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Abstract

What is the relationship between the complexity and the fitness of evolved organisms, whether natural or artificial? It has
been asserted, primarily based on empirical data, that the complexity of plants and animals increases as their fitness within a
particular environment increases via evolution by natural selection. We simulate the evolution of the brains of simple
organisms living in a planar maze that they have to traverse as rapidly as possible. Their connectome evolves over 10,000s of
generations. We evaluate their circuit complexity, using four information-theoretical measures, including one that
emphasizes the extent to which any network is an irreducible entity. We find that their minimal complexity increases with
their fitness.
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Introduction

What is the relationship between complexity and the fitness of

evolved organisms, whether natural or artificial? It is often assumed

[1–4] that while evolving organisms grow in fitness, they develop

functionally useful forms, and hence necessarily exhibit increasing

complexity [5]. Some, however, argue against this notion [6,7],

pointing to examples of decreases in complexity, while others assert

that any apparent growth of complexity with fitness is an admixture

of chance and necessity [8,9]. One reason behind this absence of a

consensus is the lack of formal or analytical definitions that permit

relating complexity and fitness within a single framework. While

many context-dependent definitions of complexity exist [3,10–13],

fitness has been less frequently formalized into an information-

theoretic framework [14]. One such attempt [15] showed analyt-

ically that the fitness gain due to a predictive cue was tightly related

to the amount of information about the environment carried by the

cue. Another study using an artificial life setup demonstrated that

the observed evolutionary trends in complexity, measured as in

[16], could be associated with a systematic driving force such as

natural selection, but could also result from an occasional random

drift away from the equilibrium [17].

Recently, a computer model of simple animats evolving in an

environment with fixed statistics, randomly generated mazes that

they had to traverse as quickly as possible (Fig. 1), reported [18]

that the complexity of their brains was strongly correlated with

their fitness. Using integrated information of the main complex,

WMC (defined in the latter part of this work), as a measure of

complexity, Spearmans rank correlation coefficient between

complexity and fitness was R~0:94. However, no specific relation

between these two quantities was established.

In all experiments - and also in our setup - the evolutionary

change takes place via two mutually disjoint processes, namely a

purely stochastic mutation of the genome followed by a selection

process. The stochastic nature of the genetic mutation allows us to

equate ensemble-averages over many evolutionary histories to the

time-averages over a single history, provided sufficient time has

passed for an equilibrium to be established locally. By exploiting

this ergodicity, we could greatly scale up the statistic from our

evolutionary runs. This enabled us to reproduce the simulations of

Edlund et. al. [18] for 126 new evolutionary histories (see below)

for a more extensive analysis. We obtained a very broad

distribution of Spearmans rank correlation coefficients between

fitness and WMC, with a mean of 0.69 and a variance of 0.24

(Fig. 1). Even though the distribution shows a tendency for high

values, the broad variance hints towards the presence of an

uncontrolled, noisy factor that lessens the correlation.

Most information-theoretic definitions of functional or struc-

tural complexity of a finite system are bounded from above by the

total entropy of the system. The law of requisite variety of Ashby

[19] connects the notion of complexity in a control system with the

total information flowing between sensory input and the motor

output, given by the corresponding sensory-motor mutual

information (SMMI) [20]. This relation provides a convenient

tool for studying the connection between evolved complexity and

fitness. Here, we probe the relationship between fitness and the

SMMI in the context of 10,000s of generations of evolving agents,

or animats, adapting to a simulated environment inside a

computer [18]. In addition to SMMI, we compute three other

measures of complexity: the predictive information [12], the state-

averaged version of integrated information (or W [21]) of a network of

interacting parts using the minimal information partition (MIP) as
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well as the atomic version of W, also known as stochastic

interaction [22,23]. We relate all four measures to the extent to

which these artificial agents adapt to their environment.

Results

In order to test the relationship between the SMMI and the

fitness of an agent undergoing adaptation in a static environment,

we performed an in silico evolution experiment, in which the agent

needs to solve a particular task without altering the state of the

environment. Our experimental setup is similar to that pioneered

by Edlund and others [18], where simple agents evolve a suitable

Markov decision process [24,25] in order to survive in a locally

observable environment (described in detail in the Methods

section). Agents must navigate and pass through a planar maze

(Fig. 2A), along the shortest possible path connecting the entrance

on the left with the exit on the right. At every maze door, the agent

is instructed about the relative lateral position of the next door

with respect to the current position via a single bit (red arrows in

Fig. 2A) available only while the agent is standing in the doorway.

