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Abstract

Identifying the source of transmission using pathogen genetic data is complicated by numerous biological, immunological,
and behavioral factors. A large source of error arises when there is incomplete or sparse sampling of cases. Unsampled cases
may act as either a common source of infection or as an intermediary in a transmission chain for hosts infected with
genetically similar pathogens. It is difficult to quantify the probability of common source or intermediate transmission
events, which has made it difficult to develop statistical tests to either confirm or deny putative transmission pairs with
genetic data. We present a method to incorporate additional information about an infectious disease epidemic, such as
incidence and prevalence of infection over time, to inform estimates of the probability that one sampled host is the direct
source of infection of another host in a pathogen gene genealogy. These methods enable forensic applications, such as
source-case attribution, for infectious disease epidemics with incomplete sampling, which is usually the case for high-
morbidity community-acquired pathogens like HIV, Influenza and Dengue virus. These methods also enable epidemiological
applications such as the identification of factors that increase the risk of transmission. We demonstrate these methods in the
context of the HIV epidemic in Detroit, Michigan, and we evaluate the suitability of current sequence databases for forensic
and epidemiological investigations. We find that currently available sequences collected for drug resistance testing of HIV
are unlikely to be useful in most forensic investigations, but are useful for identifying transmission risk factors.
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Introduction

Phylogenetic trees reconstructed from sequences of pathogens

contain information on the past transmission dynamics that would

be difficult, if not impossible, to obtain through other means. Over

the past two decades, a number of approaches have been proposed

to extract epidemiologically relevant information from viral

phylogenies, particularly from highly variable RNA viruses such

as HIV-1, hepatitis C virus, and influenza A virus [1]. With the

advent of high-throughput sequencing, these approaches can also

be applied to help understand bacterial spread [2].

Although many studies have focused on the ‘phylodynamics’

[3,4] of infectious disease transmission at the population level,

there have been a number of studies that have focused more on

the ability of molecular sequence data to inform transmission at

the level of pairs or small groups of individuals. Molecular

epidemiological analysis of couples with discordant HIV status

have demonstrated that infection of the initially uninfected partner

may often be from a third party [5]. Sequence data have also been

used in a forensic setting [6,7], most famously in the Florida dentist

case [8]. Identifying the source of infection from genetic data is

known to be confounded by many sources of error. The similarity

of pathogen sequence data collected from a transmission pair

depends, among other factors, on the time since transmission,

immunological pressure on the pathogen, the substitution rate of

the pathogen within host, and how the substitution rate changes

over time within hosts. Provided a realistic model of how pathogen

sequences diverge over time, it is possible to calculate the

probability that the consensus sequence in a recipient of infection

diverged in a given span of time from a putative source of infection

[9–11].

Recently, there has been rapid development of methods to

identify transmission sources under the assumption of complete

sampling, i.e. under the assumption that every infected individual

is represented in the phylogeny. These methods have yielded

many valuable insights into the spread of nosocomial infections

[12], Mycobacterium tuberculosis [13], foot-and-mouth disease

virus, and avian influenza between farms [14]. Nevertheless, for

many human pathogens, incomplete sampling is the rule. In the

case of HIV, sequencing of the pol gene is now routine in many

countries for surveillance of drug resistance, but even so, sample

coverage is far from complete.

Figure 1 illustrates errors that can be introduced by incomplete

sampling. For example, it is possible that two hosts with genetically

similar virus were both infected by a common source who was not

sampled. Therefore, calculation of the probability that i infected j

should account for the possibility that an unobserved individual k
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infected both i and j (second panel). Similarly, it is possible that i

infected an unsampled individual k who went on to infect j. Due to

the uncertainty stemming from incomplete sampling, viral

sequence data have often been used as a test to disconfirm a

putative transmission pair. For example, in the context of HIV, a

phylogeny estimated from a pair of sequences in a putative

transmission pair, along with a set of sequences from a suitable

background population (e.g. infected individuals with a matching

geographic and risk-behavior profile), can be used to detect if the

putative donor is relatively distant in evolutionary terms from the

recipient [15]. If the putative donor is not monophyletic with the

recipient, it is less likely that the putative donor is the true source of

infection. However, even if the donor and recipient sequences are

not monophyletic, there are scenarios where the putative

transmission pair is genuine. For example, it is possible that the

putative donor is a common source of infection for all sampled

cases in the donor-recipient clade. This is illustrated in Figure 1, in

which donor i infects both j and k, yielding a polyphylous

relationship between i and j. As it is impossible to rule out the

possibility that an unsampled individual or unobserved chain of

transmissions connects a putative donor and recipient, it has been

impossible to properly define the statistical power of tests for

confirming or disconfirming transmission pairs from phylogenetic

data.

Due to the problems involved in incomplete sampling, relatively

little work has been performed to identify potential sources of

infection - i.e. understanding transmission at an individual level -

using population-level datasets collected for clinical or surveillance

purposes. A notable exception is a study of HIV-positive men who

have sex with men (MSM) in Brighton, UK [16], which, through a

combination of diagnosis times and sequence data, attempted to

identify the source of transmission for 159 cases of recent HIV

infection. A single most likely transmission source was inferred in

only 41 (26%) cases, and the potential for a transmission source

outside of the study population was not quantified. Nevertheless,

biologically plausible associations between younger age, higher

viral load, recent HIV infection, and a recent sexually transmitted

infection were found with the probability of being identified as a

source of infection.

In the case of incomplete sampling, calculating the probability

that a putative transmission pair is real is equivalent to calculating

the probability that there are zero unsampled intermediaries

between the pair in the viral phylogeny. Calculating this

probability is complex, but possible, provided a realistic model

of the epidemic process and given good data about incidence and

prevalence of infection. This paper is concerned with calculating

the probability, henceforth called the infector probability, that a given

host is the source of infection for another host from phylogenetic

and epidemiological surveillance data. The main contribution of

this manuscript is the development of a theoretical framework

which realistically accounts for the epidemiological and sampling

process, thereby correcting for error due to incomplete sampling.

This theory also allows for the possibility that the infected

population is heterogeneous, such that some individuals have a

higher intrinsic infectiousness than others. This is accomplished by

the incorporation of patient-level covariates (behavior, stage of

infection etc.) into the calculation of infector probabilities.

To demonstrate the utility of infector probabilities to the

analysis of real epidemic data, we have simulated a dataset based

on the real HIV epidemic among MSM in Detroit, Michigan.

