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Abstract

The displacement of the center-of-pressure (COP) during quiet stance has often been accounted for by the control of COP
position dynamics. In this paper, we discuss the conclusions drawn from previous analyses of COP dynamics using fractal-
related methods. On the basis of some methodological clarification and the analysis of experimental data using stabilogram
diffusion analysis, detrended fluctuation analysis, and an improved version of spectral analysis, we show that COP velocity is
typically bounded between upper and lower limits. We argue that the hypothesis of an intermittent velocity-based control
of posture is more relevant than position-based control. A simple model for COP velocity dynamics, based on a bounded
correlated random walk, reproduces the main statistical signatures evidenced in the experimental series. The implications of
these results are discussed.
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Introduction

Postural control during quiet stance has mainly been studied at

the macroscopic behavioral level by assessing the displacement of

the center-of-pressure (COP). The highly complex dynamics of

COP has often been reduced to the magnitude of its variability

and examined comparatively between different conditions of

stance (e.g., open versus closed eyes, [1]), various ages [2], and

healthy populations versus neurodegenerative patients [3,4].

Newell et al. [5], however, argued that such descriptive statistics,

based on the averaging of COP measures over time, could conceal

the control principles that underlie the observed postural dynamics

and emphasized the value of a time series approach.

In the past few decades, researchers have studied COP

trajectory using a variety of nonlinear time series analyses. They

have assessed, for instance, the predictability of the COP trajectory

using recurrence quantification analysis [6,7,8], the chaotic nature

of postural sway through the Lyapunov exponent [9–11], the

irregularity of fluctuations using sample entropy [12–14], and the

structure of serial (long-range) correlations in the COP signals

using various fractal methods [15–19].

Such time series analyses are based on the idea that the

temporal structure of COP fluctuations captures the organization

of the complex, nonlinear, and dynamical ‘‘control’’ processes of

the postural system. While these approaches have provided

original and interesting insights into the processes underlying

COP dynamics, one cannot help but note that the results have

sometimes been contradictory and often not directly comparable.

The main issue with such methods is that while they may require

specific preconditions to be properly applied to the time series,

they always give some result which may mislead further

interpretations. In the present paper, we develop one particular

example of how fuzziness in time series analysis can actually lead

to a choice between two opposite conclusions about the control

processes underlying COP dynamics.

Based on the general assumption that COP dynamics can be

represented by the family of stochastic processes, Collins and De

Luca [16,17] proposed to characterize the correlations contained

in experimental COP series using stabilogram diffusion analysis

(SDA). Note that in the time series framework, a (serial) positive

correlation signifies that an increasing trend in the past is likely to

be followed by an increasing trend in the future. The series is said

to be persistent. Conversely, a negative correlation signifies that an

increasing trend in the past is likely to be followed by a decreasing

trend. The series is then said to be anti-persistent.

The results of Collins and De Luca [16,17] suggested that COP

position series were positively correlated in the short term (i.e., over

short observation times) but negatively correlated in the long term.

The transition from persistent to anti-persistent correlation

regimes over different time scales is known as a ‘‘cross-over

phenomenon’’ [20]. Cross-over is typically related to the fact that

variables are bounded within given limits [20]. Such bounding

effects are essential as they suggest that a type of control, whether

direct or indirect, is exerted on the variable. Following this line of

thought, Collins and De Luca [16,17] supported the idea that

postural control may be position-based. The authors argued that

postural sway displacements ‘‘are left unchecked by the postural

control system until they exceed some systematic threshold’’ [16,

p. 317] and that ‘‘the presence of longer-range negative

correlations in the COP data suggests that closed-loop mecha-

nisms are utilized over long-term intervals of time and large

displacements’’ [17, p.767].

In this present paper, we clarify some of the methodological

issues related to the use of fractal analysis in the studies by Collins

and De Luca [16,17]. These explanations provide support for the

idea that the control of postural sway is velocity-based instead of
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position-based. We confirm this idea with the results obtained

from the analysis of experimental data and then propose a very

simple phenomenological model in accordance with our present

considerations.

The key issue in Collins and De Luca (1993)’s
methodology and fractal-related analyses

Two common methods for characterizing the serial correlation

properties of postural data are stabilogram diffusion analysis (SDA)

[16,17,21,22] and detrended fluctuation analysis (DFA) [14,18,

23,24]. These methods share the same theoretical foundation and

are actually quite similar. To clearly set out the methodological

issues and related interpretations of Collins and De Luca’s

approach, we need to bring these two methods within the general

framework of fractal processes.