In effect, an agent must evolve a mechanism to store this

information in a one-bit memory and use it at a future time,

optimizing the navigation path. For this purpose, the agent is

provided with a set of internal binary units, not directly accessible

to its environment.

The evolutionary setup, based purely on stochastic mutation

and driven by natural selection, allows us to monitor trends in the

complexity of the brain of the agents. Our experiment consists of

data collected over 126 independent evolutionary trials or

histories, where each evolutionary history was run through

60,000 generations. The evolution experiment was carried out

using one randomly generated test maze, which was renewed after

every 100th generation. Frequent renewal of the test maze

confirms that each generation of animats does not adapt to a

particular maze, by developing an optimal strategy for that

particular maze, but enforces evolving a general rule to find the

shortest path through the maze. For examples of this evolution, we

refer the readers to the movies S1, S2, S3 in the supplementary

material.

After every 1000th generation, we estimate the SMMI and

complexity in terms of the predictive and stochastic interaction, and

information integration of the network evolved so far. To systemat-

ically monitor the evolution of network connectivity, we use the

data along the line-of-descent (LOD) of the fittest agent resulted

after 60,000 generations. To reduce the error in fitness as well as

complexity estimation, we generated 20 random mazes each time

over which performance of an agent is tested to calculate fitness.

SMMI and other complexity measures are calculated using the

Figure 1. Distribution of the Spearman rank correlation coefficients between WMC and fitness. The analysis in [18] was repeated several
times to obtain Spearman rank correlation coefficients. The distribution for the 126 correlation coefficients shows a very broad spectrum with a mean
at 0.69 and a variance of 0.24. The red arrow indicates a value of 0.94 obtained in [18] over 64 evolutionary histories, while the green arrow points to
the value of 0.79 obtained for the current 126 histories in the same manner. Error bars are Poisson errors due to binning.
doi:10.1371/journal.pcbi.1003111.g001

Author Summary

It has often been asserted that as organisms adapt to
natural environments with many independent forces and
actors acting over a variety of different time scales, they
become more complex. We investigate this question from
the point of view of information theory as applied to the
nervous systems of simple creatures evolving in a
stereotyped environment. We performed a controlled in
silico evolution experiment to study the relationship
between complexity, as measured using different infor-
mation-theoretic measures, and fitness, by evolving
animats with brains of twelve binary variables over
60,000 generations. We compute the complexity of these
evolved networks using three measures based on mutual
information and one measure based on the extent to
which their brain contain states that are both differenti-
ated and integrated. All measures show the same trend -
the minimal complexity at any one fitness level increases
as the organisms become more adapted to their environ-
ment, that is, as they become fitter. Above this minimum,
there exists a large degree of degeneracy in evidence.

Minimal Complexity Increases with Fitness
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sensory-motor data collected while the agent was navigating

through these mazes.

The Sensory-Motor Mutual Information
The mutual information between two variables x and y is given by

I(x : y)~
X
x,y

p(x,y)log
p(x,y)

p(x)p(y)
ð1Þ

and is a measure of statistical dependence between the two

variables [26]. Note, that throughout this work, a boldface symbol

such as x signifies a system (or subsystem) variable, while a

particular state of the variable is denoted as a regular-face-type x,

sometimes subscripted as per context as xi. In particular, the

SMMI for an agent connectome is evaluated as

SMMI~I(s(t) : m(tz1)): ð2Þ

This corresponds to the average information transmitted from

the sensors at time t, affecting the motor state at one time step

later. Our definition of SMMI is a variant of the predictive

information used in studies [27,28] involving a Markovian

control system or autonomous robots where sensory input

variables s and motor or action variables m can be

distinguished [18]. Depending on whether or not the state-

update mechanism uses feedback or memory, these definitions

may differ from each other.

Fig. 3 shows the distribution of SMMI calculated for 126

evolutionary histories after every 1000th generation. The data

shows increasing lower SMMI values as the fitness of the agents

increase.

