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Abstract

Spike-timing dependent plasticity (STDP), a widespread synaptic modification mechanism, is sensitive to correlations between
presynaptic spike trains and it generates competition among synapses. However, STDP has an inherent instability because strong
synapses are more likely to be strengthened than weak ones, causing them to grow in strength until some biophysical limit is
reached. Through simulations and analytic calculations, we show that a small temporal shift in the STDP window that causes
synchronous, or nearly synchronous, pre- and postsynaptic action potentials to induce long-term depression can stabilize
synaptic strengths. Shifted STDP also stabilizes the postsynaptic firing rate and can implement both Hebbian and anti-Hebbian
forms of competitive synaptic plasticity. Interestingly, the overall level of inhibition determines whether plasticity is Hebbian or
anti-Hebbian. Even a random symmetric jitter of a few milliseconds in the STDP window can stabilize synaptic strengths while
retaining these features. The same results hold for a shifted version of the more recent ‘‘triplet’’ model of STDP. Our results
indicate that the detailed shape of the STDP window function near the transition from depression to potentiation is of the utmost
importance in determining the consequences of STDP, suggesting that this region warrants further experimental study.
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Introduction

Hebbian synaptic plasticity can effectively organize neural

circuits in functionally useful ways, but only when implemented in

a manner that induces competition among synapses [1]. Spike-

timing dependent synaptic plasticity (STDP), which has been

observed in a wide variety of preparations (see [2] for a review),

appears to provide such an implementation by forcing synapses to

compete for control of the timing of postsynaptic action potentials

while being strengthened or weakened. In STDP, a synapse is

potentiated when a presynaptic action potential precedes a

postsynaptic spike, and depressed otherwise (see [3] for a review).

STDP has been shown to induce a competitive form of Hebbian

plasticity that is useful for a variety of neuro-computational

problems (see [4] for a review). However, this form of STDP has

an inherent instability in that strong synapses get stronger and weak

synapses get weaker. This instability can be tamed by biophysical

limitations on synaptic strengths, resulting in a U-shaped distribu-

tion of synaptic efficacies [5]. Nevertheless, it is interesting to

examine models that do not require such constraints for stabilization

and that generate unimodal distributions of synaptic strengths

resembling those measured in cultured and cortical networks [6–8].

Synaptic competition and synaptic stability (meaning that

synapses reach a stable equilibrium distribution independent of

bounds on their strengths) are desirable but conflicting features of

Hebbian synaptic plasticity. For example, the instability of STDP

mentioned in the previous paragraph can be eliminated by

introducing strength-dependent modification [9,10], but at the

expense of eliminating synaptic competition. By interpolating

between stable and unstable models of STDP, it is possible to

obtain both synaptic competition and stability, but over a limited

parameter range [11]. Here we propose an alternative solution

inspired by the slow kinetics of NMDA receptors. We show that

STDP can be stabilized if the boundary separating potentiation and

depression does not occur for simultaneous pre- and postsynaptic

spikes, but rather for spikes separated by a small time interval.

Through simulation as well as by solving the Fokker-Planck

equation governing the distribution of synaptic strengths, we show

that any positive shift of the STDP window can stabilize the

distribution of synaptic strengths while preserving synaptic

competition. These properties also hold for a multi-spike STDP

rule in which triplets of pre- and postsynaptic spikes are the key

events in determining the synaptic change [12], as opposed to pair-

based STDP in which pairs of pre- and postsynaptic spikes govern

the plasticity process. Moreover, our simulations show that even a

random symmetric jitter of a few milliseconds in the STDP window

can stabilize synaptic strengths while retaining these features.

Results

To study the effects of STDP on synaptic strengths, we

simulated a single spiking neuron that receives excitatory and

inhibitory presynaptic spike trains with Poisson statistics at rates

rex and rin, respectively (Methods). The strengths of the excitatory

synapses, denoted by w, change due to STDP, while the strengths

of the inhibitory synapses remain constant. We first consider the
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pair-based model of STDP. A more complicated multi-spike

model will be studied afterward. In the pair-based model the

change in synaptic strength, Dw, induced by a pair of pre- and

postsynaptic action potentials with time difference Dt~tpost{tpre

is determined by

Dw~F (Dt)~
{A{ e(Dt{d)=t{ if Dtƒd

Az e{(Dt{d)=tz if Dtwd:

(
ð1Þ

The parameters Az and A{ , both positive, determine the

maximum amount of synaptic potentiation and depression,

respectively. We define synaptic strengths in units of membrane

potential depolarization (mV), so Az and A{ have mV units as

well (Methods). The time constants tz and t{ determine the

temporal extent of the STDP window for potentiation and

depression. The parameter d, also positive, introduces a shift in the

STDP window such that even in cases where a presynaptic action

potential precedes the postsynaptic spike by a short interval

(0vDtvd), the corresponding synapse gets depressed. Note that

we recover conventional pair-based STDP by setting d~0.

Further details of the synaptic modification procedure appear in

the Methods, and the numerical values of the STDP parameters

are given in Table 1. An important feature of the pair-based model

we use is that STDP arises solely from pairs of pre- and

postsynaptic spikes that are nearest neighbors in time, in

agreement with experimental results [13]. Specifically, each

postsynaptic action potential can only potentiate a synapses on

the basis of the interval to the presynaptic spike immediately

preceding it, and each presynaptic action potential can only

depress a synapses on the basis of the timing interval to the

immediately preceding postsynaptic spike. This assumption is

important for the results we obtain using the pair-based STDP

model, as discussed below.

Stability of synaptic strengths
With conventional, unshifted STDP (d~0), synaptic strengths

grow or shrink indefinitely unless limits are imposed. These limits

produce a U-shaped distribution of synaptic strengths (figure 1A,

[5]). However, if we introduce a d~2ms shift into the STDP

window, the steady-state distribution of synaptic strengths is

unimodal and stable even when no limits are imposed (figure 1B).

Why does this occur?