Fractal processes can be categorized in two families: fractional

Gaussian noise (fGn), which represents stationary series with a

constant mean and variance, and fractional Brownian motions (fBm),

which are non-stationary series with time-dependent variance

(Figure 1). By definition, the variance of displacement for a fBm is

a power function of the time over which this displacement is

observed, so that it obeys the following scaling law [25]:

Var Dxð Þ!Dt2H ð1Þ

or, equivalently

SD Dxð Þ!DtH , ð2Þ

where H ranges between 0 and 1. This scaling law expresses the

so-called diffusion property specific to fBm processes, whose

characteristics depend on the exponent H. The higher the H,

the more diffusive the fBm will be. Intuitively, one could consider

that diffusion represents the probabilistic dispersion of the process,

relative to the initial position, after a given time interval Dt, and for

multiple replications of the process. Note that the fBm family is

centered on the particular case H = 0.5, which corresponds to

ordinary Brownian motion for which variance is proportional to

the expended time [26].

fBm and fGn processes are related by integration and

differentiation, and they are characterized by the same H

exponents: the differentiation of a fBm gives the corresponding

fGn and, conversely, the integration of a fGn is the corresponding

fBm (see Figure 1). In contrast to the fBm, the diffusion property is

not present in a fGn. Instead, one can classify the fGn with respect

to the correlation properties of the series. For H.0.5, the series

contain persistent correlations, and for H,0.5, fGn series are anti-

persistent. One can intuitively understand that persistent correla-

tion in the fGn leads to strong diffusion in the corresponding fBm,

and vice versa. Additional considerations about the fGn/fBm

model can be found in previous papers [27,28].

With respect to our present methodological issue, the corre-

spondence between fGn and fBm implies that one can assess the

diffusion properties of a fBm in order to infer the correlation

structure of the corresponding fGn. In other words, if one wants to

assess the correlation properties of a fGn (or stationary series) using

methods for working on diffusion properties, the series under study

needs to be integrated prior to analysis.

Both SDA and DFA work on the diffusion properties of series

and are based on the scaling law of Equation 1. Basically, SDA

computes the mean variance of COP displacement for a given

time interval length Dt. This calculation is repeated as a function of

increasing values of Dt (see Methods section for details). According

to Equation 1, the slope of the resulting bi-logarithmic diffusion plot,

expressing variance as a function of time interval, is expected to be

2H, ranging between 0 and 2. Thus, a slope equal to 1 represents a

boundary value in the SDA-diffusion plots: a slope,1 indicates

anti-persistent correlations while a slope.1 indicates persistent

correlations in the differenced series.

DFA is also based on the assessment of variability within

intervals of varying lengths. However, the DFA algorithm differs

slightly from the SDA algorithm and especially in a first step the

series is integrated. The mean standard deviation of this integrated

series is then determined as a function of the interval lengths (see

Methods section for details). Because of the integration step in the

analysis, this method directly assesses the correlation properties of

the analyzed series, and not those of the differenced series, as for

SDA. The slope of the resulting diffusion plot in bi-logarithmic

coordinates, according to Equation 2, is expected to be H, ranging

between 0 and 1, if the series analyzed is a fGn, and H+1, ranging

between 1 and 2, if the series is a fBm. Thus, 0.5 is the boundary

value for the DFA diffusion plots: the analyzed series are stationary

and contain anti-persistent correlations for slopes,0.5 (for fGn

series) while they contain persistent correlations for slopes.0.5.

Figure 2 shows a schematic representation of typical diffusion

plots obtained with SDA and DFA. Obtaining an inflection point

in the diffusion plot (Figure 2, right graph), with slope values

changing from greater than to less than the above-cited boundary

values, indicates the so-called cross-over phenomenon. It shows a

transition from persistent correlations on short observation scales

to anti-persistent correlations on longer observation scales in the

corresponding differenced series, thereby indicating that the latter

is bounded within given limits [20]: the bounded variable derives

(i.e., is positively correlated) until reaching a given limit value. At

this point, the fluctuations reverse in direction (i.e., the series

becomes negatively correlated). Such bounding suggests that the

variable concerned is (in)directly controlled. Note that bounded

series are obviously stationary (at least in the long term), but

cannot be considered as genuine fGn.