Through a simulation-based analysis, we use our solution of the

infector probabilities to address the following questions:

N Is it possible to infer transmission events from HIV

phylogenetic data with high accuracy?

N Are widely available HIV sequence data collected for drug

resistance testing useful for forensic investigations of who

infected whom?

Figure 1. Four transmission trees between hosts i, j and k are shown (center) that are consistent with the pathogen gene genealogy
(left). If the host k is not sampled, the resulting gene genealogy is shown at right. Transmission trees where i directly interacts with j are highlighted.
The unsampled unit k may act as either a common source of infection for i and j or a an intermediate infection between i and j.
doi:10.1371/journal.pcbi.1003397.g001

Author Summary

Molecular data from pathogens may be useful for
identifying the source of infection and identifying pairs
of individuals such that one host transmitted to the other.
Inference of who acquired infection from whom is
confounded by incomplete sampling, and given genetic
data only, it is not possible to infer the direction of
transmission in a transmission pair. Given additional
information about an infectious disease epidemic, such
as incidence of infection over time, and the proportion of
hosts sampled, it is possible to correct for biases stemming
from incomplete sampling of the infected host population.
It may even be possible to infer the direction of
transmission within a transmission pair if additional
clinical, behavioral, and demographic covariates of the
infected hosts are available. We consider the problem of
identifying the source of infection using HIV sequence
data collected for clinical purposes. We find that it is rarely
possible to infer transmission pairs with high credibility,
but such data may nevertheless be useful for epidemio-
logical investigations and identifying risk factors for
transmission.

Inferring the Source of Transmission
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N Are estimated infector probabilities useful for epidemiological

investigations? Can our methods detect increased transmission

rates during early/acute HIV infection (EHI) or other

variables that determine heterogeneity in transmission rates?

Materials and Methods

This section is focused on the derivation of a n6n matrix of

infector probabilities W (T ,M,X ) (equation 17) which is a

function of

N T , a binary genealogy with branch lengths in units of calendar

time, and

N M~(F (t),G(t),Y (t)), a process model which provides a

timeseries of incidence (F), state transitions (G) and prevalence

(Y), and

N X, a n{vector that describes the state of each sample unit.

Our solutions employ a population genetic model that assumes

that the population size is large, so the model may be biased for

very small epidemics or outbreaks. In reality, all of the inputs into

our solution of W would need to be estimated from real data,

which increases uncertainty when identifying transmission pairs.

The process model may optionally describe the dynamics of a

structured population (a compartmental model), such that each

infected individual occupies one of m discrete categories. In this

situation, Y(t) is a m{vector valued function of time, and F(t) and

G(t) are m6m-matrix valued functions of time. In structured

models, Xi will denote the state (1 � � �m) of each sample unit at the

time of sampling. Almost all continuous-time compartmental

infectious disease models with a discrete state space can be

decomposed into the (F ,G,Y ) processes [17]. An explicit example

of such a decomposition for a realistic HIV model is provided in

the Materials and Methods.

Our approach makes use of coalescent theory, which is based on

the retrospective modelling of gene tree structure [18]. The state of

the tree will be described at a retrospective time s, which proceeds

from the present to the past. Solving for the state of the tree is

accomplished by conditioning on the state of the tree at the tips

and working backwards towards the root. An approximation made

by the coalesecent model is that the population size Y (t) is large,

such that the states of lineages in the tree can be assumed to be

independent [17]. We assume that hosts i and j are randomly

sampled, or sampling may be stratified according to a categorical

variable. We assume that the the phylogeny is reconstructed from

a set of sequences that are one-to-one with the set of hosts, i.e. each

host is sampled exactly once and has one corresponding pathogen

sequence in the phylogeny. Additionally, we will assume that the

time of sampling is known for each host, that branch lengths in the

phylogeny are proportional to calendar time, and that the tree is

bifurcating i.e. that there are no polytomies. For a sample of n

hosts, our goal is to arrive at an n6n matrix which gives the

probability that a host in the i’th row transmitted to a host in the

j’th column. We also employ the same population-genetic

assumptions as employed in [17]: 1. Every node in the tree

corresponds to a transmission from an infected host to a

susceptible host. 2. Each lineage at a single time point corresponds

to a single infected host. The first condition is appropriate if viral

lineages coalesce very rapidly within hosts relative to their rate of

dispersal between hosts. The second condition is appropriate if

dual infection is rare (hosts can be infected with at most one

lineage at a time). Simulation studies have examined the suitability

of these assumptions for HIV [19]. Note that the second condition

does not preclude a lineage from passing through multiple

unsampled hosts. If sampling is heterochronous (samples occur

at multiple time points), we invoke a third assumption: If a lineage

is sampled, it does not have descendents which are also sampled. If

sampling of direct descendents is allowed, condition (1) would be

violated, since a node in the genealogy would correspond to the

time of sampling of the ancestral lineage, not a transmission event.

Infector probabilities in a homogenous population at
endemic equilibrium

To give intuition for the method, we first illustrate a simple

example of an epidemic within a homogeneous population. The

variable s will denote time on a reverse axis (time before the last

sample is taken), while t will represent time on a forward axis (time

since some point in the past).

We calculate the probability that host i infected host j under the

conditions that sampling occurs at a single timepoint, and that

there is a single type of infected host. We assume that i and j form a

‘cherry’ (a clade of size 2), and that both the population and

sample sizes are sufficiently large such that we can approximate

the dynamics of the number of infected individuals in the

population, Y (s), and the number of lineages in the sample,

A(s), using differential equations. At time s~0, we have A(0)
lineages equal to the number of hosts sampled. All of these

assumptions will be relaxed in subsequent sections.

What is the probability that i transmitted to j at their most

recent common ancestor, which occurs at time sij? A necessary

condition for this to occur is that the viral lineage at sij corresponds

to virus circulating in host i. This condition will not be satisfied if

an unsampled individual k transmits to i before (retrospectively) sij ,

in which case sij will correspond to a transmission event involving

k. The rate at which an unsampled host k infects i at time s, i(s) is

i(s)~f (s)
1

Y (s)

Y (s){A(s)

Y (s)

~f (s)
Y (s){A(s)

Y (s)2
:

ð1Þ

This can be understood as the product of a rate and two

probabilities:

N f is the rate of new infections in the population.

N 1
Y

is the probability that i is infected given that a transmission

occurs. This is a consequence of the homogeneity assumption,

so that every individual has equal chance of being the recipient

of a new infection.