The total effect of a sequence of pre- and postsynaptic action

potentials on the strength of a synapse can be computed by

multiplying the STDP window function by the probability of a

spike pair appearing with time difference Dt and then integrating

over all values of Dt. If we assume Poisson spike trains and ignore

the effects of the synapse, the probability distribution of nearest-

neighbor pre-post pairs is an exponentially decaying function of

the magnitude of the interval between them (figure 1C). The decay

rate of this exponential is equal to the sum of the pre- and

postsynaptic firing rates (Methods). The presence of a synapse

induces an additional contribution to this distribution for small

positive Dt arising from postsynaptic spikes induced by the

synaptic input (figure 1C). The size of this ‘‘causal bump’’ is

proportional to the probability of a presynaptic action potential

evoking a postsynaptic response, and hence to the strength of the

synapse. The stronger the synapse, the larger the bump. In

addition, because the postsynaptic spike latency is shorter for

stronger synapses, the bump moves closer to Dt~0 as the synaptic

strength increases (figure 1D). These features of the pre-post

interval distribution are crucial for our analyses.

When there is no shift in the STDP window, the causal bump

falls entirely within the potentiation domain (figure 1E), which is

why synaptic strengths grow until something else stops them

(figure 1F). When the STDP window is shifted, part of the causal

bump falls into the region where depression occurs (figure 1G).

Furthermore as the synapse gets stronger, a larger portion of the

causal bump falls into the depression domain, both because the

causal bump gets bigger and because it moves closer to Dt~0
(figure 1H). This prevents further growth of the synaptic strength

and explains why a shift stabilizes synaptic growth through STDP.

Stabilization of synaptic weights occurs for any positive value of

the delay (d ), but larger delays result in lower mean values and

sharper distributions for the weights (figure 2).

For a more quantitative evaluation of shifted STDP, we

computed the steady-state solution of the Fokker-Planck equation

governing the distribution of synaptic strengths [14–16] (Methods).

Table 1. Neuronal, synaptic, and plasticity parameters.

Parameter Symbol Default value

Membrane time constant tm 20 ms

Spiking threshold Vth {40 mV

Resting membrane potential Vr {60 mV

Maximum potentiation amplitude A
z

0:006 mV

Maximum depression amplitude A
{

0:005 mV

Potentiation time constant t
z

20 ms

Depression time constant t
{

20 ms

Window shift d 2 ms

Synaptic time constant ts 5 ms

Number of excitatory synapses Nex 1000

Number of inhibitory synapses Nin 250

Inhibitory synaptic strength win 4 mV

Excitatory input rate rex 10 Hz

Inhibitory input rate rin 10 Hz

doi:10.1371/journal.pcbi.1000961.t001

Author Summary

Synaptic plasticity is believed to be a fundamental
mechanism of learning and memory. In spike-timing
dependent synaptic plasticity (STDP), the temporal order
of pre- and postsynaptic spiking across a synapse
determines whether it is strengthened or weakened. STDP
can induce competition between the different inputs
synapsing onto a neuron, which is crucial for the formation
of functional neuronal circuits. However, strong synaptic
competition is often incompatible with inherent synaptic
stability. Synaptic modification by STDP is controlled by a
so-called temporal window function that determines how
synaptic modification depends on spike timing. We show
that a small shift, or random jitter, in the conventional
temporal window function used for STDP that is compat-
ible with the underlying molecular kinetics of STDP, can
both stabilize synapses and maintain competition. The
outcome of the competition is determined by the level of
inhibitory input to the postsynaptic neuron. We conclude
that the detailed shape of the temporal window function is
critical in determining the functional consequences of
STDP and thus deserves further experimental study.

Intrinsic Stability of Shifted STDP
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Figure 1. Comparison of unshifted and shifted STDP. A. The U-shaped steady-state distribution of synaptic strengths for conventional
unshifted STDP. B. The unimodal steady-state distribution of synaptic strengths for shifted STDP (d~2ms). C. The probability density of pairing
intervals for presynaptic and postsynaptic spike trains. The blue area is the symmetric acausal contribution, and the pink area is the additional causal
bump arising from postsynaptic spikes induced by the presynaptic input. D. Same as C, but for a stronger synapse. The causal bump is larger and
closer to Dt~0. E. The causal bump superimposed on the unshifted STDP window. The potentiation part of the STDP curve is red and the depression
part blue. The causal bump falls entirely within the potentiation domain (red shading). F. Same as E, but for a stronger synapse. The causal bump still
falls within the potentiation region. G. Same as E, but for shifted STDP. Part of the causal bump falls into the depression region (blue shading). H.
Same as G, but for a stronger synapse. More of the causal bump falls into the depression region.
doi:10.1371/journal.pcbi.1000961.g001

Intrinsic Stability of Shifted STDP
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With a few reasonable approximations and ignoring any limits or

bounds, the steady-state distribution of synaptic strengths has the

form of a gamma distribution,

r(w)~N
0
(wzm)k{1 exp {

wzm

h

� �
, ð2Þ

where N
0

is a normalization constant and m, h and k are

computed parameters. If either k or h is negative, this distribution

cannot be normalized, implying unstable synaptic strengths. The

calculations indicate that h is positive for any positive shift (dw0,

Methods). Positivity of k requires that AztzwA{t{ . Note that

this is opposite to the condition required of conventional, unshifted

STDP (see for example [5]). Because it is easier to do the analytic

calculations without imposing strict boundary conditions on the

synaptic strengths, the analytic formula sometimes includes a small

probability for negative strength synapses, which is not allowed in

the simulations. Other than this small discrepancy, the agreement

between the analytic distribution and the simulation results is

good (figures 2 & 3). In what follows, d~2ms, Az~0:006mV ,

A{~0:005mV , and tz~t{~20ms, unless stated otherwise.

Steady-state firing rate
STDP has an interesting regulatory effect on the steady-state

firing rate of a neuron [5,15]. With unshifted STDP, this is a

buffering effect making the steady-state postsynaptic firing rate

relatively insensitive to the firing rates of excitatory and inhibitory

inputs. Shifted STDP also buffers the postsynaptic firing rate, but

the residual dependence on the presynaptic rates displays an

interesting effect. Although the steady-state firing rate decreases

when the inhibitory input rates are increased, it has a surprising

non-monotonic dependence on the rates of excitatory inputs

(figure 3).

The stabilization of synaptic strengths discussed in the previous

section arises from the change of size and shape of the causal

bump seen in figure 1C & D. Buffering of the steady-state

postsynaptic firing rate is affected primarily by the shape of the

symmetric, non-causal component of the spike-timing probability.