Now, the crucial difference between DFA and SDA is that the

DFA algorithm includes the integration of the analyzed series

whereas the SDA does not. In a previous paper [18], we

highlighted this shortcoming in Collins and De Luca’s approach,

but we failed to capture a major implication of the obtained

results. By applying SDA to COP position series and observing a

cross-over, Collins and De Luca [16] argued that postural control

Author Summary

Postural control during quiet standing is usually conceived
of as the control of position: when position goes beyond a
given threshold, corrective mechanisms are engaged to
restore equilibrium. In this paper, we question this
conception and show that postural control is based on
an intermittent control of velocity, with a reversal in its
dynamics when the absolute value of velocity reaches a
given threshold. This hypothesis presents some counter-
intuitive implications. Notably, it means that the active
control or correction processes do not intervene at the
periphery of postural sways, as generally assumed.
According to our findings, control occurs in the central
region of the posturogram, where velocity reaches its
maximal absolute values. The present study suggests new
variables of interest in the study of postural control,
especially the maximal absolute velocity of the center-of-
pressure, which could describe and predict postural
disorders.

Velocity-Based Postural Control
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was position-based. However, since evidencing the cross-over

phenomenon in the SDA diffusion plot of a given series signifies

that the differenced series is bounded, we argue that the authors’

conclusion should have applied to COP velocity. In other words,

we suggest that the control of postural sway is velocity-based

instead of position-based. To test this assumption, we analyzed

experimental postural data using SDA, DFA, and spectral analysis

as a complement.

Results

Twenty-six participants were asked to maintain quiet stance on a

force platform. The position of the COP was recorded as time series,

with a sampling frequency of 40 Hz (see Methods section for details).

We first applied SDA on position series, following the procedure

proposed by Collins and De Luca [16]. SDA diffusion plots

exhibited the two typical correlation regimes, with persistent

correlations over the short term and anti-persistent correlations

over the long term, indicating a cross-over phenomenon (Figure 3,

upper panel).

We then applied DFA to COP position and velocity series. For

position series, the DFA diffusion plot revealed persistent correla-

tions over both short and long terms. In other words, DFA did not

evidence any cross-over when applied to COP position series. When

applied to velocity series, however, the DFA diffusion plot showed a

cross-over, with positive correlations over the short term and

negative correlations over the long term (Figure 3, middle panels).

We then applied spectral analysis as a complement to the above

methods. This method is likely to provide an immediate and

visually salient representation of the cross-over phenomenon, with

positive slopes in the log-log power spectrum indicating anti-

persistence and negative slopes indicating persistence. Thus, the

cross-over is expected to be revealed by a positive slope in low

frequencies and a clear inflection toward a negative slope in high

frequencies. Spectral analysis confirmed the results evidenced by

DFA: the cross-over phenomenon was obtained only with velocity

series, but not with position series (Figure 3, bottom panels).

These results clearly showed that bounding essentially affects

COP velocity and not COP position, and one can thus assume

that the COP trajectory is the consequence of velocity-based

Figure 1. Fractional Gaussian noise and fractional Brownian motion. Representation of the continuum of fractal processes, with: the two
families of fractional Gaussian noise and fractional Brownian motion, the typical correlation and diffusion properties characterizing the two types of
processes, and the associated H exponents.
doi:10.1371/journal.pcbi.1001089.g001

Figure 2. Graphical signatures of cross-over. Schematic representation of the typical log-log diffusion plots resulting from SDA and DFA. This
figure illustrates how the cross-over phenomenon can be detected using diffusion analysis.
doi:10.1371/journal.pcbi.1001089.g002

Velocity-Based Postural Control
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control. In concrete terms, the evidenced bounding means that

COP velocity evolves between two (upper and lower) limit values.

Its evolution from one limit to the other looks similar to a

fractional Brownian motion, yielding the persistent correlations

evidenced in the short term. The long-term evolution of COP

velocity is characterized by a quite systematic to and fro motion

within the range defined by the upper and lower limits; these

systematic reversals yield the anti-persistent correlations observed

in the long term. Figure 4 illustrates this specific dynamics.