N Y{A
Y

is the proportion of infected individuals that do not

correspond to lineages within the tree. This is also the

probability that the host that transmits infection is not

represented by a lineage in the tree.

When an unsampled individual k transmits to i, the viral lineage

‘‘jumps’’ to k (recalling that we are considering time from the

present to the past). We can therefore count the number of unique

infected individuals along the branch that begins at i and

terminates at sij . We will denote this random variable xij , which

is given by the following expression:

xij*1zPoisson(

ðsij

si

i(s)ds): ð2Þ

Note that one is added to account for the host i itself. We can also

calculate the probability of there being no jumps.

Inferring the Source of Transmission
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yi(sij)~P(xij~1)~e
{
Ð sij

si
i(s)ds

: ð3Þ

For i to transmit to j, we must have xij~1 and xji~1. This occurs

with probability yi(sij)|yj(sij). Finally, as infected individuals are

homogeneous and sampled at the same time, the probability that i

transmits to j as opposed to j transmitting to i is 1/2. Hence, the

probability that i infected j at time sij is

Wij~
yi(sij)yj(sij)

2

~e
{2
Ð sij

si
i(s)sds

=2,

ð4Þ

where W denotes the matrix of infector probabilities.

To demonstrate how sampling plays a central role in

determining the extent to which cherries represent direct

transmissions, we will consider a large sample size, such that we

can model the number of cherries as well as the number of cherries

that correspond to direct transmissions as ordinary differential

equations. Previously [20], we have shown that the cumulative

number of cherries in a tree at height s, C(s) can be written in

terms of the rate of coalescence between the leaves of a tree. Let

L(s) be the number of extant terminal branches of the tree at

retrospective time s (that is, uncoalesced lineages). We have

d

ds
L(s)~{2f (s)

L(s)

Y (s)

A(s)

Y (s)
,

d

ds
C(s)~f (s)

L(s)

Y (s)

� �2

:

ð5Þ

These equations may be understood as the product of a rate (f (s))
and two probabilities which describe the combination of two

lineages at a coalescent event. For example, with probability L=Y ,

a terminal branch will be involved in a transmission event, and

with probability A=Y an ancestral lineage will also be involved in

the transmission event such that a coalescent will occur. With

probability (L=Y )2, two terminal branches will be involved in a

transmission event, and a cherry will form. The total number of

cherries in a tree can be calculated by solving for C(s) at sTMRCA,

the time of the most recent common ancestor of the sampled

sequences.

To determine the number of cherries that represent direct

transmission, C�(s), we first derive an equation for the number of

leaves of a tree along which no transmissions from an unsampled

individual have occurred, L�(s), which decreases as a consequence

of transmission from others in the sample (as for L(s)) as well as

transmission from unsampled individuals:

d

ds
L�(s)~{2f (s)

L�(s)

Y (s)

A(s)

Y (s)
{i(s)L�(s),

d

ds
C�(s)~f (s)

L�(s)

Y (s)

� �2

:

ð6Þ

These equations are derived as above, but include an additional

hazard i(s) for an unsampled host transmitting to one of the L�

external lineages.

Some analytical insights into how different parameters affect the

proportion of cherries that are associated with direct transmission

can be obtained under the assumption that the number of infected

hosts, Y, and the incidence of infection, f, are constant, i.e. when

the system is at equilibrium, and we drop the time index for these

variables. If we define the constant k~f =Y 2, then following [20],

the number of lineages over time A(s)~(1=A(0)zks){1, which is

a deterministic approximation to the rate of coalescence in a

coalescent model of fixed size, and the time to the most recent

common ancestor sTMRCA~(A(0){1)=(kA(0)), which is obtained

by the solution of A(sTMRCA)~1. We substitute this expression for

A(s) and i~f (Y{A)=Y 2~k(Y{A) into the equation for
d
ds

L�(s) to give the following.

d

ds
L�(s)~{2f

L�(s)

Y

A(s)

Y
{i(s)L�(s)

~L�(s) {2kA(s){k(Y{A(s))ð Þ

~{kL�(s) A(s)zYð Þ

~{kL�(s)
1

1=A(0)zks
zY

� �
ð7Þ

This can be solved using separation of variables, with the

constant of integration calculating by the initial condition

L�(0)~A(0).

ð
1

L�(s)
dL�~{k

ð
1

1=A(0)zks
ds{k

ð
Yds

log(L�(s))~{log(1=A(0)zks){kYszconstant

L�(s)~A(0)
e{kYs

kA(0)sz1

ð8Þ

Substituting this solution of L�(s) into the differential equation

for d
ds

C�(s) gives the following.

d

ds
C�(s)~f

L�(s)

Y

� �2

~kL�(s)2

~kA(0)2 e{2kYs

(kA(0)sz1)2

ð9Þ

Solving the above for C�(s) is made more simple using

integration by substitution with u~kA(0)sz1 (i.e. changing the

timescale), such that s~(u{1)=(kA(0)), and ds~1=(kA(0))du.

d

du
C�(u)~kA(0)2 e{2kYs

(kA(0)sz1)2

ds

du

~A(0)e2Y=A(0) e{(2Y=A(0))u

u2

ð10Þ

The solution for C�(sT MRCA), the total number of cherries

that represent direct transmission, is found by integrating from

u~kA(0)|0z1~1 to

u~kA(0)|(A(0){1)=(kA(0))z1~A(0) (for kw0,A(0)w1).

The term A(0)e2Y=A(0) is a constant, and integration of

e{(2Y=A(0))u=u2 results in an exponential integral term,

E2(x)~xC({1,x), where C(y,x) is the upper incomplete gamma

Inferring the Source of Transmission
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function.

C�(sTMRCA)~(A(0)E2(
2Y

A0
){E2(2Y ))e2Y=A(0)

&A(0)E2(
2Y

A(0)
)e2Y=A(0):

ð11Þ

The approximation is for large Y, such that E2(2Y )&0.