As mentioned previously, this component falls off exponentially,

for either positive or negative spike-timing differences, at a rate

given by the sum of the presynaptic and postsynaptic firing rates

(Methods). If this sum grows, the acausal part of the distribution

gets more peaked near zero, bringing more spike pairs into the

region of the STDP window where the shift leads to synaptic

depression. The resulting reduction in synaptic strength then

lowers the postsynaptic firing rate. This form of buffering would

not be present if all spike pairs, rather than only nearest-neighbor

pairs, were involved in STDP. If we allowed all spike pairs to

induce synaptic plasticity the relevant symmetric, non-causal

distribution would be flat, rather than exponentially decaying. In

this case, there is no analogous stabilization and, in fact,

postsynaptic rates slowly rise, making the plasticity unstable, even

with shifted STDP. This is why we require shifted STDP to be

based only on nearest-neighbor spike pairs.

Figure 2. Shifted STDP stabilizes the distribution of synaptic strengths. The horizontal axis is the value of the shift, the vertical axis is the
synaptic strength and the gray level is the probability density of strengths, obtained by simulation. Solid line is the analytically calculated mean and
dashed lines show the analytically calculated standard deviation around the mean. Insets show the distribution of synaptic strengths for different
values of the shift. Solid curves are analytically calculated distributions. The arrows at the bottom of the horizontal axis of the main plot show the shift
values corresponding to the insets.
doi:10.1371/journal.pcbi.1000961.g002

Intrinsic Stability of Shifted STDP
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In general, we expect the firing rate of a neuron to increase

when its excitatory inputs fire more rapidly, and this is exactly

what occurs for excitatory input rates below about 10 Hz in

figure 3. However, for excitatory input rates higher than this, the

steady-state (after STDP has equilibrated) postsynaptic firing rate

decreases. This occurs for the reason outlined in the previous

paragraph. Increasing the presynaptic rate causes the acausal

distribution to sharpen and induces synaptic depression. This slows

the postsynaptic rate, broadening the acausal distribution until the

spike intervals in the delay region are sufficiently reduced in

number. This is what causes the steady-state postsynaptic firing

rate to drop when the excitatory presynaptic rates are raised to

high levels.

Shifted STDP also has a buffering property on changes in the

inhibitory input rate. In presence of strong inhibitory input, the

postsynaptic firing rate falls. This broadens the acausal part of the

spike-pair distribution, lowering the chance for pairs to fall into the

depression domain caused by the shift and, thus, resulting in more

potentiation. However, in this case, the effect is not strong enough

to overcome the expected tendency of the postsynaptic rate to be

suppressed by inhibition (figure 3).

Synaptic competition
Hebbian plasticity in general and STDP in particular allows

neurons to become selective to correlated subsets of their inputs,

but this requires synaptic competition [1]. We call synaptic

plasticity ‘‘competitive’’ if correlating a subset of synaptic inputs

causes both that set and the remaining synapses to change their

strengths in an opposing manner, so than either the correlated or

the uncorrelated set of synapses gains control of the postsynaptic

firing (see for example [11]). In particular, if STDP is competitive,

the strengths of either the correlated or uncorrelated subgroup of

synapses should cluster near zero. To determine whether the

necessary competition exists with shifted STDP, we imposed

pairwise correlations with a coefficient of 0.2 on one half of the

incoming excitatory spike trains while leaving the other half

uncorrelated (Methods). With unshifted STDP, this arrangement

induces a competition that correlated synapses always win [5]. In

Figure 3. The steady-state postsynaptic firing rate. The steady state firing rate is plotted as a function of the input rates for excitation and
inhibition. The inset shows the corresponding analytic result.
doi:10.1371/journal.pcbi.1000961.g003

Intrinsic Stability of Shifted STDP
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other words, the synapses receiving correlated input become

stronger and those receiving uncorrelated input get weaker.

Interestingly, with shifted STDP the outcome of the competition

depends on the rate of inhibitory input to the neuron. When the

rate of inhibitory input is 10 Hz for the parameters we use, the

synapses receiving correlated spikes end up weaker than the

synapses receiving uncorrelated spikes (figure 4A). This behavior is

‘‘anti-Hebbian’’ in that it is opposite to what is expected from

normal Hebbian modification. However, when the rate of the

inhibitory inputs is increased to 20 Hz, we obtain the usual

Hebbian result in which correlated synapses win the competition

and become stronger than uncorrelated synapses (figure 4B).

Results obtained over a range of inhibitory input rates show a

transition from anti-Hebbian to Hebbian modification (figure 4C).

Choosing other values for the correlation coefficient within a range

from 0.1 to 0.9 yielded qualitatively similar results. Competition

also occurs between two correlated subgroups with different

correlation coefficients, with the more correlated synapses

dominating over the less correlated ones in the Hebbian (high

inhibition) case and vice versa in the anti-Hebbian (low inhibition)

mode. If the correlation coefficients for the two groups are the

same, no competition takes place.

These results were obtained using spike trains with zero time-lag

correlations, meaning that for any two correlated spike trains, a

subset of spikes is perfectly synchronous. More realistic spike

correlations can be generated by including a small random jitter in

the timing of the synchronous spikes. The mean of this jitter

determines the correlation time constant. Breaking perfect

synchrony does not change the above results qualitatively.

However, the rate of inhibitory input needed to transition from

anti-Hebbian to Hebbian competition is sensitive to the correla-

tion time constant (figure 4D). When the correlation time constant

increases, the inhibitory rate at the transition decreases, until the

correlation time constant becomes greater than the shift of the

Figure 4. Synaptic competition through shifted STDP. Cyan color indicates synapses with uncorrelated inputs, and magenta indicates
correlated inputs. The rate of excitatory input is fixed at 10 Hz, and the correlation coefficient is 0.2 for correlated input spike trains. A. Steady-state
distribution of synaptic strengths for an inhibitory rate of 10 Hz. Uncorrelated synapses become stronger than correlated. B. Steady-state distribution
of synaptic strengths for an inhibitory rate of 20 Hz. Correlated synapses now become stronger than uncorrelated. C. Distributions of strengths for
synapses receiving uncorrelated (top) and correlated (bottom) inputs as a function of the inhibitory input rate. The color level indicates the
probability density of strengths. A transition from anti-Hebbian to Hebbian competition occurs at an inhibitory input rate of 14 Hz (dotted line).
Arrows indicate the parameters for panels A and B. D. The transitional inhibitory rate as a function of correlation time constant. The transition takes
place at lower inhibitory rates as the correlation time constant increases up to 2ms, then remains constant at 7Hz for higher values. The insets show
the full distribution of correlated and uncorrelated synaptic strengths as in C, for correlation time constants of 1, 2 and 10ms.
doi:10.1371/journal.pcbi.1000961.g004

Intrinsic Stability of Shifted STDP
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STDP window (2ms). Further increase in the correlation time

constant does not lead to any more lowering of the transitional

inhibitory rate (figure 4D).

