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Abstract

Accurate genome-wide identification of orthologs is a central problem in comparative genomics, a fact reflected by the
numerous orthology identification projects developed in recent years. However, only a few reports have compared their
accuracy, and indeed, several recent efforts have not yet been systematically evaluated. Furthermore, orthology is typically
only assessed in terms of function conservation, despite the phylogeny-based original definition of Fitch. We collected and
mapped the results of nine leading orthology projects and methods (COG, KOG, Inparanoid, OrthoMCL, Ensembl Compara,
Homologene, RoundUp, EggNOG, and OMA) and two standard methods (bidirectional best-hit and reciprocal smallest
distance). We systematically compared their predictions with respect to both phylogeny and function, using six different
tests. This required the mapping of millions of sequences, the handling of hundreds of millions of predicted pairs of
orthologs, and the computation of tens of thousands of trees. In phylogenetic analysis or in functional analysis where high
specificity is required, we find that OMA and Homologene perform best. At lower functional specificity but higher coverage
level, OrthoMCL outperforms Ensembl Compara, and to a lesser extent Inparanoid. Lastly, the large coverage of the recent
EggNOG can be of interest to build broad functional grouping, but the method is not specific enough for phylogenetic or
detailed function analyses. In terms of general methodology, we observe that the more sophisticated tree reconstruction/
reconciliation approach of Ensembl Compara was at times outperformed by pairwise comparison approaches, even in
phylogenetic tests. Furthermore, we show that standard bidirectional best-hit often outperforms projects with more
complex algorithms. First, the present study provides guidance for the broad community of orthology data users as to
which database best suits their needs. Second, it introduces new methodology to verify orthology. And third, it sets
performance standards for current and future approaches.
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Introduction

The identification of orthologs is an important problem in the

field of comparative genomics. Many studies, such as gene function

prediction, phylogenetic analyses, and genomics context analyses,

depend on accurate predictions of orthology. A large variety of

methods for predicting orthologs and the resulting databases have

appeared in recent years [1–8]. But although the accuracy of the

predictions highly impacts any downstream analyses, there are only

few comparative studies of the quality of the different prediction

algorithms [9,10]. This paucity can be attributed to at least three

major challenges. The first challenge resides in the multiple and

sometimes intrinsically conflicting definitions of orthology [11–13].

The original definition of Fitch [14] is based on the evolutionary

history of genes: two genes are orthologs if they diverged through a

speciation event. On the other hand, given that orthologs often have

similar function, many people uses the term orthologs to refer to

genes with conserved function. Yet another definition is used in

some studies of genome rearrangement, in which the ortholog

refers, in the event of a duplication, to the ‘‘original’’ sequence [15],

which remains in its genomic context.

The second challenge resides in the difficulty of validating the

predictions. Take the case of phylogenetic orthology. Gene tree

inference can be a notoriously difficult task, but it is usually precisely

in difficult cases that the performances of methods can be

differentiated. Indeed, in simple cases, most methods perform equally

well. Validation of the definition based on function is not easier:

orthology is in this context arguably impossible to verify because there is

no universally applicable, unequivocal definition of conserved

function, that is, the required similarity in terms of regulation,

chemical activity, interaction partners, etc. for two genes to qualify as

orthologs often varies across studies. For instance, in some wet lab

experiments [16,17], two genes are only considered orthologs if they

have the ability to complement each other’s function.

The third challenge is of practical nature: to compare the

different orthology inference projects, their methods must either be

replicated on a common set of data, or the results produced by the

different databases must be mapped to each other for comparison.

Replication is not always possible, because some projects depend on

human curation, or are not documented in detail. Mapping data is

complicated by the lack of homogeneity in the sources of genomic

data used by the different projects. The resulting intersection sets are

often relatively small and may not be representative.

In the present article, we provide an in-depth comparison of the

prediction from 11 major projects, including OMA [4], our own

orthology inference effort. We try to address the aforementioned

challenges by testing phylogenetic and functional definitions of

orthologs, using a variety of tests. We took the approach of

PLoS Computational Biology | www.ploscompbiol.org 1 January 2009 | Volume 5 | Issue 1 | e1000262



comparing the inferred orthologs available from the different

projects, which required mapping the data between projects. The

rest of this introduction provides a description of the projects

retained here, a review on the representation of orthology in those

projects so to provide a common basis for comparison, and finally,

some words on our sequence mapping strategy.

Projects under Scrutiny
In this study, we consider publicly available databases of

orthologs that distinguish themselves by popularity, size, quality,

or methodology. One of the oldest large-scale orthology database

is COG [1,18] and its eukaryotic equivalent KOG [18], which

despite no recent update are still considered by many authors as

the standard orthologs databases. Their reliance on manual

curation make them not scalable to all complete genomes.