Similarly, at equilibrium we can substitute k~f =Y 2 and

A(s)~(1=A(0)zks){1 into equation 3, which yields

y(s)~ efs=Y

A(0)ksz1
. If we know the height of the cherry, sij , then at

equilibrium, the probability that i and j are a transmission pair is

approximately

y2(sij)~e
2fsij=Y

A(0)ksijz1
� �{2

: ð12Þ

These results demonstrate that at equilibrium, the fraction of

sequences in cherries is independent of sampling fraction

(C(sTMRCA)=A(0)&0:33), while the proportion of sequences in

cherries that represent a direct transmission is a function of the

ratio of the number of infected in the population to the number of

infected in the sample. Note that even when A(0)~Y , i.e. all

individuals have been sampled, not all cherries represent direct

transmissions (C�(sTMRCA)=A(0)&0:28v0:33). In addition, for

more realistic sample fractions, the number of cherries that

represent direct transmissions is extremely low; for example, if

A(0)=Y~10%, then C�(sTMRCA)=A(0)&0:05.

The very simple expressions in equation 4 and 12 are obtained

after applying numerous simplifying assumptions: i and j are

sampled at the same time, i and j are monophyletic, and the

epidemic is at equilibrium (Y and f are constant). In the next

section, we proceed to relax all of these assumptions. Nevertheless,

equation 4 may be a good approximation in some situations when

sij is close to the time of sampling and if incidence and prevalence

is relatively constant between sij and the time of sampling.

General framework for derivation of infector probabilities
The solutions described below are applicable to a large class of

infectious disease process models which describe the incidence and

prevalence of infection over time. The host population is not

assumed to be homogeneous, but can have arbitrary discrete

structure. Each infected host can occupy any of m states (a

compartmental model), and an infected host cannot transmit to

more than one susceptible at a single point in time.

The discrete states that a host may occupy will be indexed by

variables k and l. Under these conditions, the model can be

decomposed into the following processes (see [17] for details):

N Y (t): m{vector valued function of time which describes the

number of infected hosts at time t.

N F (t): m|m{matrix valued function of time which describes

the rate of transmission from each state to each other state.

Fkl(t) describes the rate that all infected hosts in state k

generate new infections in state l. This does not imply that the

transmitting individuals move to state l; transmission may

occur across categories, for example, men infecting women.

This will also be called the birth matrix.

N G(t): m|m{matrix valued function of time which describes

the rate of transition from each state to each other state.

Several examples of processes that would be included in G are:

progression through discrete stages of infection, diagnosis,

discrete changes in risk behavior, and geographical migration.

This will be called the migration matrix.

The process model will be denoted by the tuple M~(F ,G,Y ).
An explicit example of decomposition of a model into (F ,G,Y ) is

given for an HIV model below.

In [17], master-equations were developed for computing many

attributes of T conditional on M, such as the likelihood. This

approach can, for example, be used to fit models to phylogenetic

data. A similar approach is taken here, and we will re-use notation

where possible. The primary aim is to derive Wij , the probability

that a host i directly transmitted infection to host j based on

phylogenetic data (T ). The master equations will describe the

dynamics on a reverse time axis. In common with other coalescent

models, our solutions will work by integration from the present to

the past along the reverse time axis s. The variables ti and si will

denote the times of sampling of host i, and the initial conditions

will be based on the states of hosts at these times.

The coalescent model described here is complex, so a visual aid

is provided in Figure 2. A useful way to conceptualize the

organization of this model is to visualize every branch in T as

having a set of dynamic variables associated with it for every tip of

the tree descended from it. Every node will have associated with it

the probabilities Wij for every pair of sampled hosts (i,j)

descended from it.

At some point in the past, every sampled host i has an ancestral

host; in other words, the ancestral host harbors virus which is

ancestral to the virus that is sampled from host i at ti. We will

denote the ancestral host of i as ai(s). Note that we may have

ai(s)~i if i became infected at a retrospective time s’ws, in which

case the ancestral branch of i in T at time s corresponds to the host

i itself. The variable yi(s) will denote the probability of this event.

sij will denote the time of most recent common ancestry for virus

sampled from hosts i and j. pik(s) will denote the probability that

ai(s) is in state k. The master equations describing evolution of

pik(s) were derived in [17]. Here, we introduce a similar variable

rik(s), which is the probability that ai(s) is in state k conditional on

ai(s)~i.

Derivations of d
ds

rik(s) and d
ds

yi(s) are provided in subsequent

sections. Here, we show how Wij is calculated when rik(s) and

yi(s) are known.

Consider the node in T corresponding to the MRCA of i and j

at time sij . In order for i to transmit to j, we must have ai(sij)~i

and aj(sij)~j, i.e. both daughter lineages of the node correspond

to hosts i and j. The probability of this event is yi(sij)yj(sij), since

Figure 2. A schematic of a gene tree with variables of the
coalescent model corresponding to tips, branches, and nodes
of the tree.
doi:10.1371/journal.pcbi.1003397.g002

Inferring the Source of Transmission
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events are assumed to be independent. That is a good

approximation when Y is large. At sij , the states of host i and j

are described by the vectors ri: and rj:.

Suppose that at sij a type k host transmits to a type l host,

which occurs at rate Fkl(sij). The probability that host i is the

transmitter conditional on ai(sij)~i is rik(sij)=Yk(sij), i.e. the

probability that i is selected from the Yk(sij) infections of type k

and the probability that i is type k. Similarly, the probability that

j is the recipient of infection conditional on aj(sij)~j is

rjl(sij)=Yl(sij), i.e. the probability that j is selected from Yl(sij)

infections of type l and the probability that j is type l.

Considering all possible types of transmission k and l, the rate

that i transmits to j is as follows.

Rate(i?jDai(sij)~i&aj(sij)~j)~
Xm

k

Xm

l

Fkl(sij)
rik(sij)

Yk(sij)

rjl(sij)

Yl(sij)
:ð13Þ

This can be written with greater economy using matrix

notation.

Rate(i?jDai(sij)~i&aj(sij)~j)~xT
i (sij)F (sij)xj(sij), ð14Þ

where xi(s) is an m{vector with elements rik(s)=Yk(s).
Similarly, the rate that j transmits to i is as follows.

Rate(j?iDai(sij)~i&aj(sij)~j)~xT
j (sij)F (sij)xi(sij): ð15Þ

If both daughter lines correspond to i and j, a transmission must

have taken place between them. The probability Wij is obtained

by taking the ratio of the rate that i transmits to j to the rate that

transmission occurs in either direction.

Wij~P(ai(sij)~i&aj(sij)~j)|

Rate(i?jDai(sij)~i&aj(sij)~j)

Rate(i?jDai(sij)~i&aj(sij)~j)zRate(j?iDai(sij)~i&aj(sij)~j)

ð16Þ

~yi(sij)yj(sij)
xT

i (sij)F (sij)xj(sij)

xT
i (sij)F (sij)xj(sij)zxT

j (sij)F(sij)xi(sij)
: ð17Þ

Derivations of master equations for y and r
The function pik(s) describes the probability that the ancestral

host of the sampled host i is in state k at retrospective time s.