The dependence of the outcome of synaptic competition on the

level of inhibitory input can be explained by evaluating the effect of

inhibition on the firing regime of the postsynaptic neuron. When the

inhibitory input to a neuron is low, it operates in a ‘‘mean-driven’’

regime, meaning that the time-averaged ‘‘free-running’’ membrane

potential (that is, the membrane potential if the spike generation

mechanism is turned off) is above the firing threshold [17]. In the

mean-driven regime, integrate-and-fire neurons spike regularly, so

the coefficient of variation of the inter-spike-intervals (CVISI), which

is a measure of the irregularity of firing, is small [18]. On the other

hand, when the inhibitory input to the neuron is high, the mean

membrane potential is below the firing threshold. In this case, large

deviations in the membrane potential from its mean are required

to make the neuron fire, and the neuron is said to be in the

‘‘fluctuation-driven’’ regime [17–19]. This makes firing times

irregular, resulting in a larger CVISI.

The model neuron we study traverses these regimes as the firing

rate of its inhibitory inputs is varied (figure 5A). When the

inhibitory input is small, the neuron operates in the mean-driven

regime, with its mean free-running membrane potential above

threshold and a small CVISI. When the inhibitory input rates

increase beyond 14 Hz, the neuron suddenly switches to a

fluctuation-driven regime in which the mean membrane potential

is below threshold and CVISI is large. The transition between the

mean-driven and fluctuation-driven regimes occurs exactly where

synaptic competition switches from being anti-Hebbian to

Hebbian (compare figure 4C with 5A). Thus, the key feature

determining whether plasticity is anti-Hebbian or Hebbian is

whether the postsynaptic neuron is in a mean-driven or

fluctuation-driven state.

Recall that the causal bump is the excess probability of

postsynaptic firing caused by an incoming input spike. As

mentioned previously, the effect of shifted STDP on the

distribution of synaptic strengths can be explained by considering

the shape of the postsynaptic causal bump in relation to the STDP

temporal window. When the postsynaptic neuron is in the mean-

driven regime, the membrane potential rises rapidly to the

threshold. As a result, presynaptic action potentials can only

enhance postsynaptic firing if they occur during a relatively short

time-interval prior to the postsynaptic spike. This means that the

causal bump decays rapidly for longer intervals. The causal bump

also has a higher amplitude and decays more rapidly for stronger

synapses (figure 5B). Furthermore, the causal bump due to

correlated inputs is even narrower and sharper (and more inside

the depression region) than the bump due to uncorrelated inputs

(figure 5B, magenta traces), because correlated spikes are more

likely to induce a postsynaptic spike rapidly when they occur in

unison. As a result, the uncorrelated synapses win the synaptic

competition when the level of inhibition is low.

When the postsynaptic neuron fires in the fluctuation-driven

regime, the membrane potential spends a considerable time near

but below the firing threshold before spiking. As a result,

presynaptic input can affect postsynaptic firing over a longer time

interval than in the mean-driven regime. This makes the causal

bump broader than in the mean-driven case (figure 5C).

Furthermore, the causal bump is even broader for correlated

than for uncorrelated inputs because the simultaneous arrival of

correlated spikes generates a stronger depolarization transient that

makes it possible for subsequent weaker inputs to push the

postsynaptic neuron above threshold over a longer time interval.

This gives the causal bump for the correlated inputs a long tail that

extends well into the potentiation domain of the STDP window

(figure 5C, magenta traces), allowing them to win the competition

in this case.

The transition from the mean-driven to the fluctuation-driven

regime and correspondingly from anti-Hebbian to Hebbian

competition is quite abrupt. This may be due to the interplay

between the correlated inputs and the firing mode of the neuron.

Correlated inputs increase membrane potential fluctuations and

spiking irregularity [20]. Therefore, within the context of shifted

STDP, there is positive feedback between the fluctuation-driven

regime and the dominance of correlated inputs. As the neuron

transitions to the fluctuation-driven regime through increased

inhibition, the correlated synapses start to strengthen more than

the uncorrected ones which, in turn, increases the fluctuations of

the membrane potential and pushes the neuron further into the

fluctuation-driven regime. This positive feedback continues until

the correlated synapses dominate over the uncorrelated ones and

the neuron falls completely into the fluctuation-driven mode.

Jittered STDP window
It is not necessary to introduce an explicit shift into the STDP

window to assure stability. Any mechanism that causes depression

to dominate over potentiation for short positive pairing intervals

will have the same qualitative effect. One such mechanism is a

symmetric random jitter introduced into an unshifted STDP

window that has A
{
wA

z
. By jitter we mean that the time Dt used

to determine the effect of STDP for any given pair of pre- and

postsynaptic spikes, is not simply the difference between the times

of their occurrence, but instead a random term is added. In other

words, Dt~tpost{tprezg, where g is a random variable drawn

from a distribution with zero mean and a certain variance (we use

a Gaussian distribution). Although the STDP window has no

explicit shift in this case (figure 6A, top), the effective window

obtained by averaging over the symmetric random jitter (figure 6A,

bottom), exhibits the required feature that depression occurs for

small positive pairing intervals.

Simulations show that jittered STDP has all the qualitative

properties of shifted STDP, although the maximum depression

must be set to be greater rather than the maximum potentiation

(we take A
z
~0:005mV and A

{
~0:007mV , although see [21]).

To keep A
z

t
z
wA

{
t

{
, as required for stability, the time constant

of potentiation must be larger than that of depression (we take

t
z
~20ms and t

{
~10ms). If the standard deviation of the jitter is

less than 2ms, the steady-state distribution of synaptic weights is

not inherently stable and we obtain a U-shaped distribution of

synaptic strengths (figure 6B). However, for larger standard

deviations of the jitter, the steady-state distribution is stable and

unimodal as in the case of shifted STDP (figure 6B). Other features

of shifted STDP are also reproduced. The steady-state firing rate

of the postsynaptic neuron decreases when the rate of presynaptic

input increases (figure 6C), and either anti-Hebbian or Hebbian

competition occurs depending on the rate of inhibitory input to the

neuron (figure 6D).

Shifted STDP with multi-spike interactions
A pair-based STDP model cannot account for all experimen-

tally observed spike-timing dependent synaptic modifications.

