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Introduction

Importance of cis-Regulatory
Elements

The rapidly emerging field of systems

biology is helping us to understand the

molecular determinants of phenotype on a

genomic scale [1]. Cis-regulatory elements

are major sequence-based determinants of

biological processes in cells and tissues [2].

For instance, during transcriptional regu-

lation, transcription factors (TFs) bind to

very specific regions on the promoter

DNA [2,3] and recruit the basal transcrip-

tional machinery, which ultimately initi-

ates mRNA transcription (Figure 1A).

Learning cis-Regulatory Elements
from Omics Data

A vast amount of work over the past

decade has shown that omics data can be

used to learn cis-regulatory logic on a

genome-wide scale [4–6]—in particular,

by integrating sequence data with mRNA

expression profiles. The most popular

approach has been to identify over-repre-

sented motifs in promoters of genes that

are coexpressed [4,7,8]. Though widely

used, such an approach can be limiting for

a variety of reasons. First, the combinato-

rial nature of gene regulation is difficult to

explicitly model in this framework. More-

over, in many applications of this ap-

proach, expression data from multiple

conditions are necessary to obtain reliable

predictions. This can potentially limit the

use of this method to only large data sets

[9]. Although these methods can be

adapted to analyze mRNA expression

data from a pair of biological conditions,

such comparisons are often confounded by

the fact that primary and secondary

response genes are clustered together—

whereas only the primary response genes

are expected to contain the functional

motifs [10].

A set of approaches based on regression

has been developed to overcome the above

limitations [11–32]. These approaches

have their foundations in certain biophys-

ical aspects of gene regulation [26,33–35].

That is, the models are motivated by the

expected transcriptional response of genes

due to the binding of TFs to their

promoters. While such methods have

gathered popularity in the computational

domain, they remain largely obscure to

the broader biology community. The

purpose of this tutorial is to bridge this

gap. We will focus on transcriptional

regulation to introduce the concepts.

However, these techniques may be applied

to other regulatory processes. We will

consider only eukaryotes in this tutorial.

Regression Methods for
Learning the Active cis-
Regulatory Elements

What is a Regression Method?
A regression method is essentially a

curve-fitting approach. When there is one

observed variable (y-axis) and one predic-

tor variable (x-axis), regression consists of

drawing a line or a curve that best fits the

data. The challenge arises when there are

multiple candidate predictors, among

which only a selected few are relevant.

This is the case for cis-regulation, where

relatively few cis-elements are differentially

activated between two conditions while

the number of candidate elements is large

[2,5]. Regression methods provide effi-

cient ways to select this set of active

elements via a curve-fitting exercise.

How To Learn Which cis-Regulatory
Elements Are Active

Let us consider the case of a single cis-

element, a DNA word. Before we intro-

duce the regression method, let us first

proceed by dividing the genes into two

groups, according to whether a gene has

the word in its promoter or not. If under a

biological condition the expression levels

of genes in these two groups are signifi-

cantly different from each other, it implies

that the cis-element is most likely bound by

its cognate TF, which is regulating its

target genes. In other words, the cis-

element is active. However, if there is no

significant difference in expression be-

tween these two groups, then, analogously,

the cis-element is likely inactive. Further-

more, if the genes with the cis-motif have

higher expression levels on average than

those without the motif, then the TF is an

activator, and in the reverse situation an

inhibitor. The case of the MCB element, a

G1/S regulator of the yeast cell-cycle [8],

is illustrated in Figure 1B. We observe that

there is indeed a statistically significant

association between the presence of the

MCB element and mRNA expression in

the G1/S phase of the cell-cycle (p,1.0e-

16), but not in the G2/M phase (p = 0.02).

Furthermore, this analysis indicates that

the MCB element has an activating role in

the G1/S phase, as expected [8].

A regression approach is a generalized

version of the method described above.

Here, the data is not binary any more.