Equations for the dynamics of pik(s) are derived in [17]. Here, we

derive similar equations for rik(s), which describes the probability

that the ancestral host of i is type k at time s conditional on i being

the ancestral host; in other words, the branch in T that is ancestral

to i at time s corresponds to the host i itself (ai(s)~i). It is assumed

that at each time of sampling si we know the state of i; this

information provides the initial conditions for the set of equations

that describes the dynamics of rik(s).

Suppose that at retrospective time swsi, ai(s)~i and i is in state

k. In a small time step h, approximately Glk(s)h infected hosts will

migrate from state l to state k. Then retrospectively, the probability

that host i will change state from k to l is approximately

hGlk(s)=Yk, where the factor of 1=Yk(s) is the probability of

selecting i if drawing a single individual from Yk(s) infected hosts.

Considering the limit h?0, this leads to the following equations.

d

ds
rik(s)~

X
l=k

{Glk(s)
rik(s)

Yk(s)
zGkl(s)

ril(s)

Yl(s)
: ð18Þ

In matrix notation, the derivative of the vector ri: can be

expressed as

d

ds
ri:~ri:B, ð19Þ

where B is a m6m matrix with elements:

Bkl~Glk=Yk if k=l,

Bkk~{
X
l=k

Bkl :
ð20Þ

Suppose that at a time swsi, there is a node in T at the

branch that is ancestral to i. At a node, rik undergoes a

discrete change as we incorporate information about the state

of the other daughter branch at the node. Let ri: and pj:

represent the two state vectors for two daughter branches of

the node at the MRCA of i and j, which occurs at retrospective

time sij . Note that we will use the state vector pj: for the

ancestral host of j, since we are not conditioning on the event

that j corresponds to a daughter branch at sij . Under the

assumptions of this model, a transmission event occurs at this

node, either from ai(sij) to aj(sij) or vice versa. The discrete

change at sij will occur after an infinitesimal time e. In order

for the event ai(sijze)~i to occur, i must be the transmitter at

the node. Hence, the probability rik(sijze) is simply the

probability that the transmission is made by a type k

conditional on i being the transmitter. This is

rik(sijze)~

rik
Yk

P
l Fkl

pjl
YlP

k0
P

l Fk0 l
r

ik0
Yk

pjl
Yl

: ð21Þ

yi(s) is the probability that ai(s)~i. Equations governing yi

are found by considering the hazard of an ‘invisible

transmission event’ [20,21], which changes the ancestral

host of a branch in the phylogeny without producing a

coalescent event. Equations for yi will have a continuous

component for branches and a discrete component for

nodes.

Suppose that at retrospective time s, ai(s)~i and i is in state k.

Ak(s) will denote the number of ancestors of the sample at

retrospective time s that are in state k. Following the approach

taken in [17], the rate that a transmission l?k leads to a change of

ai(s) is

Flk(s)
Yl(s){Al(s)

Yl(s)

1

Yk(s)
:

This is the product of the rate of transmissions Flk, the

probability 1/Yk that i is selected as the recipient of

transmission, and the expression (Yl{Al)=Yl , which is the

probability that the transmitter is not ancestral to the sample

(i.e. that no branch in the tree corresponds to the transmitting

host).
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This motivates the following equation for the derivative of yi:

d

ds
yi(s)~{yi(s)

Xm

k

rik(s)
Xm

l

Flk(s)
Yl(s){Al(s)

Yl(s)

1

Yk(s)
: ð22Þ

At an ancestral node of i, yi undergoes a discrete change by a

factor which is simply the probability of i being the host that

transmitted at the node:

yi(sijze)~yi(sij)

P
k

P
l Fkl

rikpjl
YkYlP

k

P
l Fkl

(rikpjlzril pjk )

YkYl

: ð23Þ

Software for calculating Wij as described in this paper is

available at http://code.google.com/p/colgem/.

Simulations
We simulated HIV gene genealogies using an individual-based

stochastic simulation based on the epidemic model presented in

[19]. These simulations were carried out with the objective of

replicating a real HIV dataset as closely as possible, while allowing

us to know who infected whom. Sample sizes, the times of

sampling, and incidence of infection were all chosen to coincide as

closely as possible to the dataset of HIV sequences described in

[19], which was based on 662 HIV-1 sequences sampled from

men MSM in the Detroit metropolitan area. Simulated sequences

and estimated phylogenies were also chosen to mimic the diversity

expected for a sample of subtype B sequences. To capture

heterogeneity in simulated outcomes, 20 independent simulations

were undertaken.

The HIV model is illustrated in Figure 3. The model in [19] was

fitted to a combination of surveillance timeseries data, such as

HIV/AIDS diagnoses over time and HIV genetic sequences. This

provided an estimate of incidence and prevalence over time as well

as estimate of the number of transmissions made by infected

individuals in different stages of infection. Parameter estimates in

the simulations were taken from the maximum likelihood model fit

in [19]. In this model, infected individuals progress through five

stages of infection and can be undiagnosed or diagnosed.

Diagnosed individuals may additionally receive antiretroviral

therapy (ART) which reduces the rate of progression towards

AIDS and death. We assume that ART is available after 1998 to

all diagnosed individuals. Chronic infections transmit at rate

87.5% smaller than the transmission rate of early HIV infection

(EHI), and there are no transmissions from AIDS cases oweing to

effective diagnosis and treatment. In this model, the first stage of

infection, EHI, lasts 1=c0~1 year, three chronic stages last

1=cc~2:1 years on average each, and AIDS lasts 1=cAIDS~2:55
years on average. The total infectious period may be much longer

with treatment, which is largely determined by natural mortality,

which occurs at the rate m(t) of 1 per 27 years.

An essential aspect of this model is how incidence f(t) and

diagnosis rates m(t) vary over time. In this model, both of these

rates are described by spline functions, and we re-use the

parameters of the spline functions estimated in [19].