Unsupervised orthology assignment requires more sophisticated

algorithms, such as those of Inparanoid [2,19], OrthoMCL [3] or

EggNOG [8]. We also investigated the results of RoundUp [5],

interesting for its relatively large size and its use of pairwise

evolutionary distances between genes to detect orthology. OMA

[4,20], our own orthology assignment project, is also based on

evolutionary distances but takes into account the variance of the

distance estimates and try to exclude pseudo-orthologs arising

from differential gene losses using third-party species. A very

different approach is taken in the orthology prediction of Ensembl

Compara[7], which is based on inference and reconciliation of

gene and species trees. Homologene [6] uses a pairwise gene

comparison approach combined with a guide tree and gene

neighborhood conservation to group orthologs, but the details of

their methodology are unpublished. Finally, we also compare the

results to the standard approaches of bidirectional best-hits (BBH)

[21], common in ad-hoc analyses, and reciprocal smallest distance

(RSD) [22]. The size of the different projects is depicted in

Figure 1.

Grouping of Orthologs
Orthology is a relation over pairs of genes. However, few

projects (namely Ensembl Compara, OMA and RoundUp)

explicitly provide output of all pairs of predicted orthologs. This

representation, although precise, has practical drawbacks: on one

hand, it scales poorly (quadratically with the number of genes

analyzed), and on the other hand, it does not present the

predictions in a particularly insightful way. To solve these issues,

many projects cluster pairs of orthologs into groups. This grouping

process is not trivial, because orthology, at least when the

phylogeny-based definition applies, is a non-transitive relation.

The most common approach (taken by all other projects) is to

form groups of orthologs and ‘‘in-paralogs’’. The relations in- and

out-paralogs were defined by Remm et al. [2], and are used to

distinguish between paralogs from recent and old duplication

events respectively. Formally, these two relations are not defined

Author Summary

The identification of orthologs, pairs of homologous genes
in different species that started diverging through
speciation events, is a central problem in genomics with
applications in many research areas, including comparative
genomics, phylogenetics, protein function annotation, and
genome rearrangement. An increasing number of projects
aim at inferring orthologs from complete genomes, but
little is known about their relative accuracy or coverage.
Because the exact evolutionary history of entire genomes
remains largely unknown, predictions can only be validat-
ed indirectly, that is, in the context of the different
applications of orthology. The few comparison studies
published so far have asssessed orthology exclusively from
the expectation that orthologs have conserved protein
function. In the present work, we introduce methodology
to verify orthology in terms of phylogeny and perform a
comprehensive comparison of nine leading ortholog
inference projects and two methods using both phyloge-
netic and functional tests. The results show large variations
among the different projects in terms of performances,
which indicates that the choice of orthology database can
have a strong impact on any downstream analysis.

Figure 1. Number of complete genomes analyzed by the different projects.
doi:10.1371/journal.pcbi.1000262.g001
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over a pair, but over a triplet: two genes and a speciation event of

reference. Two genes are in-paralogs with respect to a particular

speciation event if they are paralogs and their duplication event

occurred after that speciation event of reference. They are out-

paralogs if they are paralogs and their duplication event occurred

before the speciation event of reference. See Figure S1a in

Supporting Information for an example. Unfortunately, the fact that

in- and out-paralogy are ill-defined in the absence of a clear

speciation event of reference is underappreciated in the literature.

We now come back to the description of groups of orthologs and

in-paralogs: such groups are constructed such that every pair of

genes in the group is either orthologous or in-paralogous with

respect to the last speciation event in their clade, that is, such in-

paralogs are genes inside the same species resulting from a

duplication event that occurred after all speciation. Consequently,

in such groups, the implication is that gene pairs are orthologs if

they belong to the different species, else they are paralogs. Note

that this grouping approach shows its limits when one or several

duplication events have occurred after the first, but before the last

speciation events. In such cases, not uncommon in Eukaryotes, the

non-transitive nature of orthology makes it impossible to partition

all genes in such groups without losing orthologous relations (see

Figure S1b for an example). In OMA for instance, groups of

orthologs include less than half of all predicted pairwise

orthologous relations (Table S1). This problem does not affect

Inparanoid, because it provides predictions for each pair of species

separately, and so in every case, there is only one speciation event.

Mapping Strategy
To perform a fair comparison of the different predictions, a

common set of sequences must be established. Unfortunately, the

different projects vary considerably in their sizes, the type of genome

analyzed and the origin of the protein sequences used. In fact, some

projects have no overlap at all, and therefore comparison on a

common set of sequences for all projects is not possible. Instead, we

performed pairwise project comparisons with OMA (which includes

the largest amount of sequences), and then we repeated the tests on

an intersection set with only the most competitive projects.

First, sequences from the different projects were mapped to

OMA’s only if they were identical, between consistent genomes.

This strict requirement avoids reliance on IDs, which may refer to

different sequences depending on the genome version, and also the

problem of different splicing variants. Tables S1 and S2 in

Supporting Information present some statistics on the mapping

procedure of the sequences and the predictions.

In pairwise tests, we compared the pairs of mappable proteins

identified as orthologs by the different methods with those

identified by OMA. In joint tests, we computed the intersection

of the mappable sequences of each project under consideration,

and compared pairs in this intersection set identified as orthologs

by the different methods. Datasets S1, S2, S3, S4, S5, S6, S7, S8,

S9, S10, S11, S12 in Supporting Information list the intersection sets

we used in all analyses below.

Results/Discussion

In this section, we present all results, first in pairwise comparisons

between each project and OMA, then in joint comparisons of the

most competitive projects. We group the tests according to the

definition of orthology that they should verify: the first two tests

verify orthology based on phylogeny, while the four following tests

verify orthology based on on function. At the end of the section, we

justify the absence of tests that were not included here, and compare

our results with the previous study of Hulsen et al. [9].