When bursts of spikes are induced in the pre- and postsynaptic

neurons, frequency dependence is observed for both pre-after-post

and post-after-pre pairings. The magnitude of LTP, but not LTD,

increases with burst frequency and, at high burst frequency, LTP

is induced regardless of the ordering of the pre- and postsynaptic

spikes [13,22]. Similarly, the dependence of synaptic modification

on triplets and quadruplets of spikes cannot be fully explained by

Intrinsic Stability of Shifted STDP
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pair-based STDP models [23,24]. Recent results from experiments

that used complex spike patterns have led to STDP models that

take into account interactions between multiple pre- and

postsynaptic spikes. The details of the multi-spike interactions

vary among different models. In the ‘‘suppression model’’ the

plasticity-inducing effect of each pre- or postsynaptic spike is

suppressed by the preceding spikes in the same neuron [22,23]. In

the ‘‘triplet model’’, in addition to the effect of neighboring pre-

post pairings there is an extra depression exerted by the preceding

presynaptic spikes and an extra potentiation by the preceding

postsynaptic spikes [12]. The triplet model can account for most of

the observed synaptic modifications induced by complex spike

patterns [12], including the dependency of plasticity on burst

frequency [13] and triplet effects in hippocampal culture [24]

Figure 5. The effect of the inhibitory input on synaptic competition. A. Transition from mean-driven to fluctuation-driven firing regimes
when the rate of the inhibitory input is increased. The black curve is the coefficient of variation of postsynaptic interspike intervals (CVISI), the blue
curve is the mean free-running membrane potential in units of the spiking threshold, and the red curve is the standard deviation of the membrane
potential in the same units. For inhibitory input rates greater than 14 Hz, there is an abrupt switch from the mean-driven to the fluctuation-driven
regime, corresponding to the transition from anti-Hebbian to Hebbian competition (figure 4). B. Postsynaptic causal bumps due to uncorrelated
(cyan) and correlated (magenta) input spikes for different mean synaptic strengths (shading) when the inhibitory input rate is 10 Hz. The blue area
shows the depression domain and the red area is the potentiation domain. Note that the correlated causal bumps (magenta) fall almost entirely into
the depression domain (blue shading) in this case, so the correlated synapses lose the competition. C. Same as panel b, but for an inhibitory input
rate of 20 Hz. Note the heavy tail of the correlated causal bumps (magenta), which extend into the potentiation domain of the STDP window. These
curves were obtained by numerical simulations, changing the mean of the steady-state distribution of correlated or uncorrelated synapses to the
desired value for each curve. Because the correlated synapses arrive in unison, their causal bump is the aggregate effect of all of their spikes. To show
the contribution of individual correlated spikes, comparable to that of the uncorrelated ones, we therefore normalized the magnitude of the causal
bump of the correlated synapses by their average cluster size (*cNex=2).
doi:10.1371/journal.pcbi.1000961.g005
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where pre-post-pre ensembles with the same timing difference lead

to insignificant changes but post-pre-post ensemble induces a

strong potentiation of synapse. The triplet model can also be

mapped to a Bienenstock-Cooper-Munro learning rule [25],

which has several interesting functional properties. Nevertheless,

the triplet model suffers from the same instability as pair-based

STDP. Therefore, we examine the effect of introducing a shift into

this model.

In the triplet model, a ‘‘2 pre/1 post’’ ensemble of spikes exerts an

extra depression (the triplet depression) in addition to the usual pre-

post pairing effect. The triplet depression has its maximum value ~AA
{

immediately after the first presynaptic spike and decays exponentially

as a function of the interval between the two presynaptic spikes, with

time constant ~tt{. Similarly, a ‘‘1 pre/2 post’’ ensemble of spikes exerts

an extra potentiation (the triplet potentiation) with the maximum

value ~AA
z

and decay time constant ~ttz (see Methods for details). The

Figure 6. Jittered STDP. A. A random symmetric jitter of the unshifted STDP window (top) results in an effective window function (bottom) in
which depression is dominant for short positive pairing intervals (blue shading). B. Jittered STDP stabilizes the distribution of synaptic weights. The
horizontal axis is the standard deviation of the jitter (s), the vertical axis is synaptic strength and the gray level indicates the probability density of
strengths. For jitters smaller than 2 ms the distribution is bimodal, but for larger jitters it is stable and unimodal. C. The steady-state firing rate of the
postsynaptic neuron as a function of the excitatory and inhibitory input rates when the jitter is 3 ms. D. Jittered STDP (s~3ms) implements both
Hebbian and anti-Hebbian competition. As in figure 4, the top panel shows the distribution of uncorrelated synapses (cyan) and the bottom panel
shows the distribution of correlated synapses (magenta), both as functions of the inhibitory input rate. The transition from anti-Hebbian to Hebbian
competition occurs when the inhibitory input rate is about 50 Hz in this case.
doi:10.1371/journal.pcbi.1000961.g006

Intrinsic Stability of Shifted STDP

PLoS Computational Biology | www.ploscompbiol.org 9 November 2010 | Volume 6 | Issue 11 | e1000961



value of these triplet parameters vary in different neuronal

preparations [12]. Here, we set the time constants ~ttz and ~tt{ to

50ms and examine the model with a range of parameters ~AA
z

and ~AA
{

.

The window of the pre-post pairing is shifted by 2ms as before and all

other parameters are the same as in Table 1.

Simulations show that the final distribution of weights is stable

and unimodal (figure 7A) using the triplet model, unless the triplet

depression is extremely high, which causes the firing rate of the

postsynaptic neuron to go to zero, terminating plasticity. After

finding that the shifted STDP in the triplet model stabilizes

weights for a wide range of parameters, we set ~AA
z

and ~AA
{

to

0:003mV and examined other properties of shifted STDP in this

model. Further simulations showed that shifted STDP within the

framework of the triplet model has all the qualitative properties of

the shifted pair-based STDP model. A shift as low as 0.1 milli-

seconds is sufficient to stabilize the weights, with larger delays

resulting in lower mean values and sharper distributions for the

weights (figure 7B). The steady-state firing rate of the postsynaptic

neuron decreases when the rate of the excitatory and/or inhibitory

presynaptic input increases (figure 7C). Finally, either anti-

Hebbian or Hebbian competition occurs depending on the rate

of inhibitory input to the neuron (figure 7D).