In the discrete individual-based simulations, the time to the next

transmission event is exponentially distributed with rate f(t). We

make the approximation that f(t) is constant between transmission

events, which is a good approximation since the time between

transmissions in the population is quite short relative to the change

in f(t). At each transmission event, the transmitting individual is

selected randomly from the set of all infected individuals with a

weight that depends on the stage of infection of the individual and

whether they are diagnosed. For example, someone with

undiagnosed chronic infection will transmit at a rate less than an

undiagnosed EHI by a factor of bc as described above, and a

diagnosed chronic infection (pre-treatment) will transmit at a rate

less than an undiagnosed EHI by a factor of bcd. Similarly, the

time to the next diagnosis event is exponentially distributed with

rate m(t), and the newly diagnosed individual is selected uniformly

at random from the set of all undiagnosed infections.

Note that the the simulation may be put in the canonical form

M~(F (t),G(t),Y (t)) described above, which allows simulations

to be used to calculate infector probabilities. In this case, m = 10

(infected may occupy 5 stages and be diagnosed/undiagnosed),

and Y(t) is an m{vector that describes how many infected are in

each state at time t. Fkl(t) gives the transmission rate from state k

to l at time t, so for example, if k corresponds to undiagnosed

chronic infection, and l corresponds to undiagnosed EHI,

Fkl(t)!f (t)Yk(t)bc(Dt), where bc is the relative infectiousness of

chronic infections. Gkl(t) represents the rate that type k changes

state to type l; in this model, this process corresponds to stage

progression and diagnosis. For example, if k corresponds to

undiagnosed EHI and l corresponds to the first chronic stage, then

Gkl(t)&ckYk(t)(Dt).

To reconstruct a gene genealogy from the simulation, we

iteratively build a binary tree by adding a new branch at each

transmission. The logic underlying tree reconstruction is given in

[21–23]. Briefly, if an individual z transmits at time t, we add a

new branch to the tree which connects a new node u with an old

node v. Each node in the tree has a time associated with it. The

time of u is the time of the new transmission event t. The node v

that is connected to u corresponds to the last transmission event

that involved host z. That event may be another event in which z

transmitted, or it may correspond to the event where z became

infected. All of the internal branch lengths in the tree therefore

correspond to the time between consecutive transmission events.

In reality, we do not observe the complete transmission

genealogy, but rather a small subsample. To model sampling,

we randomly sampled n = 662 branches heterochronously at

regular intervals between the 29th and 37th year of the epidemic.

At each sampling time, we introduce a terminal node into the tree

with a corresponding time of sampling. The sample size and

sample window were chosen to mimic the real dataset in [19].

Unsampled branches are then pruned from the tree, which yields a

final binary tree with n terminals and 2(n{1) internal branches.

As noted above, the calculation of Wij in heterochronous

samples does not account for the possibility that a sampled lineage

is a direct descendent of a previously sampled ancestral lineage.

Nevertheless, we allow this event to occur in simulations in order

to evaluate if violation of this assumption is a large source of bias.

Sequence simulation and phylogenetic analysis
To simulate genetic sequence alignments corresponding to the

simulated genealogical relationships described in the previous

section, we used the program Seq-Gen v.1.3.3 [24]. For each

simulated tree, we generated a sequence alignment of 662

sequences, each 1200 nucleotides in length. We used an HKY

nucleotide substitution model with a transition-transversion ratio

of 4.73, and rate heterogeneity modeled as a mixture of invariant

sites (47%), a mean substitution rate of 1.6e-03 per site per year,

and a C distribution discretized into four categories with a shape

parameter of 0.714. These parameters were obtained by a

previous phylogenetic analysis of real HIV data [25].
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For each sequence alignment, we used relaxed-clock Bayesian

methods [26] as implemented in the software BEAST [27] to

estimate a posterior distribution of phylogenetic trees. We assumed

a GTR substitution model, with rate variation modeled as a

mixture of invariant sites and four-category discretized C
distribution. We used the semi-parametric skyride method [28]

to estimate how the effective population size changes through

time. Parameters were estimated using a Markov Chain Monte

Carlo algorithm which was run for 50 million iterations. We

discarded the first 50% of samples as burn-in. To generate

estimated infector probabilities from the posterior distribution, we

calculated Wij for a sample of 50 trees and report the mean. We

also compare Wij between samples from the BEAST posterior to

investigate uncertainty in Wij oweing to uncertainty in the

underlying phylogeny.

Results for the HIV model presented below which are based

on a true transmission genealogy utilize 20 independent

simulations. Results that utilize simulated sequences are based

on only a single simulation, but utilize 50 posterior sampled

trees.

Simulations for model validation
Text S1 and figures S1, S2, S3 describes several additional

simulation experiments to validate the numerical accuracy of the

approach. These simulations were undertaken using idealized

compartmental SIRS models with homochronous samples. The

time of sampling (peak prevalence of endemic equilibrium) was

investigated.

Define

Xij~
1, if i transmitted to j:

0, otherwise:

�

In the absence of bias, the expected residual E½Wij{Xij � should be

Figure 3. Model used to simulate HIV phylogenies. Left: Simulated number of infections over time. Infections are aggregated by stage of
infection (top) and by diagnosis status (bottom). Right: Flow-diagram showing the progression of infected individuals through 5 stages of infection,
diagnosis, and death. The color of compartments correspond to diagnosis status in prevalence figures on left. The color of outlines corresponds to
stage of infection in prevalence figures on left. The per-capita rate of state transitions is shown over arrows.
doi:10.1371/journal.pcbi.1003397.g003
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zero where the expectation is taken across all pairs i,j in all

simulations. A t-test was performed to test the hypothesis that

E½Wij{Xij �~0.

Code for all simulation experiments can be found at https://

code.google.com/p/inferring-the-source-of-transmission-with-

phylogenetic-data/.

Results

Synthetic HIV datasets were generated which matches the data

described previously in [25] and [19]. This dataset comprised an

alignment of 662 HIV-1 subtype B partial-pol sequences originally

collected for drug resistance testing. All sequences were collected

within one year of diagnosis from treatment-naive individuals with

self-described MSM risk behavior. Sequences were sampled

heterochronously over the period 2004–2012. Additionally,

associated with each sequence are clinical covariates such as

CD4 counts, last negative test dates, and BED test results [19] that

are informative about the stage of infection at the time of

diagnosis. In the simulation results, we assume that the stage of

infection is known for each sample unit.

The number of HIV infections over time are shown in Figure 3

for a single simulation. These trajectories are similar to maximum

likelihood estimates obtained in [19] for MSM in the Detroit

Metropolitan area. At the end of 2011, there are 2509 prevalent

infections according to this simulation, and approximately 662/

2509 = 26% of these are sampled for phylogenetic analysis.