Predictive information
The predictive information of a time series, as defined in its

original form [12], is a characteristic of the statistic, which

quantifies the amount of information about a future state of a

system contained in the current state assumed by the system. It can

be loosely interpreted as the ability of an external user - as opposed

to the intrinsic ability of the system - to predict a future state of a

system, based on its current state, hence the name predictive

information. Considering the system as a channel connecting two

consecutive states, the predictive information has been proposed as

a possible measure of functional complexity of the system. The

predictive information of a system x being observed during a time

interval of ({t,0) is defined as

Ipred(x,t)~I(xpast(t) : xfuture) ð3aÞ

where xpast and xfuture denote the entire past and entire future of

the system with respect to an instance at time t~0.

We here consider the predictive information between one

discrete time step, t and tz1, that is for t~1 above, or

Ipred(x)~I(x(t) : x(tz1)) ð3bÞ

Fig. 4 shows the distribution of Ipred estimated for the evolved

agent connectomes along the LODs of the best fit agent at the

60,000th generation in each of the 126 evolutionary histories.

Similar to SMMI, Ipred too shows a boundary on the lower side,

confirming our expectation of an increasing minimal bound on the

complexity with increasing fitness. Indeed, a lower boundary was

observed (not shown here) in all cases when we calculated (an

approximate) Ipred between two states up to 8 time-steps apart.

Information integration W
We use the state-averaged version of integrated information or W

[21] of a network of interacting variables (or nodes) as a measure

of complexity and relate it to the degree to which these agents

adapt to their environment. The state-averaged version of the

integrated information measure W is defined as the minimal

irreducible part of the information generated synergistically by

Figure 2. Experimental setup for evolving a population of agents under natural selection in an environment with fixed statistical
properties. A. A section of the planar maze that the animats have to cross from left to right as quickly as possible. The arrows in each doorway
represent a door bit that is set to 1 whenever the next door is on the right-hand-side of the current one and set to 0 otherwise. B. The agent, with 12
binary units that make up its brain: b0–b2 (retinal collision sensors), b3 (door-information sensor), b4–b5 (lateral collision sensors), b6–b9 (internal
logic), and b10–b11 (movement actuators). In the first generation of each evolutionary history, the connectivity matrix is initiated to be random. The
networks for all subsequent generations are selected for their fitness. Taken from [18] with permission from the authors.
doi:10.1371/journal.pcbi.1003111.g002

Minimal Complexity Increases with Fitness
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mutually exclusive non-overlapping parts or components of a

system above the information generated by the parts themselves.

One proceeds by defining a quantity called the effective

information

ei(xt?xtz1=P) ~
def

H p(xt?xtz1)E P
mk[P

p(mk
t ?mk

tz1)

� �
: ð4Þ

where x is the whole system and mi its parts belonging to some

arbitrary partition P. The subscript indices represent temporal

ordering of the states. The function p(xi?xj) represents the

probability of the system making a transition from a state xi to a

state xj . In other words, p(xi?xj) indicates the probability that a

variable x takes a state xj immediately following xi.

H½p1(x)Ep2(x)� is the Kullback-Leibler divergence or the relative

entropy between two probability distributions p1(x) and p2(x),
given by

H½p1(x)Ep2(x)�~
X

p1(x)log
p1(x)

p2(x)
: ð5Þ

The partition of the system that minimizes the effective

information is called minimal information partition or MIP. The

effective information, defined over the MIP, is thus an intrinsic

property of the connectivity of the system and signifies the degree

of integration or irreducibility of the information generated within

the system. This quantity is called W and is given by

W~ei(xt?xtz1=MIP) ð6Þ

Note that the effective information minimization has a trivial

solution, whereby all nodes are included in the same part, yielding

a partition of the entire system into a single part. This

uninteresting situation is avoided by dividing ei by a normalization

factor, given by

NP~(DPD{1)| min
k[(1,...,DPD)

fHmax(Mk
0 )g ð7Þ

in eq. 4, while searching for a MIP [21]. W, however, is the non-

normalized ei as defined in eq. 6. DPD here denotes the number of

parts in the partition P, while Hmax is the maximum entropy.

