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Abstract

When coordinating movements, the nervous system often has to decide how to distribute work across a number of
redundant effectors. Here, we show that humans solve this problem by trying to minimize both the variability of motor
output and the effort involved. In previous studies that investigated the temporal shape of movements, these two selective
pressures, despite having very different theoretical implications, could not be distinguished; because noise in the motor
system increases with the motor commands, minimization of effort or variability leads to very similar predictions. When
multiple effectors with different noise and effort characteristics have to be combined, however, these two cost terms can be
dissociated. Here, we measure the importance of variability and effort in coordination by studying how humans share force
production between two fingers. To capture variability, we identified the coefficient of variation of the index and little
fingers. For effort, we used the sum of squared forces and the sum of squared forces normalized by the maximum strength
of each effector. These terms were then used to predict the optimal force distribution for a task in which participants had to
produce a target total force of 4–16 N, by pressing onto two isometric transducers using different combinations of fingers.
By comparing the predicted distribution across fingers to the actual distribution chosen by participants, we were able to
estimate the relative importance of variability and effort of 1:7, with the unnormalized effort being most important. Our
results indicate that the nervous system uses multi-effector redundancy to minimize both the variability of the produced
output and effort, although effort costs clearly outweighed variability costs.
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Introduction

The motor system is highly redundant: the same task can always

be accomplished by many different sequences of motor commands

[1]. Part of this redundancy is caused by the fact that there are

often multiple muscles or effectors that can produce the same

desired effect. Thus, in the case of multi-effector redundancy, the

brain has to choose how to distribute a given task across the set of

muscles.

Despite the infinite number of possibilities, the motor system

appears to prefer particular solutions. For example, when moving

the wrist, we combine the action of different forearm muscles in a

predictable, cosine-tuning-like fashion [2]. To explain these

regularities, we can ask why the brain is coordinating movements

this way [3], i.e. we can propose a hypothetical cost function that

the biological system minimized over the course of learning. By

determining the form of this cost function, and by assuming that

the nervous system had sufficient exploration of the task dynamics

to find an optimal solution, we can make testable predictions about

how biological movements should be produced under a given task

constraint.

A number of different cost functions for biological movements

have been proposed [4–6]. Most of these studies have addressed

movements for which the redundancy is temporal: here there may

be only one muscle with the desired effect, but there are still many

different ways of distributing the motor commands over the

movement period. For example, of all the possible shapes of arm

or eye movement, the motor system consistently chooses a bell-

shaped velocity profile [7].

Different components of cost functions can generally be divided

into two classes: effort and variability costs. Effort costs usually take

a form of the sum of the squared muscle activations or motor

commands [8,9]. Alternatively, both Harris and Wolpert [5] and

Burdet and Milner [10] proposed that the nervous system chooses

the sequence of motor commands that minimizes the variability at

the endpoint of a movement. Under the assumption of signal-

dependent noise, i.e. noise that increases monotonically with the

motor command, this model can predict important characteristics

of the control of both arm and eye.

While effort and variability costs have different theoretical

implications for the learning mechanism that is involved in the

optimization of motor behaviours, they make very similar

predictions concerning the temporal shape of the optimal

movement. Indeed, it can be shown that the requirement to

reduce variability under signal dependent noise leads to a term in

the cost function that penalizes the sum of the squared motor

commands over the movement, identically to the term commonly

associated with effort [11]. Thus, for motor behaviours with

mainly temporal redundancy, variability and effort costs are hard

to dissociate.
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For motor behaviours with multi-effector redundancy, however,

the minimization of variability costs and the minimization of effort

costs can lead to substantially different predictions concerning the

distribution of work across effectors, because the noise and effort

characteristics of different effectors can be partly independent.

Here we study how humans distribute work across different fingers

when they have to produce a given target force. By measuring the

independent noise characteristics and the maximal force of the

finger, we can dissociate the influence of variability and effort costs

on coordination.