Phylogeny-Based Definition
According to the phylogenetic definition, two homologous genes

are orthologs if they diverged through a speciation event.

Therefore, the phylogenetic tree of a set of orthologs (a set of

genes in which any pair is orthologous) has by definition the same

topology as the corresponding species tree.

Gene tree reconstruction. We reconstructed gene trees

from species with an accepted phylogeny and predicted orthologs

from the different projects using two independent methods and

software packages (distance-trees from Smith-Waterman pairwise

alignments and ML trees from multiple sequence alignments), and

compared the congruence of the resulting trees with the species

trees using the fraction of correct splits, which is defined as one

minus the Robinson-Foulds (RF) split distance measure [23]. The

RF distance is defined as the normalized count of the bipartitions

induced by one tree, but not by the other. The experiment was

performed on sets of bacteria, of eukaryotes and of fungi. Note that

this test can only verify the correctness of the reported orthologs

(the specificity) for each project, but not the false-negative rate (the

sensitivity).

Though some level of incongruence is expected from errors in

the input data or in the tree reconstruction, these perturbations

affect, on average, all methods equally. Results for ML trees are

presented in Figure 2 while distance trees are presented in Figure

S2 in Supporting Information. As a first observation, it is comforting to

see that the choice of tree reconstruction method does not affect

the ranking or the significance of the results. It appears that COG,

EggNOG and OrthoMCL suffer from comparatively high false-

positive rates, which is reflected in the significantly reduced

amount of correctly reconstructed gene trees. The high-level of

non-orthology in the COGs database is consistent with previous

reports [24,25]. The differences among the better performing

projects are small. The predictions of Ensembl Compara, being

made on the basis of tree reconciliation, could have been expected

to perform better than pairwise gene comparison methods, but

their predictions are in fact slightly worse than OMA in this test.

The generic BBH and RSD methods are also dominated by OMA

in the pairwise comparison. Note that the intersection set is not

large enough to allow the ranking of the best performing projects

(OMA, RoundUp, Homologene, Inparanoid). Finally, KOG

covers too few genomes for inclusion in this test.

Benchmarks from literature. The accuracy of the different

projects in terms of the phylogeny-based definition of orthology

was also assessed from manually curated gene trees or reference

orthology sets from four studies [9,24,26,27]. In addition, this

method allows us also to estimate the true positive rate (sensitivity)

of the different projects, that is, the fraction of reported orthologs

over all bona fide orthologs. Figure 3 summarizes the performance

of the projects on those difficult phylogenies. In the pairwise

project comparison (Figure 3A), the relative difference between the

true positive rate of OMA and the comparative project versus their

relative difference of the false-positive rate is shown. Strictly

speaking, only pairwise comparisons with OMA should be made,

since the underlying protein sets are not the same across different

projects and thus, the difficulties of prediction may differ. On the

other hand, Figure 3B compares a selection of the projects on a

common set of sequences. The results for projects analyzed in both

contexts have good agreement, which suggest that pairwise

comparisons (which are based on more data) also provide a

global picture across projects. The confidence interval around the

points are relatively large, due to the limited data used in this test.

First, COG/KOG/EggNOG show higher sensitivity (true

positive rate), but at the cost of very low specificity (high false-

positive rate). This is a clear sign of excessive clustering. It also

Assessment of Orthologs Inference
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appears that the relatively higher false-positive rate of OrthoMCL

is not compensated by a significantly higher true-positive rate.

Ensembl and RoundUp report fewer orthologs, but the accuracy

of their predictions is not significantly higher than OMA or even

BBH. Inparanoid, with its relatively low specificity, is doing worse

than in the previous test. But overall, the agreement with the

previous test in terms of false-positive rate is good, even though the

testing methodology is here very different.

Function-Based Definition
One of the main application of orthology is the propagation of

functional annotation, because orthologs often have a similar

function. In fact, this application is so prominent that many

authors use the term ‘‘orthologs’’ to refer to genes with conserved

function in different species. As mentioned in the introduction, this

definition is ambiguous. Therefore, we could only test specific

aspects of what can be implied by ‘‘conserved function’’.

The four tests presented here evaluate the similarity of predicted

orthologs in terms of gene ontology annotations, enzyme

classification numbers, expression level, and gene neighborhood

conservation. In the following, we present and discuss their results.

Gene ontology. In the first test, we assessed the agreement in

gene ontology (GO) annotations [28] between predicted orthologs,

only considering annotations with experimental support (Evidence

codes IDA, IEP, IGI, IMP and IPI). Indeed, annotation obtained

automatically are for the most part done using the methods that

we are testing here: inclusion of this information would cause a

serious circular dependency. We measure the level of conservation

in terms of GO annotation using the similarity measure developed

by Lin [29] which computes for a pair of terms a score between 0

(unrelated) and 1 (identical terms) using the hierarchical structure

of the GO terms and their frequencies.