Infector probabilities for the HIV simulations are shown in

Figure 4. We compare estimates based on the true transmission

genealogy, which is not generally known in applications with real

data, and a sample of phylogenies from the Bayesian phylogenetic

posterior distribution estimated from simulated sequences. Esti-

mates for the true genealogies are based on pooled results for 20

independent simulations, while estimates for the estimated

phylogenies are based on a single simulated sequence alignment

and 50 trees sampled from the BEAST posterior distribution.

Infector probabilities were calculated and compared for all

possible pairs of sampled individuals. With both estimated and

true genealogies, we find that the infector probabilities increase at

the same rate (slope<1) as the frequency of true transmission

events, which are known from the simulations. We regressed the

known transmission events, coded as zero or one, on the estimated

infector probabilities. If the infector probabilities perfectly coincide

with the true frequency of transmission events, the slope of the

regression line will be one and the intercept zero. The slope and

intercept for the regression line calculated from the true genealogy

are respectively 0.93 and 0.01. The slope and intercept of the

regression line calculated from 15 estimated phylogenies are

respectively 1.04 and 0.006.

Histograms in Figure 4 also show the frequency of transmission

events stratified by the estimated infector probability. This shows

that the infector probability is generally quite close to zero in the

majority of cases that a transmission event actually occurred. In

almost all cases where a transmission did not occur, the estimated

infector probability is very close to zero. Considering all 20

simulations, there are 20|
662

2

� �
~4,375,820 possible transmis-

sion events given a sample of 662, and we observed only 1,079

transmission events. Thus, there is only 1079
20|662

~8% probability

that the donor of a random patient also appears in the sample.

This probability depends on details of the epidemiological model,

which types of individuals are sampled, and when samples are

collected. In this instance, the probability is much lower than the

sample fraction (approximately 26%) since the sample is collected

over time and the donor for many cases are diagnosed or deceased

(only undiagnosed cases are sampled).

Figure 5 shows estimated infector probabilities based on the true

transmission genealogy from a single simulation and on 50 trees

sampled from the Bayesian-phylogenetic posterior distribution for

a single simulated multiple sequence alignment. The Pearson

correlation coefficient between these two sets of infector proba-

bilities is 83%.

Figure 5 also shows true positive and false positive rates (ROC)

if estimated infector probabilities are used for classification of the

event that a prospective transmission pair is real. The data are

based on a single simulation of the HIV model and a single

simulated sequence alignment. If we consider the set of all

potential transmission pairs, the classification of true negatives will

generally be extremely accurate because distant pairs in the tree

will have very low infector probabilities; consequently, the false

positive rate will be extremely low for all but the smallest threshold

values. Therefore, we confine the analysis to a more difficult

problem of identifying true transmission pairs in the set of 208

potential transmission pairs corresponding to cherries (2-clades) in

the true genealogy. ROC curves are shown for infector

probabilities based on the true transmission genealogy and on

the infector probability averaged across 15 trees sampled from the

Bayesian-phylogenetic posterior. Both ROC curves have similar

properties; the area under the curve (AUC) is 84.7% for the

estimated phylogenies and 84.8% for the true genealogy.

Comparing aggregated infector probabilities can be used to

detect systematic differences in transmission rates between

categories of infected individuals. Relative values of infector

probabilities are not equivalent to relative transmission rates, and

these statistics should not be interpreted as estimates of relative

transmission rates. But, we do expect that relative infector

probabilities to trend in the same direction as transmission rates.

Figure S4 compares infector probabilities for different stages of

infection and for undiagnosed versus diagnosed individuals. These

results are based on a single simulation of the HIV model and a

single sequence alignment and use a sample of 15 trees from the

BEAST posterior distribution. For individual i, the expected

number of transmissions to other individuals in the sample is the

sum of the infector probabilities: Ri~
P

j Wij . Individuals who

have been infected longer are expected to have larger Ri, however

by dividing by the time since infection di, we may detect increased

transmission during EHI. An adjusted infector probability for each

category is found by dividing each Ri by the expected duration

that i has been infected given that they are sampled in each

category:

R’i~Ri=di,

We use the approximation that di~:5 years if i is sampled with

EHI, di~4:2 years if i is sampled with chronic infection, and

di~8:7 years if i is sampled with AIDS. Figure S4 shows stark

differences in the number of transmissions attributable to different

categories of infected individual.

In the simulations, EHI transmit at a greater rate than chronic

infections by a factor of 12.4. If we compare medians of R’i, we

find transmissions from EHI relative to chronic by a factor of 17.2.

In the simulations, undiagnosed individuals transmit at a greater

rate than diagnosed individuals by a factor of 12.1 after 1998 and

by a factor of 6.4 before 1998 because of the effects of treatment.

Comparing medians of R’i, we find transmissions from undiag-

nosed relative to diagnosed by a factor of 7.2.

To demonstrate the feasibility of detecting covariates that

impact transmission rates that are not explicitly included in the
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calculation of W, we conducted another simulation that was

identical in all respects to those described above except that half of

infected individuals (the ‘high risk’ group) transmit at a rate that is

106greater than the other half (the ‘low risk’ group). Susceptibility

was not correlated with infectiousness in this simulation. We then

calculated W and Ri, and these values are compared for high and

low risk groups in Figure 6. Infector probabilities are much greater

for those in the high risk group. The median of Ri in the high risk

group is greater than in the low risk group by a factor of 6.7.

Model validation
To validate the numerical accuracy of our derivation of Wij , we

present additional simulations in Text S1. In these emperiments,

more simulations are carried out and more transmissions are

observed so that estimated infector probabilities can be compared

with a large sample of transmission events.

In all, 1158 SIRS epidemics were simulated, 59194 potential

transmission pairs were evaluated, yeilding 3168 within-sample

transmission pairs. A sample of 5% of infections was taken at peak

prevalence and endemic equilibrium. Bias was not detected for

either sampling time (t-test p~0:33,0:43).

Discussion

We have presented a method for calculating the probability that

one host infected another (the infector probability) in a pathogen

phylogeny. This method makes use of extra epidemiological

information, such as the incidence and prevalence of infection over

time. The method thereby accounts for the possibility that

unsampled infected individuals act as either intermediaries or as

a common source of infection for a putative donor and recipient of

infection. Any infectious disease model that is used to estimate

incidence and prevalence of infection implies a relationship

between pathogen gene genealogies and infector probabilities.

