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Introduction

Identification of differentially expressed

pathways from expression data is an

important problem because it allows us to

gain insights into the functional working

mechanism of cells beyond the detection of

differentially expressed genes. In this paper

we present a brief guide to methods for the

pathway analysis of expression data. De-

spite the vast amount of different statistical

methods that have been developed so far,

there is a considerable similarity among

them, allowing a systematic classification

and a reduction to a few null hypotheses

that are effectively tested.

Systems biology aims to find emergent

phenomena by the integration of heteroge-

neous data. In general, data integration

itself is a part of any scientific inference: its

elementary steps are the integration of

observations (measurements) into the con-

text of biological knowledge. However, in

the case of systems biology, the scale of

integration is many folds higher, resulting

in a prodigious number of new computa-

tional approaches for the simultaneous

analyses of heterogeneous data. In this

paper we discuss one popular way of

integrating biological knowledge into

large-scale genome-wide measurements,

namely the identification of functionally

related genes (pathways) enriched or differ-

entially expressed in gene expression data

[1]. It should be noted that the approaches

discussed are also applicable to the analyses

of, e.g., RNA-seq, metabolomics or pro-

teomics data and, generally, different types

of biological measurements when preexist-

ing biological knowledge is available.

In the early stages of methodological

developments for gene expression data

analyses, most approaches were focused

on producing so-called gene lists. This is a

set of individual genes called differentially

expressed as identified by univariate test

statistics (e.g., a t-test) [2–4]. Instead, more

recent approaches clearly reflect systems

biology’s trend of data integration and

interpretation [5–7], focusing on sets of

functionally related genes (e.g., from the

same signaling or metabolic pathway)

rather than individual genes.

The purpose of this paper is to provide

a brief guide to methods for the analysis of

differentially expressed pathways or gene

sets, which we simply call pathway-based

methods. For this reason, we emphasize an

illustration of the methods rather than

their technical description. The reader is

encouraged to follow the cited literature

for technical details.

Motivation for Pathway
Approaches

In order to gain a deeper appreciation

for the underlying concepts of methods

aiming to identify differentially expressed

pathways, we briefly describe their overall

goal and some basic facts of molecular

systems. First of all, the ultimate goal of

pathway-based approaches is to connect a

molecular level with a phenotype of an

organism causally or at least associatively.

In the case of a disease-related phenotype,

this could mean that certain molecular

processes are responsible for the manifes-

tation or development of a disease [8,9].

The difficulty in achieving this goal is not

only technical, e.g., deciding which method

would allow us to decipher molecular

mechanisms underlying disease pheno-

types. The selection of appropriate entities

at the molecular level, serving as measure-

ment variables to capture relevant infor-

mation, remains an open problem as well.

Despite considerable differences between

many pathway-based approaches [5], their

common theme is to focus on a systems

level of functional components [10–12] of

the molecular system comprising many, as

opposed to individual, genes.

The analysis of pathways that are signif-

icantly differentially expressed is intuitively

appealing and there are several reasons in

support of this. First, by arranging genes into

pathways, the dimensionality of the dataset is

reduced, and as a consequence the number

of statistical hypotheses that need to be

tested. Second, the statement ‘‘a gene is

differentially expressed between two pheno-

types’’ has, from a biological point of view,

less explanatory power compared to the

statement ‘‘a pathway is differentially ex-

pressed between two phenotypes’’, because

genes do not function in isolation but are

interconnected with each other, forming

gene networks, e.g., a transcriptional regula-

tory, metabolic, or protein network [11,13].

Third, frequently, genes in a list of differen-

tially expressed genes are highly correlated,

which increases the probability of a large

number of false positives. Considering

pathways or gene sets instead of individual

genes leverages the correlation problem to

some extent, because genes in a gene set

frequently act in a coordinated manner

together, forming a biological process, e.g.,

DNA repair or protein catabolic process.