Figure 4A shows the average similarity of GO annotations in pairs

of orthologs from the different projects. The mean similarity of all

projects falls in a relatively small range, and is quite low. COG/

KOG/EggNOG do comparatively many predictions, but the

average similarity score is significantly lower. Hence, the results of

COG/KOG/EggNOG are particularly suited for coarse-grained

functional classification. On the other hand, if a high functional

similarity is desired, the relatively simple BBH approach dominates

more sophisticated algorithms such as RoundUp and Homologene

(which does fewer predictions at same degree of similarity) or OMA

Figure 2. Results of phylogenetic tree test. The mean fraction of correct split of ML trees for gene trees from three different kingdoms are
shown. The higher the values, the better the gene trees agree with the species tree. On the left, the pairwise results between every project and OMA
are shown, whereas on the right, the result for the comparison on the common set of proteins of a larger number of projects is shown. Note that the
pairwise project comparisons are made based on varying protein sets, and thus can not be compared to each other. Error bars indicate the 95%
confidence intervals of the estimated means. Projects with too little appropriate data could not be evaluated, which explains absent bars.
doi:10.1371/journal.pcbi.1000262.g002
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(which does only few more predictions, but significantly lower degree

of similarity). This result suggests that sequence similarity is a stronger

predictor of functional relatedness than the evolutionary history of the

genes. At mid specificity level, OrthoMCL outperforms Ensembl

Compara and Inparanoid, yielding many more predictions at

roughly the same similarity level.

Enzyme classification. A second measure for the quality of

the orthologous assignments with respect to function can be

obtained from the enzyme classification numbers (EC), which

strictly depend on the chemical reaction they catalyze. Thus, we

could expect in general that orthologous enzymes have identical

EC number. Obviously, this test can only be applied to the small

and rather specific fraction of genes that are enzymes. The results

must be interpreted accordingly. As reference, we use the EC

database curated by the Swiss-Prot group [30]. Their annotation is

a semi-supervised procedure that mainly relies on sequence

similarity (Kristian B Axelsen, personal communication). As

such, this test is less reliable than the GO one, which is based

on fully orthogonal data, but we believe that it has enough

informative value to warrant inclusion here.

Figure 4B shows the difference between the projects. The results

are very similar to the GO annotations test, but BBH is not as

good, and Inparanoid has now moved to the Pareto frontier, i.e. it

is not dominated by OrthoMCL here.

Correlation in expression profiles. In this third test,

conserved function is assessed using protein expression profiles from

large-throughput experiments. In such data, proteins with similar

function are expected to have similar expression profiles. We

measured this similarity by computing the average correlation

between the expression profiles of putative orthologs between the

human and mouse genomes as presented by Liao and Zhang [31].

Some projects, such as COG and KOG did not have sufficient

mappable proteins in those genomes to be considered here. Although

certainly relevant for many researchers, Human–Mouse orthologs

hardly constitute a representative sample of all orthologs, and thus

here too their assessment should be extrapolated to all predictions

with prudence.

The results are shown in Figure 4C. In general, the correlations

found are relatively low and within a narrow band. This range is

however consistent with the results of Liao and Zhang. Most

projects perform very similarly, with average correlation mostly

within 2 standard deviations and number of predicted orthologs

differing by less than 10%. Predictions by OrthoMCL have

significantly lower average expression correlation, but in absolute

terms, the difference is modest, and they have a significantly higher

number of predictions. Finally, with 40 times more predictions but

almost no correlation in terms of expression, EggNOG does not

appear to provide useful information to propagate expression levels.

Gene neighborhood conservation. To assess the quality of

the ortholog assignments on the basis of genome structure,

conservation of the gene arrangement on the chromosomes has

been used to validate functional orthology in previous studies

[9,25,32]. Conservation of the genomic context is indeed a strong

indicator of function conservation. Note that gene neighborhood

conservation is not a reliable indicator of phylogenetic orthology:

not only speciation, but also duplication of DNA segments

stretching over more than a single gene, such as operons,

preserve the immediate neighborhood.

In this test, we measure the fraction of orthologs that have at least

one pair of flanking orthologs (see Methods). The results are

presented in Figure 4D. The pairwise project comparison shows

results consistent with previous tests, with the exception of KOG,

which appears to perform extremely well in the pairwise test with

OMA. However, the results are based on relatively few and distant

genomes that have low absolute conservation values (see raw data in

Text S2 of Supporting Information). In such a context, the much larger

number of ortholog predictions of KOG significantly increases the

probability of having adjacent pairs of orthologs due to chance only.

In terms of methodology, Homologene is the only project that

uses gene neighborhood conservation as part of their methodol-

ogy. The details of how precisely such information is exploited in

their inference process remain unpublished, but the present test

does not show significant improvement over other approaches in

terms of neighborhood conservation.