Results

Variability costs alone do not predict force sharing
Fifteen neurologically healthy participants performed the simple

force production task depicted in Figure 1A. The goal of the task

was to produce a certain total force to match a cursor to a goal on

the screen as accurately as possible by pushing onto two force

transducers. Participants used 4 possible finger combinations of

index and little fingers of the left and right hands. Participants had

to maintain a summed force level of 4, 8, 12 or 16 N for 7 s and

were given points after each trial, inversely proportional to their

produced mean squared error. As a variable of main interest, we

analyzed the distribution of forces (R= RzLð Þ) across the two

fingers for the last 5 s.

Each participant produced a replicable distribution of force for

each finger combination, generally producing more force with the

index than with the little finger and more with the right than left

hand (Figure 1B). While each chosen force distribution could be

measured quite reliably (SE = 0.015), there was considerable

between-person variability in the chosen solution. Furthermore,

for lower force levels, participants distributed the forces more

evenly across the fingers, as evidenced by the significant finger-

combination x force-goal interaction, F(9,126) = 8.282, p,.001.

What cost function determines the individually chosen distri-

bution of force? We first considered the idea that participants

optimized their motor output to simply minimize the expected

squared error between the sum of produced forces (x) and the goal

(g). This term can be broken down into the systematic and variable

error.

J~E xizxj{g
� �2
h i

~ E xizxj{g
� �� �2
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� �
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We here assumed that the force produced by each finger (x) is

equal to the motor command (u) plus a noise component with a SD

of ku. We also assumed that the noise sources for the two fingers

are independent. The optimal distribution (for a full derivation see

Methods) of forces for the finger combination i, j is

c�i,j~
u�i

u�i zu�j
~

k2
j

k2
i zk2

j

ð2Þ

To test this model, we measured the coefficient of variation (k)

for each of the fingers involved. We asked participants to produce

a range of force levels with each finger alone and measured the SD

of the force produced over a 5 s period. As shown for an

exemplary finger (Figure 1C), the SD increased linearly with force,

allowing us to estimate the coefficient of variation as the slope of

the regression line (see Methods). Systematic deviations from

linearity were observed for small forces, where the coefficient of

variation was higher [12]. Overall, the coefficients of variation (k)

were 1.11% (between subject SD = 0.4) and 0.82% (SD = 0.26) for

left and right index fingers, and 1.61% (SD = 0.66) and 1.31%

(SD = 0.46) for left and right little fingers, respectively.

Based on these measurements, we can predict the theoretically

optimal distribution for each participant and finger combination

and compare these to the actual distribution produced (Figure 1D).

As can be seen by the deviation from the unity-line, this

parameter-free model predicted a much more asymmetric force

distribution than was observed. The model captures qualitatively,

however, the correct difference between the different finger

combinations; for example, when a little finger is combined with

an index finger, the model correctly predicts a greater contribution

from the index. Furthermore, regression analysis within each

finger combination across participants (lines in Figure 1D) showed

some relationship between the individual’s ratio of noise

coefficients (Eq. 2) and the individuals chosen distribution of

forces, t(55) = 1.37, p = .0871. Thus, although the variability-only

cost function clearly failed to predict the chosen distribution

accurately, these results indicate that variability may play a role in

the choice of distribution for each participant.

Relative influence of effort and variability costs
We therefore considered a cost function that also included terms

to represent effort. Effort is often conceptualized as the overall sum

of the squared motor commands [6]. Inclusion of such a term

would predict a symmetric distribution of forces across the fingers;