Instead, we plot the actual motif counts

against the mRNA levels for all genes

genome-wide (Figure 1C). To examine if

there is any association between the

occurrence of the MCB element and

mRNA expression, we fit a straight line
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through these data points. Next, we check

if the observed linear fit to the data could

be obtained by random chance. If the fit is

statistically significant, then the motif is

considered active, just as in the binary

data above, and inactive otherwise. Fur-

thermore, if the slope of the fitted line is

positive, then the element is an activator—

a high number of elements are indicative

of high expression on average, while fewer

or no copies imply low expression. For the

MCB element (Figure 1C), we notice that

the fit is significant in the G1/S phase, but

not in the G2/M phase, as expected of a

G1/S-specific element. The positive slope

of the line indicates that the MCB element

is an activator.

The best fit shown in Figure 1C leads to

a direct quantitative relation between the

logarithm of observed expression Eg and

motif count ng of any gene g [11]:

log Eg

�
EgC

� �
~azb:ng ð1Þ

where C indicates a reference condition.

The parameters a and b, the intercept and

slope of the line, respectively, are estimat-

ed from the input data via a least squares

fit. a and b are constant across all genes.

We can use Equation 1 to estimate how

much of the mRNA expression levels are

explained by this motif. We note that

expression data from one experimental

condition and one control condition are

used in this analysis.

How To Learn Multiple cis-
Regulatory Elements

Under any specific condition, multiple

cis-elements are usually active [2,36,37].

Moreover, cis-regulation has been shown

to be inherently combinatorial. Thus,

often distinct combinations of such ele-

ments regulate the genes. To learn which

specific combinations are active out of the

many possible candidate elements, the

simplest strategy is to repeat the above

curve-fitting procedure for each such

element. The elements that meet a

Figure 1. Basic Tenets of Modeling cis-Regulation Using a Regression Approach. (A) A schematic of transcriptional regulation is shown.
Motifs 1, 2, and 3 are bound by their respective TFs and thus are active, while motif 4 is not. Furthermore, TFs 1 and 2 are shown to be interacting. (B)
Box plots of the logarithm of expression ratio (Eg/EgC) of genes containing the MCB element ACGCGT (marked as .0, group 1) and genes that do not
contain the element (marked as 0, group 2) are shown for the alpha arrest experiment [8] of yeast cell-cycle. The ratio Eg/EgC is the expression of the
gene relative to its average across all time points. During 21 min (G1/S phase), there is a statistically significant difference (p,1.0e-16, t-test) in
expression level between the genes in groups 1 and 2. Average log2(Eg/EgC) of these two groups is 0.27 and 20.02, respectively. During the 35 min
(G2/M phase), there is no such association (p = 0.02, average log2(Eg/EgC) = 0.04 vs 0.01). This type of approach is elucidated in detail in [57]. (C) The
same data as in (B) is shown, except that the motif counts are no longer binary. There is a statistically significant association between the motif count
and expression during the 21 min (p = 3.3e-12 (F-test), y = 20.02+0.28x), but not during the 35 min (p = 0.006, y = 0.01+0.04x) time point. Each point
in the figure represents a gene, characterized by a count of ACGCGT in its promoter (x-axis) and log2(expression ratio) (y-axis).
doi:10.1371/journal.pcbi.1000269.g001
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significance threshold are considered to be

active. However, this simple approach

does not account for combinatorial regu-

lation. Namely, it does not specify which

particular elements act collectively to

regulate gene expression. To overcome

this limitation, we build a multivariate

model (Equation 2 below with d12 = 0).

This involves two steps: (a) feature selec-

tion, i.e., identifying which specific ele-

ments are active, and (b) model building,

i.e., specifying the regression model in-

volving these elements. These two steps

may be executed simultaneously [11].

Alternatively, one can first select the cis-

element features, and then build a regres-

sion model using these features [13]. A

representative flowchart for multivariate

modeling is shown in Figure 2. The

elements that appear in a multivariate

model are, then, hypothesized to be

functional [11,13].

An additional complexity is that func-

tional interactions among TFs are often

essential to transcriptional control [2].

This is especially true in higher organisms.

In regression models, we introduce the

interactions via a product of word counts.