About Absent Tests
We now justify the absence of three other tests that have been

previously reported in the literature. We did not verify orthology

Figure 3. Results of benchmarks from literature. Performance on manually curated gene trees from 4 published studies. [9,24,26,27]. (A) The
pairwise outcome of every project against OMA are shown, indicated with the relative difference of the true positive rate between OMA and its
counter project versus their relative difference of the false-positive rate. (B) Performance for the protein intersection dataset. Shown are the true
positive rate (sensitivity) versus the false-positive rate (1 - specificity). In both plots, the error bars indicate the 95% confidence interval and the ‘‘better
arrow’’ points into the direction of higher specificity and sensitivity. Projects lying in the gray area are dominated, in (A) by ‘‘OMA Pairwise’’ and in (B)
by at least one other project.
doi:10.1371/journal.pcbi.1000262.g003
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based on common keywords in the annotation because those are

often assigned on the basis of sequence similarity or using the

methods that are tested here: this would introduce circularity in

the testing strategy. Nor do we test orthology based on

conservation in protein-protein interaction (PPI). Though there

are studies such as Bandyopadhyay et al. [33] reporting modest but

measurably higher PPI between some orthologs, it remains unclear

to us how current PPI data can be turn into a test of orthology for

the following two reasons: first, PPI data show large variations in

reliability and completeness across experiments and species, but

more importantly, the general problem of matching (or ‘‘aligning’’)

networks is computationally hard [34]. To reduce complexity,

most approaches, including Bandyopadhyay et al. [33], strongly

constrain the network alignment using heuristics based on

sequence similarity. In the present context, this too would

introduce circularity in the validation. Finally, we do not use the

latent class analysis approach of Chen et al. [10]. This approach

computes maximum likelihood estimates of false-positive and false-

negative rates for all the projects directly from the various ortholog

predictions (the data) and a parameterized multivariate distribu-

tion of the errors (the model). This looks very attractive, because

the assessment does not require any of the external information

used in the tests described here. Our critique with this approach is

that their results are conditional on their error model, which is not

verified (at least not in the context of evaluating orthology

inference projects). In a sense, the issue of validation is shifted to

their error model, but remains open.

Comparison with Results of Hulsen et al.
The main other systematic evaluation of orthology prediction

projects is from Hulsen et al. [9]. Smaller in scope, their study

tested functional orthologs predictions in Human–Mouse and

Human–C. elegans, using a manually curated reference set of

orthologs, expression correlation and conservation of gene

neighborhood. They compared BBH, Inparanoid, OrthoMCL,

KOG, as well as two other methods not under analysis here

(‘‘PhyloGenetic Tree’’ and ‘‘Z 1 Hundred’’).

On the tests and data common to both studies, the results are

largely consistent (data not shown). However, we observed that

considering only two pairs of species can introduce significant biases

in the assessment: as it turns out, the overwhelming majority (89.1%)

of all orthologous pairs predicted by Inparanoid on Human–Worm

data arise from one large cluster of olfactory-type receptor proteins

(cluster number 4604). This very atypical distribution explains why

the results are so different from those for the HUMAN-MOUSE

genome pair (see Figures 3 and 4 from [9]).

They concluded that in terms of functional orthology,

Inparanoid performed best overall, while also noting that the

appropriate method depends on the user’s requirements in terms

of sensitivity and specificity. As our results show, this trade-off

remains true today, but Inparanoid is no longer the overall best

performer: besides being one of the projects with fewest genomes

under analysis, there are other projects with either higher

specificity, or with higher sensitivity; this reduces the scope of

applications in which it constitutes an appropriate choice.

Conclusions
Accurate ortholog prediction is crucial for many applications

ranging from protein annotation to phylogenetic analysis. There is

a number of publicly available orthology databases but little is

known about their performances. In this study we compared 11

different projects and methods by submitting them to a variety of

tests with respect to both phylogenetic and functional definitions of

orthology.

The results obtained in the tests for both definitions are

consistent, and allow us comparison of the different projects on an

objective basis.

In phylogenetic tests, OMA and Homologene showed the best

performances. The same two projects do also best in functional

tests if a high level of specificity is required. At a somewhat lower

degree of specificity, but at a higher coverage, function-based tests

suggest that OrthoMCL outperforms Ensembl Compara, and to a

less extent Inparanoid. Finally, for applications that only require

coarse-grained functional categories, EggNOG provides the

largest coverage.

In terms of methodology, the one project based on gene and

species tree reconciliation, Ensembl, had overall decent perfor-

mances, but was overperformed by some of the best pairwise

approaches. This suggests that tree reconciliation, although more

powerful a method in theory, is not necessarily the best method in

practice. Another surprise is the good overall performance of the

simple BBH approach. Although the method is restricted to 1:1

orthologs, the derived relations show good comparative accuracy

in terms of Fitch’s definition. Orthologs predicted by BBH also

show close functional relatedness. This result probably explains

why many people use ad-hoc BBH implementations for their

analyses rather than a more sophisticated orthology method.

Beyond the accuracy aspects discussed in the present work,

other factors will also affect the choice of orthologs database, such

as the number of genomes analyzed, the state of maintenance, the

availability of the predictions, or the usability of the web-interface.

There is still improvement potential in orthology inference, and

we expect much development in the coming years. We hope that

the present work helps setting performances standards. But it is

also the responsibility of upcoming orthology assignment projects

or releases to clearly state the definition of orthology they pursue,

to explain their grouping strategy, and in the very least to

demonstrate the improvement of their methods over basic

methods such as BBH or RSD.

Methods

Input Data
All the projects included in this study are publicly available. A

short description of the chosen configurations and references are

given in the following. We used the default parameters unless

mentioned otherwise.