when wanting to produce 10 N total, 52+52 is the smallest sum of

squares possible. Biological systems that seek to minimize fatigue

and energy expenditure, however, will likely recruit the stronger

effector more. Thus, it has been suggested to normalize the motor

commands by the maximum voluntary contraction (MVC) of each

muscle or effector before squaring [13]. Because we have no a-

priori knowledge of which effort term is appropriate, we allow here

any mixture of the non-normalized effort (weighted by l),

normalized effort (weighted by m), and the squared error (weighted

Author Summary

When performing actions, we often have many options of
how to combine muscles or limbs to achieve a desired
outcome. Despite this freedom, certain effector combina-
tions are used consistently. Why? To examine this
question, we asked participants to press one button with
a finger from the left hand and another button with a
finger from the right hand simultaneously. Participants’
goal was to generate a combined force that would match
a target force as accurately as possible. Different fingers
have distinct strength and noise characteristics, allowing
us to examine if participants combined the two fingers to
minimize the overall effort or the overall variability. Prior
studies have been unable to dissociate these two factors,
because they have focused on movements without multi-
effector redundancy, where noise always increases with
increasing levels of force. With our simple protocol, we
show that subjects coordinate the two fingers to minimize
mainly effort, but also variability, in a proportion of 7:1.
This result suggests that the nervous system learns to
coordinate different muscles or limbs by considering both
effort and noise information simultaneously. These results
have important implications for understanding how the
brain relearns to coordinate movements following injury or
stroke.

Variability and Effort in Coordination
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With the introduction of the collective terms aj and ai, the

optimal distribution can be expressed as:

c�i,j~
aj

aizaj

ð4Þ

To estimate the weight of the normalized effort cost, we also

measured the MVC for each finger and participant (see Methods).

The mean MVC was 34.33 N (SD = 10.50) and 36.94 N

(SD = 8.72) for the left and right index, and 17.74 N (SD = 7.58)

and 19.93 N (SD = 5.59) for left and right little finger respectively.

Thus, the MVC showed a similar difference between fingers as the

coefficient of variation k. Indeed, there was a clear relationship

between MVC and variability of each finger (Figure 2A,

r~{0:48). Thus, it is possible that any influence of variability

onto force sharing is caused indirectly by the fact that the less noisy

fingers are also stronger. We also observe, however, fingers that

are relatively weak, but nonetheless able to fairly accurately

produce forces over the required force range. Given this partial

independence, we can ask whether the variability term will

contribute to the fit over and above the two effort terms.

We therefore fit the full model to the data and used Markov

Chain Monte Carlo (MCMC, see Methods) sampling to find

confidence bounds of the parameter estimates (Figure 2C). To

Figure 1. Bimanual force production task. (A) Participants pressed with a finger (index or little) of the left and the right hands on isometric force
transducers. The task was to match the goal force (red line) as accurately as possible with the summed force (white line). (B) Relative distribution of
forces across fingers (R= LzRð Þ) depending on goal force level and finger combination, averaged over all participants. (C) Standard deviation (N) of a
representative index finger of one participant as a function of the mean produced force level. The slope of the regression line corresponds to the
coefficient of variation. (D) Optimal solution for force distribution across finger based on assumption that only variability was optimized (x-axis) vs.
produced force distribution (y-axis).
doi:10.1371/journal.pcbi.1000345.g001
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make the size of the parameters comparable - cost functions are

inherently unit-less - we standardized terms to give each a prior

equal weighting and constrained the parameters to sum to 1 (see

Methods). Therefore, the model had 2 free parameters. For all

force levels, the unnormalized effort (l) had the highest influence,

whereas the two terms based on the maximal strength (m) and the

coefficient of variation (n) were less important. However, both

latter parameters were significantly different from zero for all force

levels (p,0.05). The full model predicts 55% of the remaining

variance over a model that includes only l (Figure 2B).

To test whether the variability term contributed significantly to

the fit, we tested the full model against a model that only included

the two effort terms. To correct for the different numbers of free

parameters, we used MCMC sampling to estimate the marginal

likelihood of each model (see Methods). The full model provided a

better explanation for the data by a Bayes factor of

2log p1=p2ð Þ~8:23 (strong evidence, [14]). All other models

including any one or two of the three possible cost terms were

less likely than this closest competitor (and the results were

confirmed using AIC and cross-validation, see Table S1). Thus,

our data clearly shows the influence of both effort and variability

terms in determining the distribution of work across effectors in a

redundant motor task. Variability, however, only contributed

roughly 13% of the overall cost.

For the given parameter estimates of effort and accuracy costs,

the model also predicts a very small systematic undershoot of the

target (see Methods) of 0.065%. The mean observed undershoot

was 0% in mean (SD = 0.34%), not significantly different from the

prediction (p = .142). Thus, a model in which participants attempt

to minimize effort and the mean-squared error can account for the

data quite well.