On the basis of these results, we propose a very simple model for

COP velocity dynamics in order to determine whether a simple

bounding control of velocity would generate the complex

trajectories observed in COP. This model accounts for velocity

dynamics using a first-order autoregressive process (see Methods

section for details):

vt~a vt{1j jzvt{1zbet ð3Þ

where vt represents velocity at time t, a is a constant, et is a white

noise process with zero mean and unit variance, and b is a constant

representing the strength of the noise term. The long-term anti-

persistent dynamics of COP velocity is accounted for by reversing

Figure 3. Mean graphical results for experimental series. Average log-log diffusion plots obtained from SDA and DFA, and log-log power
spectra on the COP position and velocity data (ML axis) collected during quiet standing. The dashed lines in the upper (SDA) and middle graphs (DFA)
represent the boundary slopes between persistent and anti-persistent correlation (slope = 1.0 for SDA, and 0.5 for DFA, see text for details). The SDA
shows a cross-over phenomenon when applied to position series while both the DFA and PSD analyses show a cross-over in velocity series.
doi:10.1371/journal.pcbi.1001089.g003

Velocity-Based Postural Control
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the sign of a each time that the absolute velocity value exceeds a

given threshold T.

Figure 5 shows an example of the simulated series of position

and velocity produced by the model. When the analyses previously

used for the experimental series were applied to these simulated

series, the model was able to account for the main statistical

signatures observed experimentally: DFA and spectral analysis

revealed a cross-over for velocity series, but not for position series

(see Figure 6).

Discussion

Let us briefly summarize the rationale for the present study and

its main results. Collins and De Luca [16,17] applied the SDA

method to position series and showed a cross-over; they accounted

for this finding by proposing that the postural control system

prevents COP displacement from exceeding given boundaries. We

hypothesized, however, that since SDA does not include an

integration step, this result actually revealed a bounding of COP

velocity instead of COP position. We thus argued that the cross-

over obtained by Collins and De Luca should be interpreted in

terms of a velocity-based control instead of a position-based

control of posture.

In order to test this hypothesis, we analyzed experimental COP

position and velocity data using three different methods: SDA,

DFA, and spectral analysis. The DFA algorithm includes a

preliminary integration process and thus allows detection of a

cross-over in the analyzed series. Spectral analysis also reveals

cross-over in a straightforward way. Our results showed that SDA

replicated (qualitatively) the earlier results of Collins and De Luca:

the diffusion plot of position series showed a cross-over. On the

other hand, both DFA and spectral analysis evidenced a cross-over

in velocity but not in position series. These results clearly support

the hypothesis that bounding affects primarily COP velocity.

This two-scale dynamics suggests that an intermittent control of

velocity underlies the COP trajectory, reversing its dynamics when

the absolute value of velocity reaches a given threshold. Note that

this hypothesis could be conceived as a velocity-based analog of

the two-regime model proposed by Collins and De Luca [16]. Our

results indeed suggest that sway is left unchecked until a threshold

in velocity is reached. Obviously, we are not arguing that COP

velocity is directly controlled during upright stance. Balance is

maintained by control of the center-of-mass motion, and the COP

trajectory is only a macroscopic outcome reflecting some aspects of

the underlying control processes. That said, our statistical results

nevertheless suggest that postural control is more likely to be

velocity-based than position-based. This hypothesis is consistent

with the theoretical predictions of the noisy-computation model

proposed by Kiemel et al. [29] and the subsequent experiment

performed by Jeka et al. [30], suggesting the crucial role of velocity

information for postural stability. Velocity information about the

center of mass dynamics is provided by two sensory modalities:

vision and proprioception from the feet/ankles [29,30]. In their

experiment, Jeka et al. [30] degraded the velocity information by

removing/attenuating the sensory information from the visual and

proprioceptive systems. They showed that a deficit in information

about velocity, rather than position or acceleration, affected

postural sway and they concluded that velocity information was

the most accurate form of sensory information to stabilize posture.

This hypothesis presents some counterintuitive implications.

Notably, it means that the active control or correction processes do

not intervene at the periphery of the COP trajectory, i.e., when

postural sway exceeds a given surface, as generally assumed (e.g.,

[16,17]). According to our present findings, control instead

intervenes in the central region of the stabilogram, where COP

velocity reaches its maximal absolute values.

Finally, while the dynamics of the COP trajectory has usually

been described as very complex, our results suggested a quite

simple model of velocity dynamics. This model reproduced the

main statistical properties evidenced experimentally. A number of

models have been proposed to account for COP dynamics during

quiet stance [29,31–35]. These models are based on inverted

pendulum dynamics [31,35] or more formal dynamical equa-

tions [29,32–34] and include various ingredients to account for

Figure 4. Representative examples of empirical series of COP position (top) and velocity (bottom). Series from participant #10, ML axis.
doi:10.1371/journal.pcbi.1001089.g004

Velocity-Based Postural Control
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Figure 5. Representative examples of simulated series of COP position (top) and velocity (bottom).
doi:10.1371/journal.pcbi.1001089.g005