This reflects the fact that a pair of

elements has a stronger effect than the

sum of the elements in the pair. The

strategy for including these terms is similar

to the methodology described above [12].

For example, to describe the three motifs

and interactions between motifs 1 and 2 in

Figure 1A, the equation would be [12]:

log Eg

�
EgC

� �
~azb1:n1gzb2:n2g

zb3:n3gzd12:n1g:n2g

ð2Þ

nig is the count of motif i for gene g. The

parameters a, b1, b2, b3, and d12 are learnt

from the data, again using a least squares

fit. d12.0 implies a synergistic interaction,

while d12,0, a competitive interaction.

How To Model Regulation by
Degenerate Motifs

cis-Regulatory elements are often not

simple words, especially in higher eukary-

otes. Instead, the cis-elements bound by a

specific TF may have small differences in

their sequences in different promoters [4–

6]. This variability, referred to as degen-

eracy of the motifs, is often represented by

a position weight matrix (PWM) [3,5].

PWMs are probabilistic representations of

cis-motifs (Figure 3).

To use PWMs in regression methods,

we would first score each promoter

sequence against each PWM. The proba-

bilities of each base at each position are

used to compute the scores. These scores

are related to the binding affinity of a TF

for the DNA sequence [3,35,38]. There

are multiple scoring schemes available

[13,18,22,33] (see also [3,35,39]), but

often the maximum score of a PWM for

each promoter is used. We then use the

same regression methods described above

to construct a model, but with PWM

scores instead of word counts. JASPAR

[40] and TRANSFAC [41,42] are among

the most popular databases of PWMs.

However, PWMs may also be generated

using de novo motif discovery tools

[4,13,43].

Nonlinear models. Although one

can use linear methods with PWM scores

[13], such methods are not ideal since the

relation between motif scores and gene

expression is not always linear.

Furthermore, previous studies indicate

that linear methods may not be optimal

for modeling degenerate motifs when

interactions are included [11]. This is a

significant limitation since interactions

among degenerate motifs are pervasive in

mammalian transcriptional regulation

[2,5]. Instead, based on biophysical

models, we expect the transcriptional

response to be sigmoidal [44,45]

(Figure 4A). To account for such

complexities, nonlinear methods have

been developed. We model the

expression ratios in terms of sums of

sigmoidal functions of PWM scores

[28,31], or, alternatively, their variants,

linear splines [15,22]. Linear splines are

related to sigmoidal functions by a

logarithmic transformation (Figure 4B).

They allow more efficient modeling

when data is sparse since they require

fewer parameters, while sigmoidal

Figure 2. A Flow Chart for Modeling Combinatorial cis-Regulation Using Regression
Methods. The steps are shown for constructing a model with linear functions; however, with
some small modifications, they are applicable to nonlinear functions as well. Pmotif indicates the p-
value of the association of the best motif with mRNA expression. Pmotif.p0 is one possible
termination condition. Other alternative strategies can also be used instead. In this example,
feature selection and model building are done simultaneously.
doi:10.1371/journal.pcbi.1000269.g002

Figure 3. Position Weight Matrix (PWM)
Logo for E2F-1. The sequence logo for the
PWM of E2F-1, a key transcription factor for
regulating the mammalian cell-cycle, is shown
(http://jaspar.genereg.net/). The figure shows
the bases that may occur at each position of
this 8-nucleotide long motif. The height of
each base quantifies the bits of information
content, which is related to the probability of
its occurrence at that position [3]. For
example, there is a 100% chance of observing
a T at position 1, while at position 8, a 90%
chance of observing a C, and a 10% of G.
doi:10.1371/journal.pcbi.1000269.g003
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functions yield a more accurate model

when sufficient data is available. The

modeling procedure is similar to

multivariate linear regression (see above).