The main complex and WMC

By definition, W of a network reduces to zero if there are

disconnected parts, since this topology allows for a method of

partitioning the network into two disjoint parts across which no

information flows. That is, the system can be decomposed into two

separate sub-systems, rather than being a single system. For each

agent, we then find the subset of the original system, called the

main complex (MC), which maximizes W over the power-set of the

set of all nodes in the system. This is done by iteratively removing

Figure 3. The sensory-motor mutual information, SMMI, as a function of fitness. Along each of 126 evolutionary histories the line-of-
descent (LOD) of the fittest agent after 60,000th generation is traced back. Absence of cross-over in the evolution confirms that only one agent lies
on LOD in every generation. SMMI is calculated every 1,000th generation for the agent along the LOD. The data is color-mapped according to the
number of generation the agent belongs to. The magenta star at F~93:4% correspond to SMMI of 1.08 bits for Einstein - an optimally designed,
rather than evolved, network that still retains some stochasticity. Note that SSMI is bounded from above by 2 bits.
doi:10.1371/journal.pcbi.1003111.g003

Minimal Complexity Increases with Fitness
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one node at a time and recalculating W for the resulting sub-

network. The corresponding maximal value of the W is denoted as

WMC.

Fig. 5 plots WMC against fitness f . As for the two other

complexity measures (SMMI and Ipred), WMC shows a broadly

increasing trend with f . Yet this curve also displays a very sharp

lower boundary. That is, the minimal irreducible circuit

complexity of our animats, for any one level of fitness, is an

increasing but bounded function of the animat’s fitness.

Atomic partition and the Watom

Evaluating W for a system requires searching for MIP of the

system - partition that minimizes the effective information for the

given dynamical system. MIP search, in turn, necessitates iterating

over every possible partition of the system and calculating the ei as

given in eq. 4. This is computationally very expensive, as the

number of possible partitions of a discrete system comprised of n
components is given by the Bell number, Bn, which grows faster than

exponentially. As a consequence, determining W is, in general,

only possible for small systems, excluding any realistic biological

network [29]. In such cases, a method for approximating either

MIP or W needs to be used.

We denote the effective information calculated over the atomic

partition Patom - the finest partition, in which each singleton or

elementary unit of the system is treated as its part - by Watom. This

completely eliminates the need for iterating over the set of

partitions of a system. Thus,

Watom~ei(xt?xtz1=Patom): ð8aÞ

For a system x comprised of n binary units fxi : i~1, . . . ,ng - as is

the case with our agents (n~12) - Watom reduces to

Watom~
X

i

H(xi
tDx

i
tz1){H(xtDxtz1), ð8bÞ

a measure of complexity, previously introduced as the stochastic

interaction [22,23] with the conditional entropy function defined as

H(xDy)~
X
x,y

p(x,y)log
p(x)

p(x,y)
: ð9Þ

The Watom against fitness calculated for the same networks as in

Fig. 3 is shown in Fig. 6A. Note, that Watom, i.e. the integrated

information when considering a partition with each node as its

own part, is always larger than that of the main complex, WMC , as

seen from Fig. 6B. This is expected, since WMC is defined as the

minimum over all partitions, which includes the atomic partition

over which Watom is calculated. In other words, Watom will be

necessarily as large as or larger than WMC.

Figure 4. The predictive information, Ipred, as a function of fitness. Ipred is calculated for the same networks and in the same manner as in
Fig. 3. The magenta star is the Ipred value of 2.98 bits for Einstein - an optimally designed agent - with fitness of 93:4%. Ipred is bounded from above by
12 bits.
doi:10.1371/journal.pcbi.1003111.g004

Minimal Complexity Increases with Fitness
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Figure 5. The information integration measure for the main complex, WMC, against fitness. WMC is calculated for the same networks and
in the same manner as in Fig. 3. The magenta star is the WMC value of 1.68 bits for Einstein. WMC is bounded from above by 12 bits.
doi:10.1371/journal.pcbi.1003111.g005

Figure 6. An information integration measure for the atomic partition, Watom, also known as stochastic interaction, as a function of
the fitness of the organism. A. Watom is calculated for the same networks and in the same manner as in Fig. 3. B. Watom against WMC for the same
network. The line in red indicates Watom =WMC. Our data shows that the former is always larger than the latter, as expected from their definitions. The
magenta star in both figures are the Watom value of 5.06 bits for Einstein. Watom is bounded from above by 12 bits.
doi:10.1371/journal.pcbi.1003111.g006

Minimal Complexity Increases with Fitness
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Control run
To confirm that selection by fitness is actually necessary to

selectively evolve high WMC creatures, we carried out two control

experiments in which selection by fitness was replaced by random

selection followed by stochastic mutation of the parent genome.