Feedback control and independence of noise sources
Our model relies on two simplifications. First, our model is

purely feed-forward, without consideration of feedback control. To

test the influence of feedback, we constructed a linear model in

Figure 2. Effort and variability cost model. (A) Maximum voluntary contraction (MVC) only correlates modestly (r = 2.48) with the coefficient
variation of that finger across all fingers and participants. (B) Predicted force distribution following the best fitting model (x-axis) vs. observed
distribution for all participants and finger combinations (y-axis). (C) Parameter estimate (+295% confidence intervals) for the parameters for effort (l),
normalized effort (m), and accuracy costs (n) for all force levels. (D) Coefficient of variation (CV) for left: left finger alone, right: right finger alone, obs:
observed in bimanual trials, pred: calculated based on unimanual CVs for the observed combination of fingers; opt: optimal CV based on unimanual
CVs and optimal combination (Eq. 1).
doi:10.1371/journal.pcbi.1000345.g002
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which the system could sense the sum of the forces of the left and

the right hand (delayed by 100 ms) and change the motor

commands in response. The motor commands influenced the

forces via a double-exponential low pass filter [11]. When solving

the cost functions (Eq. 1,3) for this system, the optimal solution

comes no longer in form of optimal motor commands (u�), but in

terms of optimal feedback gains (L). The motor commands then

become a linear function of the estimated state of the system

u~{Lx̂x [15]. When simulating this system in presence of noise,

the average produced mean force for each finger is identical to the

solution of the simpler feed-forward model used here.

The second simplification is our assumption that the noise

sources of the left and the right finger are independent. This

assumption is relatively hard to test, as the correlation between the

fingers is also influenced by the presence of feedback corrections.

Indeed, for the redundant task used here, optimal feedback control

predicts a negative correlation between the left and the right hand

[8,16,17]. This is because the optimal feedback gains allow

variability in the task-irrelevant dimension (the difference between

the finger forces) to accumulate, while minimizing the variability in

the task-relevant dimension (the sum of the finger forces). In

accordance with this prediction, we found on average a within-

trial correlation between the two forces of r = 2.277 (between-

subject SD = .092).

To determine whether this correlation was task-dependent, we

used an independent bimanual force production task, in which

participants had to bring separate lines, one for each finger, to two

separate goals. Under a cost function that penalized the squared

deviation from the right and left targets independently, the optimal

feedback control law becomes independent for the two fingers

[16]. Therefore the produced forces in the task should be

uncorrelated. If, however, the noise of the two fingers was

positively correlated, we found in simulations that the correlation

of the produced forces should be correlated with roughly the same

size. We then tested four participants, producing all 16

combinations of 3,4,5, or 6 N with the left and the right index

fingers. In this independent force production task, we found no

significant within-trial correlation between the finger forces; the

observed mean correlation was r = .017 (between-subject

SD = .056). These results therefore indicate that the noise source

for the two fingers are close to independent and that correlation

between the fingers arises from task-dependent feedback control.

Actual performance
The large influence of effort-based cost terms on the force

distribution across fingers suggests that participants settled for a

solution that sacrificed accuracy. But how much better could they

have performed, had they only minimized variable error?

To determine this, we calculated the theoretical optimal

coefficient of variation (Figure 2D, opt), produced under a force

distribution that minimizes the variable error alone (Eq. 2). For

this calculation we used the measured coefficient of variation for

each finger from the unimanual data and assumed equivalent

performance during bimanual trials. Using the same assumptions,

we also determined the predicted coefficient of variation for the

actually produced force distribution (pred). This calculation

indicates that the solution that participants chose should have

only led to a 7.2% increase in SD compared to the lowest

theoretically achievable coefficient of variation.

