiffest Eigenvectors
Found at doi:10.1371/journal.pcbi.0030189.sd002 (112 KB PDF).

Text S2. Effect of Other Poorly Determined Parameters
Found at doi:10.1371/journal.pcbi.0030189.sd003 (94 KB PDF).

Text S3. Fragility of Other Predictions
Found at doi:10.1371/journal.pcbi.0030189.sd004 (48 KB PDF).

Text S4. Rescaled Model of Brown et al.
Found at doi:10.1371/journal.pcbi.0030189.sd005 (46 KB PDF).

Text S5. Eigenvalue Analysis of Brodersen et al. Binding Studies
Found at doi:10.1371/journal.pcbi.0030189.sd006 (42 KB PDF).

Accession Numbers

Models discussed that appear in the BioModels database [42] are: (a)
BIOMDO0000000005, (c) BIOMD0000000003, (d) BIOMD0000000035,
(e) BIOMDO0000000002, (f) BIOMDO0000000010, (h) BI-
OMDO0000000021, (i) BIOMD0000000033, (k) BIOMD0000000022, (1)
BIOMDO0000000055, (n) BIOMD0000000015, (o) BIOMDO0000000051,
(p) BIOMDO0000000056, (q) BIOMD0000000049.
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