For the example shown in Figure 4C, we

obtain an equation of the form:

log Eg

�
EgC

� �
~azb1:f s1g

� �
zb2:f

s2g

� �
zb3:f s3g

� �
zd12:f s1g

� �
:f s2g

� � ð3Þ

Here, s denotes the PWM score. f sð Þ is a

linear spline function or a sigmoidal

function in s. Because of the increased

number of fitting parameters, these more

complex models require that we control

for overfitting of the data. Although the

implementation details are beyond the

scope of this tutorial, they involve various

forms of cross-validation (see the refer-

ences in Table 1). These overfitting effects

can also be significant in multivariate

linear models with interactions. Because

PWM scores are related to binding

affinities, and sigmoidal functions model

the essential biophysics of transcriptional

regulation, these nonlinear approaches

have strong biophysical underpinnings

[26,33,34,46].

How To Identify Target Genes
In a regression method, the input is a

candidate motif. Thus, once we have

identified the active motif, we have an

additional task of determining which genes

are targets of the cognate TF. Thus, in

contrast to coexpression-based approaches

where we assume that groups of co-

expressed genes are co-regulated, co-

regulation of genes is inferred in this

approach a posteriori in regression meth-

ods. In the case of DNA words, it may

seem that all promoters containing an

instance of the word will always be bound

by its partner TF. However, such a word

may represent only the core of the motif.

Thus, to discriminate the true targets,

additional sequence information flanking

the core motif may be essential [17,32].

The challenge with the PWM scores is

that they are generally continuous and

nonzero (on a scale from zero to one, zero

indicating that the motif is absent). Thus,

most promoters often contain a low-

scoring instance of each PWM. This is

especially true for motifs of high degener-

acy, as in humans [5]. Nonlinear regres-

Figure 4. Nonlinear Regression Models of cis-Regulation. (A) mRNA expression (Eg) as a function of TF binding free energy often has a
sigmoidal pattern. There is an activation threshold, below which the transcriptional response is flat. Above the threshold, it grows exponentially, and
finally saturates. For an inhibitory pattern, the curve is inverted along the y-axis. PWM scores are proportional to the binding free energies. (B) A
logarithmic transformation of the sigmoidal function leads to a sum of linear splines. Each linear spline function has the shape of a hockey stick: It is
zero below (or above) a threshold, called knot, and rises linearly above (or below) it. The smoothness of the transition from the flat part to the
exponential part of the curve is not modeled in linear splines. A linear model is realized if the activation threshold is ignored, i.e., the sigmoidal
function is replaced by an exponential function in (A). In a linear spline approach, the target determination threshold is set to the knot [22] or the
gene activation threshold. While for the sigmoidal function, the threshold is typically set by the point at which the curve reaches half its maximal
value [28]. (C) A model comprising linear splines for three functional motifs and one interacting motif pair is shown.
doi:10.1371/journal.pcbi.1000269.g004
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sion methods provide a straightforward

solution to select which instances of the

motifs are active, since they allow one to

define a cutoff threshold [22,28] for each

motif—promoters scoring above the

threshold are then the targets, while those

below are not (Figure 4B). There are

alternative strategies to target determina-

tion, which are either more complex

[23,24,31] or require information from

ChIP-chip data [16,25].

How To Assess the Statistical
Significance of the Fit

A popular metric to assess the quality of

a regression model is how much of the

variation in the expression data it can

explain. This is parameterized as R2,

sometimes referred to as the percent

reduction in variance [11]:

R2~100|
Voriginal{Vresidual

Voriginal

ð4Þ

where Voriginal is the variance in the input

expression data, and Vresidual is the variance

of the differences between the input

expression data and the fitted model.

Vresidual represents the unexplained part of

the variation in expression data. R2 is

directly related to the F-statistic [47],

which is often used to evaluate the

significance of the fit.

Validity of the Premises
A large number of studies have shown

that the motifs identified by regression

methods are indeed functional motifs. The

organisms where these methods have been

applied include yeast [11–13,15–

18,20,21,23,25,28–30,32,48], C. Elegans

[32], Drosophila [14,31], and human

[22,30]. Some of this work has been

previously reviewed [26,34,49], and we

refer to these publications for details.

Which Kinds of Problems Can These
Methods Be Applied to?