In a first control experiment, agents never experienced any

selection-pressure, as each new generation was populated by

randomly selecting agents from the previous one. Animats

unsurprisingly failed to evolve any significant fitness - maximal

fitness was 0:014% with WMC&0.

In a second control experiment, organisms evolved as usual for

45,000 generations. This selected for agents able to rapidly

traverse through the maze. The resulting WMC along the LODs

over 64 independent runs show a broad distribution, with a

maximum of 1.57 bits. The maximal fitness obtained in these runs

was 91.27% (Fig. 7A). We then turned off selection via fitness as in

the previous experiment. The population quickly degenerated,

losing any previously acquired navigational skills within 1,000

generations due to genetic drift - the highest fitness was 0.03%,

with an associated WMC of 0.12 bits (Fig. 7B).

Discussion

Analyzing various information-theoretical measures that

capture the complexity of the processing of the animats as

they evolve over 60,000 generations demonstrate that in order

to achieve any fixed level of fitness, a minimum level of

complexity has to be exceeded. It also demonstrates that this

minimal level of complexity increases as the fitness of these

organisms increase.

Figure 7. Distribution of evolved complexity with and without selection-pressure for 64 independent histories along their line-of-
descent (LOD). A. Distribution of WMC along the LOD using our standard selection based on the fitness after 45,000 generation. Fitness is as high as
91.27%, with a maximal WMC value of 1.57 bit. B. Fitness-based selection is then replaced by random selection followed by the usual stochastic
mutation of the genome. 1,000 generation later, the population along the LOD has degenerated such that both the fitness as well as WMC drop to
vanishingly small values. The error bars are due to Poisson counting error.
doi:10.1371/journal.pcbi.1003111.g007

Minimal Complexity Increases with Fitness
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Not only SMMI, but also predictive information Ipred and

integrated information WMC show features similar to SMMI.

Indeed our numerical experiments replicate those of [18]. There is

a clear trend for integrated information of the main complex, WMC

(and also the Watom and the predictive information) to grow with

fitness F , computed relative to a perfectly adapted agent (with

F~100%). By way of comparison, the fitness of Einstein, a near-

optimal hand-designed agent within the constraints of our

stochastic Markov network, is plotted as a magenta asterisk in

Figs. 3–5.

It should be noted, that our terminologies differ slightly from

those in [18]; we preserve the original definition of the predictive

information [12], termed Itotal in [18], while our SMMI was

originally named predictive information.

Even a cursory inspection of the plots of SMMI, Ipred and WMC

versus fitness reveal a lower boundary - most evident in case of

WMC - for any fitness level F . The complete absence of any data

points below these boundaries, combined with the high density of

points just above them, implies that developing some minimal level

of complexity is necessary to attain a particular level of fitness. The

existence of such a boundary had been previously surmised in

empirical studies [1,2], where complexity was measured crudely in

terms of organismal size, number of cell-types, and fractal

dimensions in shells.

Conversely, no upper value for complexity is apparent in any of

the plots (apart from the entropic bounds of 2 bits for SMMI and

12 bits for Ipred and WMC ). That is, once minimal circuit

complexity has been achieved, organisms can develop additional

complexity without altering their fitness. This is an instance of

degeneracy, which is ubiquitous in biology, and which might even

drive further increases in complexity [30].