The actually produced coefficient of variation during bimanual

trials (obs), however, was another 6.8% higher than the latter

predicted value, t(59) = 2.55, p = 0.013. This indicates that there is

some loss of accuracy due to simultaneous feedback control of two

fingers. The produced bimanual variability, however, was 8%

smaller than that produced by the better of the two fingers alone

(left or right, whichever was better for a particular finger

combination), t(59) = 22.49, p = 0.015. Thus, while participants

did not fully achieve the predicted level of performance, our results

demonstrate that sharing the force between two fingers reduces

overall motor variability.

Discussion

Our experiments show how effort and variability costs influence

the way the brain distributes work across different effectors when

different combinations can be used to accomplish the same task

(multi-effector redundancy). It has been shown that the contribu-

tion of different arm muscles to the movement of the wrist joint

can be explained using a cost function that includes the sum of

squared motor commands [6]. This work, however, could not

determine the source of the costs. Here, we relied on the natural

differences in noise and effort characteristics across different

effectors to distinguish the influence of costs arising from effort and

from variability of the produced outcome. Our results demonstrate

that variability significantly influences coordination. If, however,

the behaviour of participants was entirely determined by the

minimization of variability, participants should have combined the

fingers according to the ratio of the squared coefficient of variation

of the two fingers. We observed a much more even distribution

across fingers, indicating a substantial influence of effort in the

optimization process. Using a formal model, we were able to

estimate the weight given to variability and effort separately. To

our surprise variability accounted for only 13% of the total cost

function, although participants were clearly rewarded based on the

squared error. The increase in variability that participants took

into account through the high weighting of effort, however, was

relatively small. This is partly because using the stronger finger

more (minimizing the normalized effort costs) also reduced the

variability, as stronger finger on average also had lower coefficient

of variations.

It is noteworthy that effort costs, the sum of squared motor

commands, are not directly related to the minimization of energy.

The energy expended by a muscle is related most closely related to

the mechanical work (Nm), and under isometric condition to the

sum of the produced forces over time [18]. The main justification

for using the squared motor commands is that this term, but not

the simple sum of the forces, predicts motor behaviour well [6]. In

our task, addition of a term that penalizes the sum of motor

commands, would not have influenced the predictions concerning

the force distribution, as any force distribution would be

equivalent.

The contrast of effort and variability costs has been extensively

discussed in the literature [5,9]. The relative importance of these

two terms, however, has not been determined. This is because

previous work has mostly focussed on movements, in which there

are many ways to distribute motor commands across time

(temporal redundancy). For this class of movements - under the

assumption of signal-dependent noise - effort and variability costs

predict the same or very similar temporal sequences of motor

commands [11].

There is evidence, however, that a combination of variability

and effort costs also determines the shape of temporally redundant

movements. For example, participants increase impedance

(stiffness) of the arm to compensate for unstable dynamics [19],

thus indicating that variability can be minimized at the expense of

effort. When dynamics become stable, impedance decreases again

under the pressure of effort costs, sacrificing accuracy. A

neurological disassociation between effort and variability costs

Variability and Effort in Coordination
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has been recently observed with Parkinson’s disease patients [20].

The patient group showed no losses in accuracy, when matched

for movement speed with a control group. When instructed, they

were able to move as fast as control participants, however, their

motor system appeared to be much more reluctant to do so,

indicating that effort costs were set abnormally high. These results

raise the possibility that variability and effort costs may be

estimated in different structures of the nervous system.

While a constant noise-to-signal ratio and quadratic cost

function would predict that the distribution of force across the

fingers was independent of the size of the goal, our data showed a

more symmetric distribution of force across fingers for low force

levels. This finding can be explained when taking into account that

the SD for low force levels is higher than predicted by a simple

linear relationship (Figure 1C) [12]. This means that the derivative

of the SD in respect to the motor command is lower for lower

force levels, such that the importance of the measured constant k

in determining force sharing should be reduced. Congruent with

this prediction, we found lower estimates of the parameter n for

lower force levels. Thus, our data provides evidence that

participants have taken these nonlinearities into account when

determining how to share forces between effectors.