Figure 6. Mean graphical results for simulated series. Average log-log diffusion plots and power spectra obtained from DFA and PSD with
simulated position and velocity series. These graphs are based on point-by-point averaging of the results obtained from 26 randomly selected
simulated series. The dashed line in the upper plots (DFA) represents the slope of 0.5, corresponding to the boundary between persistent and anti-
persistent correlation.
doi:10.1371/journal.pcbi.1001089.g006

Velocity-Based Postural Control
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neurophysiology-relevant processes such as control torques [35],

time delays [31,35], and stochastic perturbation [33]. All these

models were proven to efficiently mimic the statistical character-

istics of COP dynamics. The originality of the present model is

that it directly accounts for COP velocity instead of position, as

opposed to previous models. Note, however, that this model is not

intended to represent the actual processes involved in postural

control. Its aim is simply to show that the bounding of velocity

evidenced in the analysis of empirical series is sufficient for

mimicking the main features of COP dynamics. Even if this model

lacks physiological realism, it offers new ways of thinking about

modeling, as a complement to previous proposals.

The present study suggests new variables of interest in the study

of postural control. Beyond the signatures of serial correlations

addressed here, the determinants of the threshold that bounds the

dynamics of velocity may be of particular interest. The value of

this threshold can be empirically estimated by computing the

average absolute maximal velocity (AAMV) of the COP. This

computation can be easily done from velocity series by extracting

the maximum and minimum values of the series within non-

overlapping windows. The length of these windows should be

chosen to ensure the collection of at least one maximum and one

minimum (e.g., 2 sec). The absolute values of these extrema are

then averaged. In a preliminary investigation, we computed the

AAMV in two groups of participants differing in age (young,

N = 26, mean age 19.362.1; elderly, N = 25, mean age 76.165.8).

Data were collected in two conditions of vision (eyes open and eyes

closed). We obtained a significant effect of the first factor

(F(1,51) = 13.86, p,.000), indicating that AAMV increases with

age. The effect of vision was also significant (F(1,51) = 56.21;

p,.000), showing an increase in AAMV in the absence of vision.

The interaction effect (F(1,51) = 8.22, F,0.007) indicated that the

effect of the absence of vision was greater in the elderly (see

Figure 7). These results suggest the potential interest of this

variable for analyzing the effect of task modalities and individual

characteristics on the dynamics of COP. In particular, AAMV

may be a predictor of fall risk in the elderly.

This study shows how sophisticated methods for the assessment of

the complex properties of experimental time series must be used with

much caution and regard to their theoretical and methodological

foundations. Perhaps more than for other more ‘‘classical’’ analysis,

the conclusions drawn from such methods are directly dependent on

the specific properties of the algorithms and procedures implemented.

Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of the University of Montpellier 1. All

patients provided written informed consent for the collection of

samples and subsequent analysis.

Experimental setup
Twenty-six male volunteers (19.3 yrs62.1) took part in the

experiment. The participants were asked to maintain quiet stance

on a force platform (Medicapteurs ‘‘40 Hz/16b’’) of 530 mm6
460 mm635 mm, equipped with three pressure gauges. Partici-

pants held their arms alongside their body and focused on a visual

reference mark fixed 90 cm in front of them. The feet were

oriented with an angle of 15u from the sagittal midline, and the

heels were positioned 4 cm apart. The participants had a 30-s

familiarization period before testing began.

The vertical ground reaction forces were recorded using a 12-bit

A/D converter, with a sampling frequency of 40 Hz. The system

was linked to Medicapteurs Winposture2000 software, providing

COP series on the anteroposterior (AP) and mediolateral (ML)

axes. The duration of each recording was 25.6 s, in order to obtain

time series with 1024 points. The collected series were filtered by a

low-pass filter, with a cut-off frequency of 8 Hz.

Data analysis
We analyzed COP position and COP velocity data in the ML

and AP axes. The velocity series were obtained by differentiating

Figure 7. Effects of age and vision on the average absolute maximal velocity of the COP. Results are given for the AP axis.
doi:10.1371/journal.pcbi.1001089.g007

Velocity-Based Postural Control
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the position series. Note that the velocity series were not further

filtered after differentiation. First, we applied SDA on the position

series, following the procedure proposed by Collins and De Luca

[16]. This method consists of computing the square of the

displacement (Dx)2 within all pairs of points separated by a time

interval Dt. This computation is repeated for increasing values of

Dt. The resulting diffusion plot represents the mean squared

displacements against the time intervals Dt, in bi-logarithmic

coordinates. We considered time intervals ranging between Dt = 1

and Dt = 341, (i.e., between 25 ms and 8525 ms). Note that the

highest values still allow the estimation of (Dx)2 to be based on

three non-overlapping intervals.