Figure 7. The shifted triplet model. A. The final distribution of weights for different values of maximum triplet potentiation (~AA
z

) and depression
(~AA

{
). Except for very high depression values, the distribution is unimodal and stable. We used the representative value of 0:003mV for both ~AA

z

and ~AA
{

(red dotted box) for the remaining results in this figure. B. The shift stabilizes the distribution of synaptic weights. The horizontal axis is the
value of the shift, the vertical axis is the synaptic strength, and the gray level is the probability density of the strengths (as in figure 2), obtained by
simulation. C. The steady-state firing rate of the postsynaptic neuron as a function of the excitatory and inhibitory input rates. D. The shift in the
triplet model can implement both Hebbian and anti-Hebbian competition. As in figure 4, the top panel shows the distribution of the uncorrelated
synapses (cyan) and the bottom panel shows the distribution of the correlated ones (magenta), as a function of the inhibitory input rate. The
transition from anti-Hebbian to Hebbian competition occurs at an inhibitory input rate of 16 Hz.
doi:10.1371/journal.pcbi.1000961.g007
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Discussion

We have shown that a slight shift in the effective STDP temporal

window, such that postsynaptic spikes occurring shortly after

presynaptic action potentials cause synaptic depression, can stabilize

the distribution of synaptic strengths without loss of competition,

both in pair-based and triplet-based models. The shift can be

explicitly implemented in the STDP window or achieved by other

means such as a symmetric spike-by-spike random jitter. In fact, any

mechanism that causes synaptic depression for small but causal

(positive by our convention) pre-post spike intervals should lead to

the stabilization and other effects we report. What biophysical

mechanisms could cause this to occur?

The sharp transition between depression and potentiation in

STDP appears to be due to the abrupt onset of long-term potentiation

[26,27]. It is believed that the Ca2z influx through NMDA receptors

is responsible for this potentiation [28] and that the abrupt onset

arises because the NMDA channel be in an open but blocked

configuration before subsequent depolarization removes the Mg2z

block [29]. To assure a large Ca2z influx and subsequent

potentiation, it seems reasonable to assume that the depolarization

that removes the Mg2z block should occur near the peak of the

NMDA activation. The Mg2z removal by postsynaptic depolariza-

tion is extremely rapid [30] but the NMDA activation has a finite rise

time, so the peak of NMDA activation occurs a few milliseconds after

the arrival of the presynaptic spike [31]. Therefore, it seems likely that

the maximum potentiation should occur when the presynaptic spike

precedes the postsynaptic action potential by several milliseconds,

and that depression could result from timing differences shorter than

this. Thus, the biophysics of the NMDA receptor appears to support

the idea of a temporal shift in the STDP window. The shape of the

STDP window has been inferred from models of NMDA receptor

kinetics and back-propagating action potentials [32,33]. However,

the millisecond timing of the transition from depression to

potentiation was not investigated systematically, because its signifi-

cance was not evident at that time. Nevertheless, in some

parameterizations of such models a small depression domain for

short positive pairing intervals has been reported [33].

Typically in electrophysiological recordings, action potentials

are measured at the soma, but what matters for STDP is the

timing of the events at the synapse. More precisely, the timing of

the postsynaptic EPSP and that of the backpropagating action

potential to the synapse control plasticity. Transmission delays

may have their own interesting computational properties. For

example, it has been shown that STDP in the presence of axonal

transmission delays can have a desynchronizing effect on

population bursts and a synchronizing effect on random spiking

in a recurrent network [34]. The transmission delay of the EPSP to

the soma and that of the backpropagating action potential subtract

from the delay we need for shifted STDP. For distal synapses

where these delays are longer, there may be a higher probability

that the causal bump falls out of the depression domain caused by

the shift. This might be a mechanism for counterbalancing the

attenuation of the EPSPs arising from distal dendrites [35,36]

along with other proposed mechanisms [37,38]. It may explain the

enhancement of LTD reported in studies of STDP at distal sites

[21,39,40]. If the delay becomes longer than the shift for very

distal synapses, other mechanisms such as limits on synaptic

strength must serve to stabilize STDP. Finally, if the speed of

backpropagating action potential can be increased through

modification of voltage-dependent conductances, the model

predicts that synapses should be more readily depressed.

The most direct test of the shifted STDP hypothesis would be to

observe the effect of almost synchronous pre- and postsynaptic spikes

on synaptic strength. However, the results of such experiments could

be difficult to interpret because of confounding factors such as the

physiological delays mentioned above. For example, if the pre- and

postsynaptic spikes are induced exactly at the same time, the timing of

their arrival at the synapse is not necessarily synchronous. If a shift in

the STDP window function acts as a stabilizing mechanism, synapses

should get depressed when postsynaptic spikes are generated by

presynaptic spikes with short latency. Therefore, as an alternative

experiment we suggest inducing spikes only in the presynaptic neuron

and allowing the postsynaptic firing to be affected by this presynaptic

activity. One possible way to perform such an experiment is to hold

the voltage of the postsynaptic neuron close to its firing threshold, so

that individual EPSPs can induce a postsynaptic spike. In this case, if

there is a stabilizing shift in the STDP window, strong synapses that

induce short-latency postsynaptic action potentials abruptly should

get depressed.

Shifted STDP results in a unimodal distribution of synaptic

strengths. This finding is in agreement with the measurements of

quantal synaptic currents [6,7] and from paired recordings [8].

However, the observed distribution of peak EPSP amplitudes has a

heavier tail than the gamma distribution obtained from shifted

STDP (see also [36,41]). STDP is unlikely to be the only

mechanisms involved in shaping the distribution of synaptic

strengths. Nevertheless, figure 4 shows that in presence of

correlated input, this distribution can be quite broad. Thus, in

the context of shifted STDP, a heavy-tailed distribution may be a

sign of multiple correlated subgroups of input spike trains.

The synapses in the model we considered were current-based,

meaning that each excitatory or inhibitory input injects a current

waveform to the neuron regardless of the value of its membrane

potential. We have also studied an analogous model with

conductance-based synapses, and this does not qualitatively

change the reported results. These results show that the outcome

of competition between correlated and uncorrelated spike trains

with shifted STDP depends on the firing state of the postsynaptic

neuron, which can be controlled by the rate of its inhibitory inputs.