In summary, our results shows that both effort and variability

costs are taken into account when solving the problem of multi-

effector redundancy. By exploiting the natural variability of noise

and force characteristics of different fingers, we provide insight

into the dissociation of two determinants of motor behaviour that

so far have been closely intertwined.

Methods

Participants
Fifteen healthy adults (age 21, SD 4 years, 7 females) from the

student population at Bangor University served as participants.

Data from a 16th participant was removed, as the person had

difficulties to perform the unimanual task with the little finger.

We assessed handedness using 10 questions from the Edinburgh

Inventory [21]. Three participants were left-handed. We

therefore also analyzed the data in terms of dominant/

non-dominant hand with qualitatively very similar results.

Because the MVC and noise coefficients were not reversed

between the left and the right side for left- compared to right-

handers, we report here the results in terms of the left and right

hand. Participants were recompensed with either course credit

or cash payment. All experimental and informed consent

procedures were approved by the Ethics committee of the

School of Psychology, Bangor University.

Apparatus
Participants sat in front of a computer monitor with forearms

supported on a flat desktop. Two force transducers were placed on

the table in front of the participant. The participants applied force

to the cylindrical transducer (40 mm diameter, 30 mm height)

with either their index or little finger. The experimenter ensured

that the forearms and wrist remained on the table surface.

Participants received continuous visual feedback about the total

force produced through a 20-mm white horizontal cursor line,

shown on an LCD display. It moved upward (230 mm = 25 N) as

force was applied to the transducer, starting 25 mm from the base

of the screen (no force). The target was represented on screen by a

box of size 30 mm*4 mm with a black line in the middle, such that

constant and variable error could be exactly determined by the

participant. Force was sampled at 200 Hz.

Bimanual trials
At the start of each trial, a message on the screen indicated the

fingers to be used on this trial (Figure 1A). After participants

touched both force transducers a target appeared at a height

representing the required force level. The task was to apply the

required force level as accurately as possible for 7 seconds, after

which the target returned to the bottom of the screen. Feedback on

the mean squared error, calculated over the last 6 s was given as

feedback at the end of each trial. A running score for the current

block of trials, with the number of points inversely related to the

mean squared error, was presented throughout the experiment.

The experiment was split into 12 blocks of 48 trials run over 2

sessions separated by 1–9 days. Blocks alternated between the

unimanual (see noise measurements) and bimanual conditions. In

every bimanual block, all 4 possible finger combinations were

tested sequentially. The sequence of combination within each

block was determined pseudo-randomly. Each combination was

tested 3 times with force goals set at 4, 8, 12 or 16 N; the sequence

of goal levels was fully randomized.

A set of separate participants was studied in an independent

force production task, in which the force for each finger was

signaled with separate lines. Two goals lines were presented on

each trial and participants had to match the force on each finger to

the goal on that side. Every of the 16 force combinations of the

levels 3,4,5 and 6 N was repeated 8 times during the experiment,

only using the two index fingers. All other experimental details

were the same as in the previous experiment.

Noise measurement
In the intervening unimanual blocks, each finger was tested

individually at different force levels using the same task as in

bimanual trials. Index fingers were tested at 1, 2.5, 5, 7.5, 10, or

12.5 N. Due to the force limitations, for the little fingers, the

12.5 N target was not included. Each target was tested twice for

each finger. The SD for the force produced was calculated over

the last 5 s of each trial. We then determined the coefficient of

variation using a linear regression of the SD against the mean

force produced on the trial, constraining the intercept to 0.

Because SD estimates have strongly skewed distributions and

summary statistics are highly susceptible to outliers, we used robust

regression [22] with a bisquare weighting function to determine

the coefficient of variation. Correspondingly, we also used the

same robust techniques to determine the mean coefficient of

variation across trials for Figure 2D.

MVC measurement
After the experiment, or in a few cases on a separate day, MVC

was measured for each finger. During 3 trials of 7 s each,

participants were instructed to ‘‘try to reach the highest force

possible’’. Visual feedback of the produced force was presented on

the screen. At least 21 s elapsed between each trial to allow

muscles to recover. For each trial, the mean of the highest 5% of

the samples was determined, and the highest score of the three

available trials was taken as the MVC measurement for the finger.