Recently, an alternative approach to handle

the correlation among genes has been

suggested by Zuber and Strimmer [14] by

calculating correlation-adjusted t-scores (the
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standardized and de-correlated mean differ-

ences between two samples). However, the

idea of looking for differentially expressed

pathways appeared with a different reason-

ing in mind. Generally, it is believed that in

many diseases the changes in the expression

values of genes are only moderate and

undetectable for individual genes. For

example, while there were no differentially

expressed individual genes between Type II

diabetes positive and negative patients, a set

of genes involved in oxidative phosphory-

lation was coordinately decreased in hu-

man diabetic muscle [7]. Following this

work, Subramanian et al. [15] described

one of the first algorithms (Gene Set

Enrichment Analysis, GSEA) focusing on

the expression changes of a set of genes as

opposed to changes in the expression of

individual genes.

General Aspects

Before we present pathway-based ap-

proaches, we want to note that there are

two general aspects that need to be

addressed properly in order to ensure a

sound analysis. The first is the preprocess-

ing of the data and the second is the

correction for multiple hypothesis testing.

Here, it is important to realize that the

preprocessing of the data and their

subsequent analysis are not independent

from each other, but the preprocessing

and the analysis of the data need to ‘‘fit

together’’. Despite the fact that these two

topics do not form the major focus of this

paper, we present a brief discussion to

assist the reader in understanding their

importance.

The preprocessing of the gene expres-

sion data obtained using microarrays

addresses three issues. (1) Background

correction: adjusting for hybridization

effects, (2) normalization: removing sys-

tematic errors and biases to allow com-

parisons among arrays, and (3) summari-

zation: combining multiple probe

intensities to obtain a single value for each

gene. There is a rich literature devoted to

this important topic that provides guid-

ance in the selection of appropriate

preprocessing procedures [16–18]. A gen-

tle introduction can be found in [19]. For

more discussions about various aspects of

this difficult topic, the reader is referred to

[20–22]. The second problem that needs

to be addressed is the correction for

multiple hypothesis testing [23–26]. There

are various error measures that have been

used to control a Type I error rate.

Principally, one can distinguish them with

respect to the information that they are

using. For example, there are Type I error

rates based on false positives (N1j0) or on

the false discovery proportion (FDP). Here,

the false discovery proportion is FDP~

N1j0=R for R.0 and zero for R = 0, with R

being the number of significant tests. In the

context of microarray data for identifying

differentially expressed genes, there have

been extensive studies conducted providing

guidance in selecting an appropriate mul-

tiple testing procedure [3,27,28]. However,

for pathway-based approaches, this prob-

lem has received considerably less attention

and is currently still under investigation.

For this reason, it is advisable to investigate

carefully what error rate and procedure is

most appropriate for given circumstances.

Pathway-Based Approaches

In the following, we provide an overview

of different pathway-based methods.

Figure 1 illustrates a general taxonomy of

various pathway analysis strategies. Over-

all, there are three major decisions to make

(indicated by the numbers in the red boxes

in Figure 1): The first decision (Figure 1, red

box 1) defines whether pre-selected gene

lists are used in the analysis. The second

decision (Figure 1, red box 2) determines

the type of the null hypothesis (H0) that will

be tested in the analysis. The third decision

(Figure 1, red box 3) connects particular

null hypotheses and statistical tests.