RoundUp: RoundUp can be downloaded from https://rodeo.

med.harvard.edu/tools/roundup/. It is available with different

parameter settings to tune for the desired sensitivity. In this

Figure 4. Results of functional based tests. Results of functional conservation tests for GO similarity, EC number expression correlation and gene
neighborhood conservation. In the pairwise project comparisons (left) the relative difference of functional similarity between OMA and its counter
project versus the relative difference of the number of predicted orthologs are shown. In the comparison on the intersection set (right), the mean
functional similarity versus the number of predicted orthologs on the common set of sequences are shown. The vertical error bars in all the results
state the 95% confidence interval of the means. The ‘‘better arrow’’ indicates the direction towards higher specificity and sensitivity. Projects lying in
the gray area are dominated by ‘‘OMA Pairwise’’ in the pairwise comparison (left) and by at least one other project in the intersection comparison
(right).
doi:10.1371/journal.pcbi.1000262.g004
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comparison we included the strictest parameter set (also default

settings), i.e. Blast E-value cutoff 10220 and divergence cutoff 0.2.

Inparanoid: Inparanoid is available from http://inparanoid.

sbc.su.se. We used the release 6.0 from Aug 2007 including 35

species.

Ensembl Compara: The orthology predictions from En-

sembl were obtained from the Compara database version 47,

which is available from http://oct2007.archive.ensembl.org/.

COG,KOG: Cluster of Orthologous Groups and its eukaryotic

equivalent are available from http://www.ncbi.nlm.nih.gov/

COG/. We used the versions from Mar 2003 and Jul 2003

respectively.

OrthoMCL: We obtained the version from Sep 2006 of

OrthoMCL from http://orthomcl.cbil.upenn.edu/.

Homologene: Homologene is available from the NCBI

webpage www.ncbi.nlm.nih.gov/HomoloGene/. For this com-

parison, we used built 58 from Nov 2007.

EggNOG: EggNOG is available from http://eggnog.embl.de/.

We used the data from Oct 2007 including 373 species.

OMA: OMA is available in various formats on http://www.

omabrowser.org. We used the the data from Nov 2007 including

550 species. OMA infer orthology at the level of pairs of sequences

(‘‘OMA Pairwise’’), from which it also computes groups of

orthologs (‘‘OMA Group’’). Both type of predictions are included

in the comparisons.

BBH: The typical Bidirectional Best Hit implementation uses

BLAST for aligning the protein sequences. We used the more

accurate algorithm from Smith and Waterman [35] for the

alignment with the same scoring threshold as used by the OMA

algorithm for the all-against-all step.

RSD: Reciprocal Smallest Distance orthology relations are

computed using ML distance estimates from pairwise alignments

having significant alignment scores (Dayhoff score .217, the cut-

off used by OMA as well)

Phylogenetic Reconstruction Test
A consequence of Fitch’s definition is that trees of orthologs are

congruent to the species tree (i.e. the topology, or branching order,

is the same). The phylogenetic reconstruction test uses this

property to test the predicted orthologs. It uses three reference

species trees (see Text S1 in Supporting Information) whose branching

order is well-accepted, and whose topology follows a ‘‘comb’’

structure, that is, completely unbalanced. Each leaf consists of one

or several species. The phylogeny of species that share the same

leaf is not necessarily well resolved, but this fact is irrelevant here,

because, as we shall see below, the test includes at most one

sequence per leaf in each tree reconstructed. Including more than

one species per leaf is merely a way to include more data in the

test. The eukaryotic reference tree follows the NCBI taxonomy,

the bacterial one follows the lineage tree by Bern et al. [36] and the

fungal reference tree follows the NCBI tree, but with correction

regarding the placement of the two Candida species [37].

In each trial, a starting sequence from a random species in the

innermost leaf is randomly chosen. Then, for each project under

scrutiny, we try to build a set of sequences consisting of one

ortholog per leaf. If a project predicts more than one sequence

orthologous to the starting sequence in a leaf, one of them is picked

randomly. If a project predicts no ortholog in a particular leaf,

sequence from that leaf are excluded from other projects as well,

such that the resulting sets of sequences are of the same size for all

projects. If the orthologous groups have less than 5 sequences, the

procedure restarts with another starting sequence. Else, based on

each orthologous set, we build a tree (as described below) and

assess its agreement with the reference species tree by computing

the fraction of correct splits derived from the Robinson-Foulds

metric [23].

The ‘‘comb’’ structure of the topology is necessary to ensure that a

set of sequences orthologous to a starting sequence indeed constitutes

an orthologous groups (that is, a set of sequences in which every pair is

orthologous): recall that two sequences are orthologs if they split

through speciation. Thus, if all bifurcations in the gene trees are

speciation events, the set of sequences constitute an orthologous

group. Due to the particular topology, each bifurcation is the split of

the innermost sequence from another sequence. Since the innermost

sequence is orthologous to all other sequences, all bifurcations are

speciation events, and the conclusion follows.

Darwin Least-Squares Distance Trees
The sequences are aligned pairwise using Smith and Waterman

[35], with joint ML estimation of all pairwise distances using the

Align function of Darwin [38]. The estimated distance and

variances are used to compute a least-squares distance tree using

Darwin’s LeastSquaresTree function.

Muscle and RaxML
As a second method for computing the gene tree, we use Muscle

[39] as multiple sequence alignment tool in combination with

RaxML-VI-HPC version 2.2.3 [40] as tree building package.