Optimal control models
We determined the optimal motor commands (u�i ) for the

fingers i, j under a number of different cost functions. The force of

each finger (xi, xj ) was modelled as a random variable with a

mean equal to the motor command,

E xi½ �~ui,
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and a standard deviation proportional to the motor command,

SD xið Þ~kiui, with ki being the coefficient of variation deter-

mined by measurement for each finger. The instructed task

(enforced by the point feedback on the screen) was to minimize the

mean squared error between produced and required force.

Therefore, we first considered a cost function in which

participants simply attempted to achieve the lowest squared error

(Eq. 1). By using LJ=Lui~0 and LJ
�
Luj~0 the optimal force

command was determined as:

u�i ~g
k2

j

k2
i zk2

j zk2
i k2

j

ð5Þ

from which the optimal force distribution u�i

.
u�i zu�j

� �
follows.

Secondly, we constructed a cost function that included both

variability and effort costs. For the effort component, we chose to

include both the sum of the squared motor commands (weighted

by l), and the sum of the squared motor commands, normalized

by the maximum voluntary contraction (weighted by m) [13].

Finally, n is included as a weighting factor for accuracy (Eq. 3). To

make the weighting factors comparable across the 3 different

terms, we added normalization factors

J~n
.

bv uizuj{g
� �2

z

nk2
i

�
bvzl=blzm 1=MVCið Þ2

.
bm

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ai

u2
i z

nk2
j

.
bvzl=blzm 1

�
MVCj

� �2
.

bm

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aj

u2
j

ð6Þ

with bn~E k2
i zk2

j

� �
, bl~2, and bm~E 1

�
MVC2

i z1
.

MVC2
j

� �
.

While the scaling of each component does not change the optimal

solution, the scale of each parameter was adjusted, such that the

numerical estimate for each parameter would be the same if the

terms had equal influence on the chosen solution. Because cost

functions are unit-less, and an overall scaling factor does not

matter, we constrained the sum of the free parameters to be 1.

The optimal force command is for finger i is

u�i ~
aj

aizajzaiaj

�
v

ð7Þ

with symmetrical results for finger j. From this one can calculate

the optimal force distribution (Eq. 4) and undershoot of the target.

Model fitting and comparison
We considered all possible cost functions arising from

combinations of the non-normalized effort (weighted by l), the

normalized effort (weighted by m), and accuracy (weighted by n).

Because simple scaling of costs functions do not change the

predictions, we constrained the sum of all involved weighting

parameters to be 1, thereby reducing the number of free

parameters. Assuming Gaussian noise with variance s2
y, the log-

likelihood of the observed force distributions yi, under the model

m~k, the model parameters H and the corresponding prediction

c� (Eq. 4) becomes

l yjm~k,Hð Þ~

{
N

2
log 2pð Þ{ N

2
log s2

y

� �
{

1

2s2
y

XN

n~1

yn{c�n
� �2

ð8Þ

For each model we found the maximum-likelihood estimates

for the free parameters H~ m,n,l, s2
y

n o
by maximising Eq. 8

numerically. To approximate the posterior distribution of the

parameters for each model m (assuming equal prior probability

of all models), we drew 10000 MCMC samples of parameter

values [14] using the exponential of Eq. 8 as a non-normalized

posterior distribution, and discarded the first 200 samples. From

the remaining samples, we calculated 95% confidence intervals

of the parameters, depicted in Figure 2C. For model comparison

we also estimated the marginal likelihood L m~kjyð Þ~
EH L m~kjy,Hð Þð Þ, by averaging the exponential of Eq. 8 over

all MCMC samples. The Bayes-factor Bk,l between model

k and l is then the likelihood ratio of the two models, allowing

for a model comparison that takes into account the number of

free parameters [14].

Bk,l~
L m~kjyð Þ
L m~ljyð Þ ð13Þ

Supporting Information

Table S1 Model comparison of cost functions

Found at: doi:10.1371/journal.pcbi.1000345.s001 (0.06 MB

DOC)
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