Second, we applied DFA to the COP position and velocity

series. DFA includes a series of operations: First the analyzed series

x(t) is integrated, by computing for each t the accumulated

departure from the mean of the whole series:

X (k)~
Xk

i~1

x(i){�xx½ � ð4Þ

The integrated series is then divided into non-overlapping

intervals of length n. In each interval, the least squares regression

line (representing the local trend within the interval) is fitted to the

data. The series X(k) is then locally detrended by subtracting the

theoretical values Xn(k) given by the regression. Finally, for each

interval length n, the characteristic size of the fluctuation for this

integrated and detrended series is given by:

F (n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

X (k){Xn(k)½ �2
vuut ð5Þ

Because DFA needs a minimal number of points to compute the

standard deviation within each interval, we considered intervals

from n = 10 to 512 [27].

In complement to the above methods in the temporal domain,

we applied power spectral density (PSD) analysis, which was likely

to provide an immediate and visually salient representation of the

cross-over phenomenon. PSD allows assessing serial correlation in

a signal because the scaling law of Equation 2 can be expressed as

follows in the frequency domain:

S fð Þ!1
�

f b ð6Þ

where f is the frequency and S(f) the corresponding squared

amplitude. This power relationship is revealed in the bi-

logarithmic power spectrum by a linear regression of slope -b.

Thus, a positive slope indicates anti-persistent correlations and a

negative slope indicates persistent correlations (see [27,28] for a

deeper presentation of the use of PSD for fractal analysis). A

separate assessment of serial correlation over the short and long

terms can then be obtained by fitting separate linear regression

lines to the high-frequency and the low-frequency regions of the

log-log spectrum, respectively.

Preprocessing operations were used before the application of the

fast Fourier transform algorithm: First the mean of the series was

subtracted from each value, and then a parabolic window was

applied: each value in the series was multiplied by the following

function:

W (j)~1{(
2j

Nz1
{1)2 for j~1, 2, . . . ,N: ð7Þ

Third, bridge detrending was performed by subtracting from

the data the line connecting the first and last points of the series.

These preprocessing operations have been recommended by Eke

et al. [28] to improve the assessment of correlation properties with

PSD.

In order to avoid any bias due to the logarithmic distributions of

the points in the diffusion plots and power spectra, we divided the

abscissa into intervals of equal lengths (24 intervals of 0.1(log10Dt)

for SDA, 18 intervals of 0.1(log10n) for DFA, and 25 intervals of

0.1(log10Df) for PSD), computed the average points within each

interval, and determined the regression slopes over these average

points. Finally, for an accurate estimation of the regression slopes

in the short-term/high-frequency and long-term/low-frequency

regions, we excluded the central part of the plots and performed

the regressions on the first and the last parts of the graph (from

points 1 to 8 and 17 to 24 for SDA; from points 1 to 6 and 12 to 18

for DFA; from points 1 to 10 and 14 to 25 for PSD). These

intervals were chosen after visual inspection of the individual

graphs, in order to maintain the inflection point within the central

zone in all cases.

These analyses were performed separately on the ML and AP

series. To test statistically for the persistence/anti-persistence of

serial correlations, we used one-sample t-tests to compare the

obtained slope with the boundary value of the corresponding

method (i.e., 1 for SDA, 0.5 for DFA, and 0 for PSD). In addition,

the slopes obtained in the short and long terms, and in the AP and

ML directions, were compared using two-factor repeated measures

ANOVAs.

The results obtained with the three methods on the COP

position and velocity series are summarized in Figure 3 and

Table 1. Figure 3 presents the average diffusion plots and power

spectra and Table 1 displays the corresponding mean regression

slopes.

Stabilogram diffusion analysis
The results of SDA on the COP position series showed a typical

two-regime diffusion plot (Figure 3). The regression slopes were

statistically different in the short and long terms (AP:

F(1,25) = 167.10, p = 0.000; ML: F(1,25) = 373.38, p = 0.000); they

indicated highly persistent behavior in the short term (slope.1;

AP: t(25) = 16.51, p = 0.000; ML: t(25) = 43.03, p = 0.000) and

anti-persistent correlations (slope,1; AP: t(25) = 26.70, p = 0.000;

ML: t(25) = 29.86, p = 0.000) in the long term. The short-term

slope was significantly higher in the ML than in the AP direction

(F(1,25) = 30.88, p = 0.000), but there was no statistical difference

between the long-term slopes in ML and AP (F(1,25) = 1.97,

p = 0.173). In sum, SDA showed a cross-over phenomenon when

applied to the COP position series.