It appears natural that the earliest

pathway-based approaches resulted from

the analysis of the differential expression of

individual genes (Figure 1, left column

‘‘over-representation analysis’’, also called

‘‘gene lists’’). The analysis of the differen-

tial expression of individual genes results

in a gene list, i.e., a data sheet of genes

called differentially expressed (DE) as

declared by an univariate test (see

Figure 1, ‘‘How to: create a pre-selected

gene list’’). We want to emphasize that this

gene list is called a pre-selected gene list in the

literature [29]. This is an unfortunate

convention because it is easy to confuse

this gene list with a gene set as defined by,

e.g., the Gene Ontology (GO) database

(see below). Then, instead of considering

genes one by one, one can ask ‘‘Do all

these genes, declared differentially ex-

pressed, have any biological function in

common?’’ To answer this question one

should know the gene sets with common

biological functions. These gene sets can

be defined either ad hoc as genes that are

‘‘interesting’’, e.g., the set of prostate

cancer-related genes, or, as is more

common in this type of analysis, using

functional categories, e.g., from the GO

database [30]. The next step is to decide

whether a set of interest, e.g., from GO, is

overrepresented in the DE set. Here,

overrepresented could mean that genes

involved in apoptosis appear more fre-

quently than expected by chance in the list

of DE genes. Many conventional statistical

tests can be applied for answering this

question, e.g., Fisher’s exact test (see

Figure 1, Table 1, and [29,31] for a

review). However, despite its popularity

and simplicity, this approach has several

shortcomings. For instance, the power of

this approach is entirely defined by the list

of pre-selected genes. The content and the

size of a gene list, in turn, is defined by the

types of the univariate test statistic and

multiple testing procedure chosen for

selecting individual genes; see Allison

et al. [32] for more discussions about the

analysis of individual differentially ex-

pressed genes. Most importantly, over-

representation analysis ignores all genes

that were not included in the list of pre-

selected genes, increasing the chances for

missing a biological signal [29,33]. The

approaches without pre-selected gene lists

(Figure 1, right column ‘‘Approaches

without pre-selected gene lists’’, and

Table 1) do not have these limitations.

For this reason we focus in the remainder

of this paper on the latter approach.

Principle Differences: Null
Hypothesis

One in the meanwhile classic approach

that does not rely on pre-selected gene lists

is GSEA [7,15]. The simplified working

mechanism of the GSEA method can be

summarized as follows: (1) Rank all genes

in a dataset according to their expression

differences between two phenotypes. (2)

For each gene set (groups of functionally

linked genes from, e.g., GO) calculate an

enrichment score (ES), where ES is a

running sum statistic reflecting the spread

of the members of a gene set among all

ranked genes. From this select the maxi-

mum enrichment score (MES). (3) Calcu-

late the significance of the MES from the

null distribution of MESs for phenotype-

label randomized data.

Since the appearance of GSEA, many

approaches have been suggested for the

analysis of gene sets [34–37] and their

number is still growing; see Ackermann

and Strimmer [34] for a review. All these

approaches aim to identify gene sets that

change their expression significantly be-

tween phenotypes, where genes in a set

may belong to the same biological process.

The definition of gene sets can be obtained

from databases like the Kyoto Encyclope-

dia of Genes and Genomes [38], Gene

Ontology [30], GenMAPP [39], or Re-
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Figure 1. An overview of motivations and strategies, underlying statistical hypotheses and corresponding tests for pathway-
analysis.
doi:10.1371/journal.pcbi.1002053.g001

Table 1. Overview of different pathway-based methods.

Principle Method Reference Type Software

Over-representation analysis Huang et al. [29] Competitive GOstats and http://www.geneontology.org/GO.tools.
microarray.shtml

Gene set enrichment analysis Mootha et al. [7] Competitive GSEABase and http://www.broad.mit.edu/gsea/

Subramanian et al. [15] Competitive GSEABase and http://www.broad.mit.edu/gsea/

Efron et al. [58] Competitive No

GAGE: GSEA extension Luo et al. [59] Competetive GAGE

PAGE Kim et al. [35] Competitive PGSEA, GAGE

Random Sets Newton et al. [60] Competetive Part of CLEAN

Generalized Random Sets Freudenberg et al. [61] Competetive http://GenomicsPortals.org/