Degeneracy, the ability of elements that are structurally

different to perform the same function, is a prominent property

of many biological systems ranging from genes to neural networks

to evolution itself. Because structurally different elements may

produce different outputs in different contexts, degeneracy should

be distinguished from redundancy, which occurs when the same

function is performed by identical elements. Degeneracy matters

not with respect to a particular function, but more generally with

respect to fitness. That is, there are many different ways

(connectomes) to achieve the same level of fitness, which is exactly

what we observe. This provides enough diversity for future

selection to occur when the environment changes in unpredictable

ways. Curiously, the hand-designed agent, Einstein, has little

degeneracy, lying just above the minimal complexity level

appropriate for its 93:4% fitness level. In our simulations, any

additional processing complexity did not entail any cost to the

organisms. This is not realistic as in the real world, any additional

processing will come with an associated metabolic or other costs

[31–33]. We have not considered such additional costs here.

In two control experiments, we showed that selection by fitness

is necessary to attain fitness and high circuit complexity. Yet

complexity and fitness were neither explicitly connected by

construction nor measured in terms of each other. Hence, any

network complexity evolved in this manner must be a consequence

of the underlying relationship between fitness and complexity.

While this complexity is completely determined by the transition

table associated with the brain’s nodes, its fitness can only be

evaluating by monitoring the performance of the agent in a

particular environment. This and the fact that all complexity

measures studied in this work show similar behaviors support the

notion of a general trend between fitness and minimal required

complexity.

Thus, complexity can be understood as arising out of chance

and necessity [8]. The additional complexity is not directly

relevant for survival, though it may become so at a later stage in

evolution. On the other hand, a certain amount of redundancy

[34], even though not useful for enhancing fitness at any stage,

may be necessary for evolutionary stability by providing repair and

back-up mechanisms. The previously reported correlation be-

tween integrated information and fitness [18] should be under-

stood in this light. High correlation values correspond to data

points close to the lower boundary. This strong correlation

deteriorates as more and more data lies away from the boundary.

Methods

Experimental setup
Our maze is a two-dimensional labyrinth that needs to be

traversed from left to right (Fig. 2A) and that is obstructed with

numerous orthogonal walls with only one opening or door bored

at random. At each point in time, an agent can remain stationary,

move forward or move laterally, searching for the open door in

each wall in order to pass through. Inside each doorway, a single

bit is set that contains information about the relative lateral

position of the next door (for e.g. arrows in Fig. 2A; a value of 1

implies that the next door is to the right, i.e., downward, from the

current door, while a value of 0 means the next door could be

anywhere but to the right, i.e., either upward or straight ahead).

This door bit can only be read by the agent inside the doorway.

Thus, the organism must evolve a simple one-bit memory that

would enable it to efficiently move through the maze and it must

evolve circuitry to store this information in a 1-bit memory.

The maze has circular-periodic boundary conditions. Thus, if

the agent passes exit door before its life ends after 300 time steps, it

reappears on the left side of the same maze.

Fig. 2B shows the anatomy of the agent’s brain with a total of

twelve binary units. It comprises a three bit retina, two wall-

collision sensors, two actuators, a brain with four internal binary

units, and a door-bit sensor. The agent can sense a wall in front

with its retina - one bit in front of it and one each on left and right

front sides respectively - and a wall on the lateral sides via two

collision sensors - one on each side. The two actuator bits decide

the direction of motion of the agent: step forward, step laterally

right- or left-ward, or stay put. The four binary units, accessible

only internally, can be used to develop logic, including memory.

The door bit can only be set inside a doorway.

While the wall sensors receive information about the current

local environment faced by the agent at each time-step, the

information received from the door bit only has relevance for its

future behavior. During evolution of the brain of these animats,

they have to assimilate the importance of this one bit, store it

internally and use it to seek passage through the next wall as

quickly as possible.

The connectome of the agent, encoded in a set of stochastic

transition tables or hidden Markov modeling units [18,35], is

completely determined by its genome. That is, there is no learning

at the individual level.

Each evolutionary history was initiated with a population of 300

randomly generated genomes and subsequently evolved through

60,000 generations. At the end of each generation, the agents

ranked according to their fitness populate the next generation of

300 agents. The genome of the fittest agent, or the elite, from every

generation is copied exactly to the next generation without

mutation, while those of other agents selected with probabilities

proportional to their fitness are operated over by mutation,

deletion and insertion. The probabilities that a site on the genome

Minimal Complexity Increases with Fitness
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is affected by these evolutionary operators are respectively 2.5%,

5% and 2.5%.