Detrended fluctuation analysis
For the position series, the DFA diffusion plot showed a globally

positive trend over the short and long terms (Figure 3). Although

the slopes were significantly higher in the short term than in the

long term (AP: F(1,25) = 83.90, p = 0.000; ML: F(1,25) = 141.53,

p = 0.000), they indicated persistent correlations for both time

scales (slope.0.5; short-term region: AP: t(25) = 74.07, p = 0.000;

ML: t(25) = 93.62, p = 0.000; long-term region: AP: t(25) = 16.57,

p = 0.000; ML: t(25) = 8.78, p = 0.000). Comparison between ML

and AP data showed that the slope was higher in the ML than the
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AP direction for the short-term region (F(1,25) = 13.88, p = 0.000),

and conversely for the long-term region (F(1,25) = 9.68, p = 0.005).

In sum, DFA did not evidence any cross-over phenomenon when

applied to the COP position series.

For the velocity series, the DFA diffusion plot showed a much

more pronounced inflection between the short- and the long-range

regions (see Figure 3). The short-term regression slopes were close to

1, thus indicating persistent serial correlations. In contrast, the

slopes in the long-term region were less than 0.5 (AP: t(25) = 22.98,

p = 0.006; ML: t(25) = 211.22, p = 0.000), showing the presence of

negative correlations. In the short-term region the slopes were

higher in the ML than in the AP velocity series (F(1,25) = 25.76,

p = 0.000), and conversely for the long-term region (F(1,25) = 45.72,

p = 0.000). In sum, DFA clearly evidenced a cross-over phenome-

non when applied to the COP velocity series.

Spectral analysis
For the position series, the log-log power spectrum exhibited a

globally negative trend (Figure 3). However, the slope was

significantly steeper (i.e., more negative) in the high-frequency

region than in the low-frequency region (AP: F(1,25) = 200.32,

p = 0.000; ML: F(1,25) = 140.23, p = 0.000). There was no

significant difference between the slopes obtained in the ML and

AP directions (low-frequency slopes: F(1,25) = 2.84, p = 0.104;

high-frequency slopes: F(1,25) = 0.95, p = 0.338).

For the velocity series, the spectral analysis showed two qualitatively

different scaling behaviors, with a positive mean slope in the low-

frequency region (AP: t(25) = 6.65, p = 0.00; ML: t(25) = 10.07,

p = 0.000), and a negative mean slope in the high-frequency region

(AP: t(25) = 218.73, p = 0.00; ML: t(25) = 223.54, p = 0.000). In the

low-frequency region, the mean slope was lower in the ML than in the

AP direction (F(1,25) = 5.98, p = 0.022), and there was no difference

between the AP and ML directions for the high-frequency slopes

(F(1,25) = 0.95, p = 0.339). In sum, the spectral analysis demonstrated a

cross-over when applied to the COP velocity series.

Model
Given these results, we proposed to model the velocity dynamics,

considering the COP trajectory as the consequence of velocity-

based control. Our results indicated slightly diffusive velocity

dynamics, close to Brownian motion, over the short term. Basically,

this dynamics can be modeled by a first-order autoregressive process

including a constant that induces a linear trend in the series:

vt~azvt{1zbet, ð8Þ

where vt represents velocity at time t, a is a constant and et a white

noise of strength b.

As shown experimentally, the long-term dynamics of COP

velocity is anti-persistent: the evolution in velocity reverses its

direction when it reaches an upper or lower limit, i.e., when the

absolute velocity value exceeds a given threshold T (see Figure 4).

This dynamics can be obtained by changing the sign of a each

time that velocity reaches the upper or the lower limit. For

simplicity, we consider that these limits are symmetrically

positioned at +/2T.