Average of single-gene statistics Tian et al. [48] Self-contained sigPathway

Linear Model Toolset for GSEA Jiang et al. [49] Self-contained GSEAlm

SAM-GS Dinu et al. [62] Self-contained http://www.ualberta.ca/,yyasui/SAM-GS/

globaltest Goeman et al. [63] Self-contained globaltest

GlobalANCOVA Hummel et al. [46] Self-contained GlobalAncova

Hotelling’s T2 [43–45] Self-contained PCOT2

N-statistic Klebanov et al. [47] Self-contained Cramer, R package

Where available, a link to the software or the name of the Bioconductor package (http://www.bioconductor.org/help/bioc-views/release/bioc/) [57] is provided.
doi:10.1371/journal.pcbi.1002053.t001
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sNet [40]. Goeman and Bühlmann have

argued [6] that the major difference

between these approaches can be formu-

lated in terms of competitive and self-contained

tests. Competitive tests compare the dif-

ferential expression of a gene set against

the remainder of all genes, and self-

contained tests answer the question wheth-

er a gene set is differentially expressed

between different phenotypes. Subse-

quently, different null hypothesis Q1 and

Q2 are tested [6] (Figure 1, right column,

Q1 and Q2; and Table 1).

(Q1) Null hypothesis of competitive

approaches:

The genes in a set are as often differen-

tially expressed as the genes in the rest of

the sets.

(Q2) Null hypothesis of self-contained

approaches:

No genes in a set are differentially

expressed.

Dinu and colleagues [41] have demon-

strated that the power of competitive and

self-contained tests cannot be compared

objectively in simulation studies because

the decision as to which test has more

power depends crucially on the hypotheses

(Q1 or Q2) underlying the simulation of

the data, favoring the data-generating

hypothesis. On the other hand, several

arguments have been raised in favor of

self-contained tests [6]:

1. They represent an immediate general-

ization of single-gene tests.

2. Their null hypothesis has a clear

biological interpretation.

3. They make sense even if we consider

all genes on a chip simultaneously,

whereas a competitive test does not.

In summary, this means self-contained

tests are easy to interpret biologically and

they can be more powerful compared to

competitive tests. Table 1 provides an

overview of various competitive and self-

contained tests, including information

about the availability of software imple-

mentations. In the following we discuss

self-contained tests only, and the interested

reader is referred to [42] for a comparative

power analysis of competitive tests.

Differences among Self-
Contained Tests

Self-contained tests can be distinguished

in terms of whether they are multivariate

and account for interdependencies among

genes (e.g., Hotelling’s T2 test: [43–45];

GlobalANCOVA: [46]; N-statistic: [47];

Table 1) or disregard existing complex

correlation structures in a gene set and

consider gene-level statistics only (e.g.,

weighted sum of t-tests: [48]; median-

based or sign-tests: [49]; Table 1). Further,

for gene-level statistics, a transformation of

the test statistic is frequently applied in

order to account for the presence of up-

and down-regulated genes in a gene set

[34]. However, more importantly, for

univariate and multivariate self-contained

tests, the underlying statistical hypotheses

are different. For example: Hotelling’s T2

tests the equality of two multivariate mean

vectors, while the N-statistic tests the

equality of two multivariate distributions.

A combination of univariate statistics

(either transformed or not) assesses wheth-

er the aggregate gene-level test score

differentiates between two phenotypes

[49]. We want to emphasize that due to

these complementing null hypotheses,

each test projects on different aspects of

the data. There are many more self-

contained tests available [34]; however,

effectively, there appear to be barely more

than three general types of underlying null

hypotheses being tested [1].