In this tutorial, we have focused on

transcriptional regulation. However, re-

gression methods may also be applied to

other stages of gene regulation that are

mediated by cis-elements. Regression ap-

proaches have been used to model chro-

matin remodeling [28], 39 UTR mediated

mRNA stability [50], and the regulation of

alternative splicing of pre-mRNAs[27].

These methods can also be applied to

DNA binding data, such as those gener-

ated by ChIP-chip [16,51], DamID [14],

or PBM [21,52] experiments. In these

cases, the binding ratios from TF binding

profiles may be used in place of either

expression ratios or motif scores, depend-

ing on the application.

Available Software Based on
Regression Methods

We have summarized the currently

available software based on regression

along with their key features in Table 1.

The basic aspects of a regression method

can be easily implemented in R or

MATLAB.

Conclusion

In this tutorial, we have described the

basic aspects of regression methods. These

are complementary to alternative ap-

proaches for motif discovery, such as

comparative genomics [53–55] or motif

over-representation methods [4,56]. In

particular, regression methods are optimal

Table 1. Regression Tools for cis-Regulatory Element Identification Currently Reported in the Literature.

Software/Publication Reference Linear or Nonlinear?

Degenerate or
Nondegenerate
Motifs?

Identifies
Target Genes? Web Site for Download

REDUCE [11] Linear Nondegenerate N http://bussemaker.bio.columbia.edu:8080/
reduce/

MODEM [17] Linear Weakly degenerate Y http://wanglab.ucsd.edu/

Pham et al.* [28] Nonlinear (sigmoidal) — Y NA

MARSMotif [15] Nonlinear (MARS) Nondegenerate or
weakly degenerate

N http://rulai.cshl.edu/licensing/index1.htm

MARSMotif-M [22] Nonlinear (Linear spline/ MARS) Degenerate Y http://rulai.cshl.edu/licensing/index1.htm

MotifRegressor [13] Linear Degenerate N http://www.math.umass.edu/,conlon/mr.
html

Keles et al. [12] Linear Nondegenerate N Available upon request

Motif Expression
Decomposition (MED)

[23] Nonlinear Degenerate Y NA

Inferelator* [24] Nonlinear (LARS/LASSO) — Y http://err.bio.nyu.edu/inferelator/

RSIR [18] Nonlinear (SIR) Degenerate N Available upon request

MatrixREDUCE [21] Linear Degenerate N http://bussemaker.bio.columbia.edu/
software/MatrixREDUCE/

TRANSMODIS [32] Linear Degenerate Y http://haedi.ucsd.edu/

Segal et al. [31] Nonlinear (sigmoidal) Degenerate Y NA

Prego [25] Nonparametric Degenerate Y http://uqbar.rockefeller.edu/,atanay/prego/

MA-Networker* [16] Linear — Y http://bussemaker.bio.columbia.edu/tools/

fREDUCE [30] Linear Degenerate N http://genome3.ucsf.edu:8080/freduce/

SCAD [29] Nonlinear Degenerate N NA

*The tools marked with an asterisk were not originally used with cis-regulatory motifs as input, but can be easily adapted for this purpose.
NA indicates not available (we did not find this reported in the original paper or via Web search).
doi:10.1371/journal.pcbi.1000269.t001
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for evaluating the activity of cis-elements

among a set of candidate elements. They

are better suited for modeling combinato-

rial regulation and nonlinear responses

and are more closely tied to the biophys-

ical models of transcriptional regulation.

With some modifications, regression meth-

ods can also be adapted for de novo motif

discovery [21,25,50]. Finally, although

most regression methods are used to

model the observed changes in gene

expression between a pair of conditions,

recently this methodology has been ex-

tended to include information from mul-

tiple conditions as well [29].
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Note Added in Proof
During the preparation of this manuscript, a

new regression approach based on the Fast

Orthogonal Search (FOS) method [58] was

published to identify active cis-regulatory ele-

ments. As new algorithms get published, we will

continue to maintain an updated version of

Table 1 on our Web site http://vision.lbl.gov/

People/ddas/RegressionPrimer/.
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