This equation yields series that reproduce the expected to and

fro of velocity between the two boundary values, but in an

excessively systematic manner. More realistic dynamics can be

obtained by making the linear trend of Equation 8 dependent on

the current absolute velocity ( vt{1j j):

vt~a vt{1j jzvt{1zbet ð9Þ

According to this equation, the higher the absolute velocity, the

higher the contribution of the linear trend to its dynamics. Note

that the goal of Equation 9 was just to mimic the short-term

behavior of velocity as closely as possible. We had no specific

assumptions about possible correspondences between the terms

included in the model and the neurophysiological processes

involved in postural control. Our aim was simply to check

whether the bounding of velocity, imposed on this short-term

dynamics, would allow us to simulate the empirically observed

dynamics, for the velocity and position series.

We simulated 100 series of 1024 points using Equation 9, with

T = 10, a = 0.16, and b = 1.6. These values were chosen for

approximately fitting the shape of the empirical series. The

corresponding position series were computed by integrating the

velocity series. We analyzed the simulated position and velocity

series using DFA and PSD. Figure 5 shows an example of the

series of position and velocity obtained. Figure 6 presents the

average diffusion plots and power spectra obtained from 26

randomly chosen simulated series. In all cases, the graphical

signatures of the simulated series were similar to those obtained

from the experimental series. For the position series, the DFA

yielded a mean (N = 100) slope of 1.77 (60.02) in the short term

and 1.25 (60.51) in the long term. For the velocity series, the

mean slopes were 1.38 (60.03) in the short term and 0.35 (60.17)

in the long term. When applied to the position series, the spectral

analysis yielded a mean slope of 23.53 (60.10) in the high-

frequency region (short-term) and 21.63 (60.94) in the low-

frequency region (long-term). For the velocity series, the spectral

Table 1. Results of time series analyses for COP position and velocity series.

Position Velocity

Method Slope AP ML AP ML

SDA Short-term slope 1.60 (0.19) 1.75 (0.09) - -

Long-term slope 0.48 (0.40) 0.36 (0.33) - -

DFA Short-term slope 1.65 (0.08) 1.70 (0.07) 1.00 (0.17) 1.17 (0.12)

Long-term slope 1.22 (0.22) 1.00 (0.29) 0.43 (0.12) 0.23 (0.12)

PSD High-frequency slope 23.24 (0.39) 23.32 (0.33) 21.44 (0.39) 21.52 (0.33)

Low-frequency slope 21.80 (0.50) 21.60 (0.58) 0.71 (0.54) 1.20 (0.61)

ML: mediolateral direction. AP: anteroposterior direction. Standard deviations are in parentheses.
doi:10.1371/journal.pcbi.1001089.t001
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slopes were of 21.84 (60.10) in the high frequencies, and 0.80

(60.74) in the low frequencies.
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geforderte Bewegung von in ruhenden Flüssigkeiten suspendieren Teilchen.

Annal Phys 322: 549–560.

27. Delignières D, Ramdani S, Lemoine L, Torre K, Fortes M, et al. (2006) Fractal

analysis for short time series: A reassessment of classical methods. J Math Psychol

50: 525–544.

28. Eke A, Herman P, Bassingthwaighte JB, Raymond GM, Percival DB, et al.

(2000) Physiological time series: distinguishing fractal noises from motions.

Pflugers Arch 439: 403–415.

29. Kiemel T, Oie KS, Jeka JJ (2002) Multisensory fusion and the stochastic

structure of postural sway. Biol Cybern 87: 262–77.

30. Jeka J, Kiemel T, Creath R, Horak F, Peterka R (2004) Controlling Human

Upright Posture: Velocity Information Is More Accurate Than Position or

Acceleration. J Neurophysiol 92: 2368–2379.

31. Boulet J, Balasubramaniam R, Daffertshofer A, Longtin A (2010) Stochastic two-

delay differential model of delayed visual feedback effects on postural dynamics.

Phil Trans R Soc A 368: 423–38.

32. Frank TD, Daffertshofer A, Beek PJ (2000) Multivariate Ornstein-Uhlenbeck

processes with mean-field dependent coefficients: Application to postural sway.

Phys Rev E 63: 011905.

33. Lauk M, Chow CC, Pavlik AE, Collins JJ (1998) Human balance out of

equilibrium: Nonequilibrium statistical mechanics in posture control. Phys Rev

Lett 80: 413–16.

34. Newell KM, Slobounov SM, Slobounova ES (1997) Stochastic processes in

postural center-of-pressure profiles. Exp Brain Res 113: 158–64.

35. Peterka RJ (2000) Postural control model interpretation of stabilogram diffusion

analysis. Biol Cybern 82: 335–43.

Velocity-Based Postural Control

PLoS Computational Biology | www.ploscompbiol.org 10 February 2011 | Volume 7 | Issue 2 | e1001089