RaxML builds maximum-likelihood trees. Muscle was run with

default parameters, while RaxML was run with JTT with 4

gamma categories as amino acid substitution model. The method

is repeated from ten random start topologies. The tree with the

highest likelihood is taken as the resulting tree of this method.

Benchmarks from Literature
We used four different sources of manually curated orthology

reference sets from the literature: (1) A reconciled tree of Pfam

adenosine/AMP deaminase family (PF00962) produced by En-

gelhardt et al. [26,41]. This tree contains 251 proteins from which

we could map 146. (2) Results from detailed phylogenetic analysis

on three different COGs presented in [24]. From the originally 116

proteins, 82 were mappable, again restricting on identical

sequences. (3) Resulting trees from the phylogenetic analysis by

Hughes [27] of 10 gene families. 33 of 165 proteins could be

mapped. (4) The ortholog reference set proposed by Hulsen et al. [9].

From there 102 of the 167 proteins could be mapped.

For every of those difficult phylogenies, we extracted the

orthologous and paralogous relations. For the purpose of this

study, those assignments are considered to be error free and are

taken as a reference set. For every possible protein pair where both

proteins are present in the common set of sequences, we

determined whether the project made a true positive, a true

negative, a false-positive or a false-negative prediction. Those

measurements are then used to infer the true positive and the false-

positive rate respectively by taking a Bayesian approach with a

uniform prior. Finally, the results of the performance on the four

phylogenies have been averaged.

Functional Based Definition
Gene ontology. GO terms and their evidence codes are

obtained from EBI and Ensembl for all available species. 255 806

proteins had at least one annotation. Since most annotations are

automatically obtained from sequence similarity and all the

orthology projects base their predictions on sequence similarity,

we only keep the annotations inferred experimentally (Evidence

codes EXP,IDA,IEP,IGI,IMP,IPI). We end up with 26 676 proteins

having 78 912 annotations in total. The similarity between two
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annotated proteins i and j having GO terms ci and cj is computed

as proposed by Lin [29]

sim ci,cj

� �
~

2lnPms ci,cj

� �
lnP cið ÞzlnP cj

� � ,

where P cð Þ is the probability of encountering the term c and

Pms ci,cj

� �
~ min

c[S ci ,cjð Þ
P cð Þ

is the probability of the minimum subsummer (or most specific

parent) between term ci and cj . The similarity score obviously

varies between 0 (unrelated) and 1 (identical terms). The

occurrence probability of GO term c is estimated from the

occurrence frequency of GO term c or a child term of c for any

instance of a protein intersection set independently.

Proteins are often annotated with multiple GO terms. In such

situations, the similarities need to be combined. We follow the

rationale of Lord et al. [42] and average all the possible similarity

values between putative orthologs i and j, since in general a protein

has all the attributed roles. Thus the overall similarity between

proteins i and j each having its set of GO terms GOi and GOj is

simi,j~
1

GOij j GOj

�� �� X
ck[GOi

X
cl[GOj

sim ck,clð Þ:

The mean similarity of a project given a (intersection) set of

proteins that we show in Figure 4A is the mean similarity between all

the putative orthologs stated by the project in the given set of proteins.

Enzyme classification. The Swiss Institute of Bioinformatics

operates a database on Enzyme nomenclature [30]. In this study

we use the release from Nov. 13 2007 of the database. As a first

step, we remove all the proteins that are assigned to more than one

EC number (3.83%). Then, the proteins from the EC database are

mapped to OMA (61518 proteins or 71.16%). For those proteins,

we computed the ratio of putative orthologs that map to the same

EC class.

Correlation in expression profiles. MAS 5.0 processed

tissue expression data from human and mouse Affymetric

microarray chips (human:U133A/GNF1H; mouse:GNF1M) and

the gene mappings as used by Liao and Zhang [31] have been

provided by the authors. A total of 25854 probe sets could be

mapped to 16295 proteins in the human genome and 17872 probe

sets to 15522 mouse proteins. As a measure for the accuracy of the

orthology predictions, we computed the average Pearson

correlation coefficient of the relative abundance level RA
between the putative human and mouse orthologs with respect

to the projects’ common sequences sets. The relative abundance

level of gene i and tissue t is defined as the relative expression

signal intensity in tissue t, thus

RA i,tð Þ~ S i,tð ÞP
t S i,tð Þ ,

and the correlation between two putative orthologs i and j having

n tissues in common

ri,j~

n
P

t RA i,tð ÞRA j,tð Þ{
P

t RA i,tð Þ
P

t RA j,tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

t RA i,tð Þ2{
P

t RA i,tð Þ
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

t RA j,tð Þ2{
P

t RA j,tð Þ
� �2

q

Gene neighborhood conservation. The conservation of

gene order is measured in the following way. We use the coding

sequence features (CDS) from OMA’s genome sources (mainly

Ensembl, Genome Reviews and EMBL) to determine the order of

the genes in the genome. Overlapping genes are excluded, as the

order is not resolved. For every predicted orthologous protein pair,

we check whether their directly adjacent neighbors (if present) are

orthologous too. The verification is performed using the union of

all predictions. This ensures that projects with many ortholog

predictions are not advantaged over more stringent ones.