In order to choose the most appropriate

test, one needs to know their relative

power in different settings and the differ-

ent null hypotheses they test. For this

reason, we presented in [1] a comparative

power analysis for univariate and multi-

variate self-contained tests on simulated

and biological data focusing on three

major issues. First, not all genes in a gene

set change their expression between dif-

ferent phenotypes. The percent of genes

that are actually changing their expression

in a gene set, referred to as detection call,

in the way that the entire gene set is called

differentially expressed, is an important,

but currently unknown, characteristic of

the performance of a test. Second, genes in

a gene set that are functionally related to

each other might exhibit a complex

correlation structure [50]. Multivariate

tests might have a higher power because

they account for interdependences among

genes considering the joint distribution of

gene expression levels, in contrast to

univariate tests, which test differences in

the marginal distributions. The third

question is an implication of the second:

one might expect that because univariate

and multivariate statistics test different null

hypotheses, for real biological data they

may result in completely different gene

sets. There is a reason for concern here:

for example, the application of Principal

Component Analysis and gene-level tests

resulted in exactly this scenario [49]. In [1]

we answered the first two questions with

simulated data, mimicking the stated

conditions, and the third one with two

biological data sets from acute lympho-

blastic leukemia and NCI-60 cell lines. As

a result, we found that all tests perform

reasonably well in estimating the Type I

error rate. Among the three parameters

varied in the simulations (the magnitude of

pairwise correlations among gene expres-

sions, the number of genes changing their

expression in a set, and the size of a gene

set), the magnitude of pairwise correlations

has the largest influence on the power of

all tests. Despite the general belief that

multivariate tests account for a complex

interdependence structure between genes

and, hence, may result in a better power

compared to univariate tests, our study

demonstrated that this is not true when

high correlations are present. Further, we

found that the performance of all tests

coincides when the following three condi-

tions hold:

1. The correlation among genes is low.

2. The number of genes in a pathway is

relatively large.

3. The percent of genes changing signif-

icantly their expression (detection call)

is high.

Due to the fact that for biological data

these three conditions may hold only with

varying degree, differences in these tests

are expected. From the two univariate and

three multivariate self-contained tests used

in our previous study, only three of them

can be considered conceptually different

with respect to their underlying null

hypotheses. It appears that these three

null hypotheses cover the vast majority of

the current universe of all self-contained

tests employed until now. Due to their

complementing null hypotheses, each test

projects on different aspects of the data.

This suggests the simultaneous usage of

several tests in order to gain power

compared to each of these tests individu-

ally. For technical details about pathway

approaches, the reader is referred to the

following recent review papers [34,41,51].

Discussion and Conclusions

The analysis of pathways or gene sets

differentially expressed between pheno-

types has became a routine approach for

the analysis of gene expression data.

Despite the wealth of different methods

available for such an analysis, there exist

considerable similarities among them,

allowing for a systematic classification

and a reduction to a few null hypotheses

that can be tested effectively [1,34].

Figure 1 illustrates that at present there

appear only to be five different null
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hypotheses behind all pathway analysis

strategies. An important take-home mes-

sage from this is that testing all these null

hypotheses would be the most compre-

hensive way to highlight different aspects

of the data and increase the chances of

retrieving a meaningful biological signal.

In addition, it would allow one to distill a

strong biological signal, if present, in the

intersection of the results. We expect that

further developments in this field will

allow for the consideration of the hetero-

geneity of gene expression in a gene set

and also allow for the integration of

additional biological information, e.g.,

the topology of a pathway [52] in the

analysis. Another problem that deserves

more attention is the overlapping among

gene sets that leads to complications in the

interpretation of obtained results. An

enrichment map has been suggested as a

visual interpretation guide [53], but fur-

ther investigations are necessary to address

the hierarchical organization among these

gene sets; see also [54,55] for further

attempts in this direction. Finally, we

would like to emphasize that despite the

fact that in this paper we focused entirely

on expression data from microarray ex-

periments, many of the discussed methods

translate to data from other technology

platforms, e.g., RNA-seq [56].

We conclude with a general note of

caution. Although many of the presented

methods are available as easily usable

software packages, we do not want to give

the impression that these methods should

be used in a plug-and-play manner. Quite

the contrary. Each of these methods and

the resulting findings need to be selected,

applied, and interpreted mindfully, paying

close attention to relevant statistical and

domain-specific details in order to impede

fallacious conclusions.
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