This allows for a dynamic switching between anti-Hebbian and

Hebbian forms of plasticity, and it might be related to the role of

local inhibitory interneurons in switching the activity-dependent

development of visual cortical circuits during the critical period

[42]. We also showed that a shifted version of the triplet model is

stable and implements both Hebbian and anti-Hebbian compe-

titions, as in the shifted pair-based model. It is worth noting that

the suppression model [22,23] is inherently stable without any shift

and shows solely anti-Hebbian competition between correlated

and uncorrelated inputs [43].

In conclusion, a slightly shifted STDP window stabilizes

synaptic strength, buffers firing rates, and can implement different

modes of synaptic competition. The required shift may arise from

properties of the NMDA receptor, or from random jitter. In light

of their importance in determined the outcome of synaptic

plasticity, we argue that the properties of STDP for short pairing

intervals, which have not yet been clearly resolved, warrant a more

detailed investigation.

Methods

Neural and synaptic models
The membrane potential of the integrate-and-fire model neuron

obeys

tm
dV

dt
~(Vr{V )zIex{Iin, ð3Þ
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where tm is the membrane time constant, Vr is the resting

potential, Iex is the excitatory input and Iin is the inhibitory input.

Note that although these inputs appear as currents, they are

actually measured in units of the membrane potential (mV )

because a factor of the membrane resistance has been absorbed

into their definition. When the membrane potential V reaches the

firing threshold Vth, the neuron fires an action potential and the

membrane potential resets to the resting value. The numerical

values of all parameters are given in Table 1.

Each presynaptic action potential at an excitatory or inhibitory

synapse induces an abrupt jump into the corresponding synaptic

input (Iex or Iin), which decays exponentially afterwards. The time

course of the synaptic inputs can thus be expressed as

Iex(t)~
XNex

i~1

wi

X
tk
i
ƒt

e
(tk

i
{t)=ts and Iin(t)~win

XNin

i~1

X
tk
i
ƒt

e
(tk

i
{t)=ts : ð4Þ

Here, the first sums run over all excitatory (inhibitory) synapses

(Nex or Nin, respectively). The second sums run over all the

presynaptic spike times tk
i , indexed by k, reaching synapse i before

time t. The synaptic time constant ts is taken to be the same for

excitatory and inhibitory synapses. The inhibitory synaptic

strength win is fixed and is the same for all inhibitory synapses.

The excitatory synaptic strengths wi change due to STDP.

In all simulations, the synaptic strengths were initialized

randomly from a uniform distribution over the range 1–5 mV.

For each parameter regime, the simulations were run for 105

seconds of simulated time. The steady-state nature of the synaptic

strengths was established when the first, second, and third

moments of the distribution, as well as the average firing rate of

the neuron, remained constant.

Shifted triplet model
The triplet model [12] includes a presynaptic detector for each

synapse mi(t) and a single postsynaptic detector n(t). In the absence

of incoming presynaptic spikes to synapse i, the value of the detector

mi(t) decays exponentially with the time constant ~tt{. Likewise, the

value of the postsynaptic detector n(t) decreases exponentially in the

absence of postsynaptic spikes with the time constant ~ttz. When a

presynaptic spike reaches synapse i at time t, mi(t) is set to 1, and

n(t) is set to 1 if there is a postsynaptic spike at time t. Formally,

~tt{

d mi(t)

dt
~{mi(t), if tpre~t,mi(t)?1

~ttz

d n(t)

dt
~{n(t), if tpost~t,n(t)?1

ð5Þ

For each excitatory synapse i, the change in synaptic strength, Dwi,

induced by a pair of pre- and postsynaptic action potentials with

time difference Dt~tpost{tpre is determined by

Dwi~
{½A{z~AA{ mi(t{E)� e(Dt{d)=t{ if Dtƒd

½Azz~AAz n(t{E)� e{(Dt{d)=tz if Dtwd

(
ð6Þ

The infinitesimally small parameter e ensures that the values of mi

and n before their update by the immediate pre- or postsynaptic

spikes are used.

Correlated spike trains
To study synaptic competition, half of the excitatory input spike

trains were correlated. To generate Poisson spike trains with

homogeneous pairwise (zero-lag) correlations, we used the method

developed by Kuhn et al [44]. First, a ‘‘generating’’ Poisson spike

train with rate r=c was produced. The correlated spike trains were

then obtained by thinning the generating spike train, i.e. by

randomly deleting spikes with probability 1{c. The resulting

spike trains all have rate r, with each pair having the correlation

coefficient c. To introduce a non-zero lag to the spike trains, a

random value drawn from an exponential distribution is added to

each spike time. The mean of the exponential distribution is the

correlation time constant.

Derivation of the steady-state distribution of weights
The evolution of the distribution of synaptic strengths is

described by the Fokker-Planck equation [14–16].

Lr(w,t)

Lt
~{

L
Lw

(D1(w)r(w,t))z
1

2

L2

Lw2
(D2(w)r(w,t)), ð7Þ

where D1 and D2 are drift and diffusion terms, respectively. To

derive equilibrium distributions of synaptic strengths, we need the

steady-state solution, obtained by setting the right side of equation

7 to zero. Solving the resulting ordinary differential equation for

r(w), we obtain

r(w)~
N

1

D2(w)
exp

ðv

0

dv’
2D1(w’)
D2(w’)

� �
, ð8Þ

where, N
1

is a normalization constant.

The terms D1 and D2 can be written as

D1(v)~

ð?
{?

dE ET(w,E) and D2(v)~

ð?
{?

dE E2 T(w,E): ð9Þ

Here, T(w,E) is the probability density of a synaptic modification

that changes the strength of a given synapse from w to wzE.
When the synaptic strengths are changing due to STDP, the

only relevant stochastic variable is the interval between the pre-

and postsynaptic spike pairs. If a pairing of pre- and postsynaptic

spikes occurs with interval Dt, then E~F (Dt), where F is the

STDP window function (equation 1). To simplify the notation, we

use t to denote Dt in the following equations. If the probability

density of a pairing interval t is P(t), then the transitional

probability density can be written as

T(w,E)~
P(t)

DF ’(t)D
: ð10Þ

With the transformations dE?DF ’Ddt and E?F , the terms D1 and

D2 can be re-expressed as

D1~

ð?
{?

dt P(t)F (t) and D2~

ð?
{?

dt P(t) F2(t): ð11Þ

Thus, to determine D1 and D2 in terms of the parameters of the

model, we only need to know the probability density of pairing

intervals P(t).