Evolutionary operators are applied purely stochastically and the

selection acts only after the random mutations have taken place.

This allows us to relate the fitness-complexity data sampled along

each evolutionary line after every 1000th generation - similar to

time averaging - to that sampled only after 50,000th generation over

64 evolutionary histories - or ensemble averaged - as in [36], provided

that each evolutionary trial has been run over large enough times

confirming exploration of a significant part, if not the entire, of the

genomic parameter-space. Fig. 1 shows the distribution of 126

such Spearman rank correlation coefficients calculated per

evolutionary trial, with respect to that reported with a red arrow

for the 64 evolutionary histories in [18]. The green arrow indicates

the rank coefficient value obtained in the same manner for the 126

evolutionary trials from this study.

Fitness
The fitness of the agent is a decreasing function of how much it

deviates from the shortest possible path between the entrance and

exit of the maze, calculated using the Dijkstra search algorithm

[36]. To assign fitness to each agent as it stumbles and navigates

through a mazeM during its lifetime (of 300 time steps), its fitness

is calculated as follows: first, the shortest distance to exit, dM(x) is

calculated for every location x in the maze M that can be

occupied using the Dikjstra algorithm. Each position in the maze

receives a fitness score of

s(x)~
dmax
M {dM(x)

dmax
M

ð10Þ

where dmax
M is the maximum of shortest path distances from all

positions in M. The fitness of an agent over one trial run of T

time-steps through M is given by

f (M)~
XT

t~0

s(xt){s(xt{1)ð ÞzNloop

~
dmax
M {dM(xT )

dmax
M

zNloop

ð11Þ

where xt is the position occupied by the agent at time-step t and

we use the convention dM(x{1)~dmax
M in eq 12, which accounts

for the offset due to a non-zero fitness score at the start of the trial,

when agent begins navigating M from an arbitrary position, but

not necessarily at xmax corresponding to dmax
M . Nloop counts how

many times the agent has reached the exit in its life and

reappeared on the left-extreme of the maze. To reduce the

sampling error, final fitness of the agent is then calculated as the

geometric mean of its fitness relative to the optimal score from 10

such repetitions.

f ~ P
10

i~0

si(M)

sopt(M)

� �1=10

ð12Þ

To avoid adaptation bias to any particular maze-design, the maze

m was renewed after every 100 generations.

Supporting Information

Movie S1 Typical behavior of an agent from early
generations. The movie shows behavior of an agent from one

of the evolutionary trials at 12th generation in a randomly

generated maze. This agent has a fitness of about 6%. The agent

has developed a retina to follow through the doors and always

prefers to turn on its right. The top panel is an overview of the

agent trajectory throughout the trial, while the lower panel on the

left shows a zoomed in area around the agents current position at

any time step. The panel on the lower right part displays activity in

the Markov units connecting various binary nodes of agent’s

anatomy. An active node or transition is shown with green color.

(FLV)

Movie S2 An evolved agent traversing through a maze.
The movie shows behavior of an agent from the same evolutionary

trial as in Movie S1, but after 60000th generation. The agent has

evolved to a fitness of 93% and shows a near-ideal behavior. Due

to the stochasticity in the Markov transitions, the agent can make a

wrong decision sometimes (for e.g. at around 90s in this movie, it

mistakenly turns to left), contributing to its fitness value of less than

100%. The top panel is an overview of the agent trajectory

throughout the trial, while the lower panel on the left shows a

zoomed in area around the agents current position at any time

step. The panel on the lower right part displays activity in the

Markov units connecting various binary nodes of agent’s anatomy.

A green colored node, state or transition implies current activity.

(FLV)

Movie S3 An optimally designed agent - Einstein,
traversing through a maze. This movie shows the maze-

solving capabilities of an agent with optimally engineered

connectome. It exhibited a fitness of 93:4% and SMMI, Ipred

and WMC values of 1.08, 2.98 and 1.68 bits, respectively (shown

with a magenta asterisk in Figs. 3–5). As in other movies, the top

panel is an overview of the agent trajectory throughout the trial,

while the lower panel on the left shows a zoomed in area around

the agents current position at any time step. The panel on the

lower right part displays activity in the Markov units connecting

various binary nodes of agent’s anatomy. An active node, state or

transition are depicted with green color.