Whenever we find at least one of the four possible neighbor

configurations in the union, we conclude that the neighborhood is

conserved.

Formally, the average conservation is

�XX~

1

orthj j
X

g1,g2ð Þ[orth
N g1ð Þ=1,N g2ð Þ=1

min 1,
X

n1[N g1ð Þ
n2[N g2ð Þ

1, if n1, n2ð Þ[|orth

0, else

(0
BB@

1
CCA

where N gð Þ are the neighbors of gene g in the projects’ common

set of proteins, orth is the set of orthologous pairs and |orth the

union of the ortholog predictions.

Supporting Information

Dataset S1 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Fungi. Part 1 of 4.

Found at: doi:10.1371/journal.pcbi.1000262.s001 (10.22 MB GZ)

Dataset S2 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Fungi. Part 2 of 4.

Found at: doi:10.1371/journal.pcbi.1000262.s002 (10.20 MB GZ)

Dataset S3 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Fungi. Part 3 of 4.

Found at: doi:10.1371/journal.pcbi.1000262.s003 (10.25 MB GZ)

Dataset S4 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Fungi. Part 4 of 4.

Found at: doi:10.1371/journal.pcbi.1000262.s004 (9.20 MB GZ)

Dataset S5 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Eukaryota. Part 1 of 3.

Found at: doi:10.1371/journal.pcbi.1000262.s005 (10.21 MB GZ)

Dataset S6 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Eukaryota. Part 2 of 3.

Found at: doi:10.1371/journal.pcbi.1000262.s006 (10.12 MB GZ)

Dataset S7 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Eukaryota. Part 3 of 3.

Found at: doi:10.1371/journal.pcbi.1000262.s007 (3.69 MB GZ)

Dataset S8 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Bacteria. Part 1 of 3.

Found at: doi:10.1371/journal.pcbi.1000262.s008 (10.18 MB GZ)

Dataset S9 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Bacteria. Part 2 of 3.

Found at: doi:10.1371/journal.pcbi.1000262.s009 (10.12 MB GZ)

Dataset S10 Fasta formated protein sequences used in the

intersection set of the phylogenetic test with Bacteria. Part 3 of 3.

Found at: doi:10.1371/journal.pcbi.1000262.s010 (4.45 MB GZ)

Dataset S11 Fasta formated protein sequences used in the

intersection set of all the functional based tests. Part 1 of 2.
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Found at: doi:10.1371/journal.pcbi.1000262.s011 (6.05 MB GZ)

Dataset S12 Fasta formated protein sequences used in the

intersection set of all the functional based tests. Part 2 of 2.

Found at: doi:10.1371/journal.pcbi.1000262.s012 (5.39 MB GZ)

Figure S1 In- and out-paralogy: for instance genes b1 and c2 are

in-paralogs with respect to speciation S1, but are out-paralogs with

respect to speciation S2. Group of orthologs: In such a case, it is

not possible to partition the genes into groups of orthologs and in-

paralogs with respect to the last speciation event (S2). Indeed, a is

orthologous to all other genes, but they do not form a group

because every other pair is out-paralogous with respect to

speciation S2.

Found at: doi:10.1371/journal.pcbi.1000262.s013 (0.70 MB TIF)

Figure S2 Results of phylogenetic test using least-squares

distance tree: The mean fraction of correct splits (bipartitions) of

least-squares distance trees of putative orthologs within three

different kingdoms are shown. The higher the value, the better the

gene trees agree with the species tree. On the left, the pairwise

results between every project and OMA are shown, whereas on

the right, the result for the comparison on the common set of

proteins of a larger number of projects is shown. Note that the

pairwise project comparisons are made based on varying protein

sets, and thus cannot be compared to each other. Error bars

indicate the 95% confidence intervals of the estimated means.

Projects with too little appropriate data could not be evaluated,

which explains absent bars. Although not relevant to the present

analysis, the fact that a distance-based method reconstructed on

average more accurately eukaryotic trees than an ML method goes

against the common belief that ML tree building is the more

accurate tree reconstruction method. This could be the subject of

further investigation.

Found at: doi:10.1371/journal.pcbi.1000262.s014 (2.47 MB TIF)

Table S1 Overview of some project mapping key numbers.

Indicated are the number of species, the number of proteins, the

average number of orthologs per protein and the number of

orthologs per protein normalized by the number of species for the

original and the mapped data. We see that the mapped data

constitute a reasonable sample of the original data.

Found at: doi:10.1371/journal.pcbi.1000262.s015 (0.02 MB PDF)

Table S2 Overview of the ortholog predictions. In the first

column, the number of ortholog predictions made only by the

project, in the second the number of common predictions made by

the project and OMA and in the third column, the number of

predictions made only by OMA are shown.

Found at: doi:10.1371/journal.pcbi.1000262.s016 (0.01 MB PDF)

Text S1 Reference Tree Topologies and Species List: Back-

ground data for phylogenetic test

Found at: doi:10.1371/journal.pcbi.1000262.s017 (0.03 MB PDF)

Text S2 Raw Tests Results: Tables of all results with absolute

numbers and confidence intervals.

Found at: doi:10.1371/journal.pcbi.1000262.s018 (0.02 MB

TXT)
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