We approximate the spiking behavior of the integrate-and-fire

neuron by that of a linear Poisson neuron firing at the same rate

[11,15]. We first consider the case that the presynaptic spike

follows the postsynaptic spike (tv0). In this case, the timing of the

presynaptic spike has no causal effect on the postsynaptic spike

time. If we assume that both the presynaptic and postsynaptic
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spike trains are Poisson, the probability density of nearest-neighbor

pairing intervals is

P(t)~r exp (rt), ð12Þ

where r~rexz�rrpost is the sum of the excitatory presynaptic firing

rate (rex) and the steady-state postsynaptic firing rate (�rrpost). For an

integrate-and-fire neuron, the steady-state firing rate can be

approximated as

�rrpost&
Nex rex ts SwT{Nin rin ts win{0:5 (Vth{Vr)

(Vth{Vr) tm

, ð13Þ

where SwT is the mean of the excitatory synaptic strengths. Now

consider the case in which the postsynaptic spike follows a

presynaptic spike (tw0). In this case, the arrival of the presynaptic

spike increases the postsynaptic firing rate transiently. For an

integrate-and-fire neuron, the instantaneous firing rate upon

arrival of a presynaptic spike can be approximated as

rpost(t)&�rrpostz
w exp ({t=ts)

(Vth{Vr) tm
, ð14Þ

where w is the strength of the synapse at which the presynaptic

spike arrived. The second term in equation 14 accounts for the

correlation between pre- and postsynaptic spikes as calculated by

Gütig et al [11] for a linear Poisson neuron, except that we have a

synaptic time constant ts. If we assume that both the presynaptic

and postsynaptic spike trains are Poisson, the probability density of

pairing intervals is

P(t)~ rexzrpost(t)
� �

exp {

ðt

0

ds rexzrpost(s)
� �� �

: ð15Þ

If we assume that w%(Vth{Vr), we can Taylor expand equation

15 to first order in w and, together with equation 14, the

probability density of pairing intervals can be expressed as (see

figure 1C & D)

P(t)&

r exp (r t) if tƒ0

r exp ({r t)zw
ts

tm(Vth{Vr)
l exp ({l t){r exp ({r t)ð Þ if tw0,

8<
:
with

l~rz
1

ts
:

ð16Þ

Note that the second term in equation 16 for tw0 corresponds to

the causal bump in figure 1C & D. The shape of the causal bump

resembles that calculated by Cateau & Fukai [16] from the

equation for the first passage time of a noisy integrate-and-fire

neuron.

If we substitute 16 into equation 9, we obtain D1 and D2 in

terms of the parameters of the model. Because P(t) is linear in w,

D1 and D2 are also linear and can be written as

D1~awzb and D2~cwzd: ð17Þ

Assuming that d%t+, these coefficients can be written as

a~
1

tm(Vth{Vr)

Az (tztszdts)

(1zrtz )(rtstzztsztz )
{(AzzA{ )d

 !

b~Azrtz

1{dr

1zr tz

 !
{A{r t{

1zd r

1zr t{

� �

c~
1

tm(Vth{Vr)

A2
z

(2tztsz4dts)

(2zrtz )(rtstzz2tsztz )
{(A2

z
{A2

{
)d

 !

d~A2

z
rtz

1{d r

2zrtz

� �
zA2

{
rt{

1zdr

2zrt{

� �
:

ð18Þ

Finally, by inserting equations 17 into equation 8, we obtain the

steady-state distribution

r(w)~N
0

(wzm)k{1 exp {(wzm)=hð Þ ð19Þ

with

m~
d

c
, k~

2(bc{ad)

c2
and h~{

c

2a
: ð20Þ

Equation 19 is the same as equation 2 of the Results.

For the above distribution 19 to be normalizable, h and k must

be positive. Equations 20 indicate that these conditions are met if

b, c and d, as given by equations 18, are all positive and a is

negative. Provided that r is less than of order 1=d (which it always

is at steady-state), bw0 if A
z

t
z

is sufficiently greater than A
{

t
{

,

which is the condition stated in the text. Over the range we

consider, cw0 and dw0 without requiring any further conditions.

When r is greater than of order
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=dt

z

p
, which it is at steady

state, av0, so stability is achieved.

If b is positive, the mean synaptic strength is approximately

SwT~{
b

a
ð21Þ

Solving the above equation simultaneously with equation 13, gives

the steady-state firing rate of the neuron, as depicted in figure 3

(inset). Having solved for the steady-state postsynaptic firing rate

and the mean synaptic strength, the parameters of the distribution

(equation 2) are fully expressed in terms of the model parameters.
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26. Sjöström P, Turrigiano G, Nelson S (2003) Neocortical ltd via coincident

activation of presynaptic nmda and cannabinoid receptors. Neuron 39:
641–654.

27. Bender V, Bender K, Brasier D, Feldman D (2006) Two coincidence detectors
for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26:

4166.

28. Malenka R, Bear M (2004) Ltp and ltd:: An embarrassment of riches. Neuron
44: 5–21.

29. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium
gates glutamate-activated channels in mouse central neurones. Nature 307:

462–465.
30. Jahr C, Stevens C (1990) A quantitative description of nmda receptor-channel

kinetic behavior. J Neurosci 10: 1830–1837.

31. Destexhe A, Mainen Z, Sejnowski T (1994) Synthesis of models for excitable
membranes, synaptic transmission and neuromodulation using a common

kinetic formalism. J Comput Neurosci 1: 195–230.
32. Shouval H, Bear M, Cooper L (2002) A unified model of nmda receptor-

dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:

10831–10836.
33. Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and

significance of spike-timing dependent plasticity. Biol Cybern 87: 373–382.
34. Lubenov E, Siapas A (2008) Decoupling through synchrony in neuronal circuits

with propagation delays. Neuron 58: 118–131.
35. Magee J, Cook E (2000) Somatic epsp amplitude is independent of synapse

location in hippocampal pyramidal neurons. Nat Neurosci 3: 895–903.

36. Andrasfalvy B, Magee J (2001) Distance-dependent increase in ampa receptor
number in the dendrites of adult hippocampal ca1 pyramidal neurons. J Neurosci

21: 9151–9159.
37. Rumsey C, Abbott L (2004) Equalization of synaptic efficacy by activity-and

timing-dependent synaptic plasticity. J Neurophysiol 91: 2273–2280.

38. Gidon A, Segev I (2009) Spike-timing-dependent synaptic plasticity and synaptic
democracy in dendrites. J Neurophysiol 101: 3226–3234.
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