(FLV)

Acknowledgments

We would like to thank Chris Adami, Jeffrey Edlund and Nicolas

Chaumont for developing the evolutionary framework, Virgil Griffith for

stimulating discussions, and Samruddhi Ghaisas-Joshi for help with the

English editing.

Author Contributions

Conceived and designed the experiments: NJJ GT CK. Performed the

experiments: NJJ. Analyzed the data: NJJ CK. Contributed reagents/

materials/analysis tools: NJJ. Wrote the paper: NJJ CK.

References

1. Bonner J (1988) The evolution of complexity by means of natural selection.

Princeton Univ Pr.

2. McShea D (1996) Metazoan complexity and evolution: Is there a trend?

Evolution 50: 477–492.

3. Adami C, Ofria C, Collier T (2000) Evolution of biological complexity.

Proceedings of the National Academy of Sciences 97: 4463.

4. Lenski R, Ofria C, Pennock R, Adami C (2003) The evolutionary origin of

complex features. Nature 423: 139–144.

5. McShea D (1991) Complexity and evolution: what everybody knows. Biology

and Philosophy 6: 303–324.

6. McCoy J (1977) Complexity in organic evolution. Journal of theoretical biology

68: 457.

Minimal Complexity Increases with Fitness

PLOS Computational Biology | www.ploscompbiol.org 9 July 2013 | Volume 9 | Issue 7 | e1003111



7. Hinegardner R, Engelberg J (1983) Biological complexity. Journal of Theoretical

Biology 104: 7–20.
8. Carroll S (2001) Chance and necessity: the evolution of morphological

complexity and diversity. Nature 409: 1102–1109.

9. Lenski R (2011) Chance and necessity in the evolution of a bacterial pathogen.
Nature Genetics 43: 1174–1176.

10. Shannon C (1949) Communication in the presence of noise. Proceedings of the
IRE 37: 10–21.

11. Kolmogorov A (1965) Three approaches to the quantitative definition of

information. Problems of information transmission 1: 1–7.
12. Bialek W, Nemenman I, Tishby N (2001) Predictability, complexity, and

learning. Neural Computation 13: 2409–2463.
13. Tononi G, Sporns O, Edelman G (1994) A measure for brain complexity:

relating functional segregation and integration in the nervous system.
Proceedings of the National Academy of Sciences 91: 5033.

14. Orr H (2000) Adaptation and the cost of complexity. Evolution 54: 13–20.

15. Donaldson-Matasci M, Bergstrom C, Lachmann M (2010) The fitness value of
information. Oikos 119: 219–230.

16. Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:
1846.

17. Yaeger L, Griffith V, Sporns O (2011) Passive and driven trends in the evolution

of complexity. arXiv preprint arXiv:11124906.
18. Edlund J, Chaumont N, Hintze A, Koch C, Tononi G, et al. (2011) Integrated

information increases with fitness in the evolution of animats. PLoS
Computational Biology 7: e1002236.

19. Ashby W (1956) An introduction to cybernetics, volume 80. Taylor & Francis.
20. Touchette H, Lloyd S (2004) Information-theoretic approach to the study of

control systems. Physica A: Statistical Mechanics and its Applications 331: 140–

172.
21. Balduzzi D, Tononi G (2008) Integrated information in discrete dynamical

systems: motivation and theoretical framework. PLoS computational biology 4:
e1000091.

22. Ay N (2001) Information geometry on complexity and stochastic interaction. In:

MPI MIS PREPRINT 95. Citeseer, pp. 1–33.
23. Ay N, Wennekers T (2003) Dynamical properties of strongly interacting markov

chains. Neural Networks 16: 1483–1497.

24. Puterman M (1994) Markov decision processes: Discrete stochastic dynamic
programming. Hobokem, NJ: John Wiley & Sons, Inc.

25. Monahan G (1982) A survey of partially observable markov decision processes:
Theory, models, and algorithms. Management Science 28: 1–16.

26. Cover T, Thomas J (2006) Elements of information theory, 2nd edition. Wiley

Online Library: Wiley-Interscience.
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