This is the first method which makes the connection between

infector probabilities, infectious disease models, and pathogen

genealogies explicit. The practical importance of this method is

that it enables the estimation of infector probabilities in situations

where there is incomplete sampling, which is more often than not

Figure 4. Comparison of infector probabilities and frequency of transmission events in simulations. On the left, infector probabilities
are calculated for the true transmission genealogy in 20 independent simulated HIV epidemics and samples of 662 individuals. On the right, infector
probabilities are based on simulated sequence data for a single simulation and a sample of 662 individuals. Data are pooled from 50 trees sampled
from the Bayesian phylogenetic posterior distribution. Middle: The estimated infector probabilities (x-axis) versus whether a transmission actually
occured (hash marks) for all pairs of sampled individuals in the HIV simulation. The red line shows a local-average of the frequency of transmission
events. The green line shows a linear regression of true transmission events (coded zero or one) on the estimated infector probability. Histograms
show the frequency of estimated infector probabilities when transmissions happen (top) and when they don’t (bottom).
doi:10.1371/journal.pcbi.1003397.g004
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the case for high-prevalence community-acquired pathogens like

HIV.

Once Wij is calculated, a variety of auxiliary analyses are

enabled. The column sum
P

i Wij is equivalent to the probability

that the infector of j is in the sample. This statistic will be sensitive

to the number of patients sampled and the times of sampling. The

row sum
P

j Wij is equivalent to the expected number of

secondary infections for case i which also appear in the sample.

Variation of this statistic can be examined with respect to

covariates that may influence transmission rates. Such investiga-

tions may indicate which clinical, demographic, and behavioral

variables have a large impact on transmission rates and thereby

guide further model development.

We have also demonstrated the method using a simulated HIV

dataset in which we know who actually infected whom. The

dataset was designed to mimic a real HIV dataset, both in terms

how patients are sampled and in the epidemiology of infection in

the simulated community; phylogenies were estimated from

Figure 5. Performance of estimated infector probabilities. Left: Estimated infector probabilities based on the true transmission genealogy
versus infector probabilities based on a sample of trees from the Bayesian phylogenetic posterior distribution. The red line shows x~y. Right: True
positive versus false positive rates (ROC) using estimated infector probabilities for classification of who infected whom in simulated HIV epidemics.
The ROC curves were calculated for 208 pairs of individuals clustered in cherries in the transmission genealogy. Estimates are shown for the true
transmission genealogy for a sample of 662 individuals and for the average infector probability calculated from a sample of 50 trees from a Bayesian
phylogenetic posterior distribution.
doi:10.1371/journal.pcbi.1003397.g005

Figure 6. Left: The log of the expected number of transmissions to at least one other sample unit is shown in aggregated form for
two risk groups. The high risk category transmits at a rate 106 that of the low risk category. Right: A quantile-quantile comparison of the
distributions of log infector probabilities. A quantile-quantile comparison for undiagnosed and diagnosed is shown at bottom right.
doi:10.1371/journal.pcbi.1003397.g006
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simulated sequences in order to realistically reproduce phyloge-

netic error. The method is subject to bias due to finite population

size and violation of model assumptions. Nevertheless, we have not

detected substantial bias in realistic simulation experiments, which

suggests that bias will be quite small for applications provided an

appropriate epidemiological model is used. Figure 4 shows that

accuracy is not greatly impacted by phylogenetic uncertainty

stemming from the simulated sequences in this application.

Although there is very high variation in estimated infector

probabilities between individual trees in the Bayesian-phylogenetic

posterior distribution, the infector probability averaged over a

sample of phylogenies has similar performance to infector

probabilities calculated from the true tree. As Figure 5 shows,

infector probabilities calculated from the true tree are highly

correlated with estimated phylogenies, but on an individual basis,

there can be huge discrepancies. For example, according to the

true tree, an infector probability may be 90%, while according to

an estimated tree it may be as low as 35%. Due to the potential for

false positive classification, which may occur even if the true

genealogy is known, it is more concerning that probabilities

calculated from estimated trees can also be much greater than

those based on the true tree.

It is also important to note that this simulation study assumed

perfect knowledge of incidence and prevalence of infection over

time as well as perfect knowledge of the stage of infection at the

time each infected host is sampled. In reality, there will be

substantial uncertainty regarding both, and that would add

additional error to estimated infector probabilities. Even though

there is very high variance in the infector probabilities based on

estimated phylogenies, the infector probability averaged across

estimated phylogenies has similar performance as a statistic for

classification (AUC of ROC).

There has been controversy [29–31] regarding whether

abundant HIV sequences collected for clinical purposes may be

useful for forensic investigations into who acquired infection from

whom. Alternatively, such sequence data may be useful for

epidemiological investigations only. An obvious temptation is to

use the proposed models in forensic cases. At realistic levels of

sampling that resemble currently availabe HIV DRM sequence

databases, infector probabilities are quite small. In other words,

even though the method may give a realistic estimate of the

probability that i infected j, we rarely have much confidence that i

infected j. In addition, forensic investigations often employ a more

targeted approach to sampling and serial sampling of individual

hosts [7,29], which violates the assumption of simple random

sampling used in our models. Calculating infector probabilities

may actually be helpful for protecting patient confidentiality, since

sequence data could be screened and stripped of closely linked

pairs prior to being deposited in public databases.

Our simulation experiments have demonstrated how infector

probabilities are sensitive to many factors in addition to the

structure of the phylogeny, such as details about who is sampled,

when they are sampled, and the state of infected individuals at the

time of sampling. Details of the epidemic process such as incidence

and prevalence over time also influence infector probabilities.

Most clustering methods employ a threshold genetic or evolution-

ary distance, but, as shown in Figure S5, there is a noisy

relationship between infector probabilities and the cophenetic

distance within the HIV gene genealogy. Infector probabilities are

highly correlated with phylogenetic distance, yet for a given

phylogenetic distance, the infector probabilities may differ by

many orders of magnitude. Getting a realistic picture of potential

transmission pairs requires consideration of all of the factors

included in our solution for the infector probabilities.

Even though transmission events could not be inferred with high

confidence, the application of infector probabilities to epidemiolog-

ical investigations of HIV seems promising in light of the results in

Figure 6 and S4. Infector probabilities capture increased transmis-

sions by those with early infection and those who are undiagnosed at

the time of sampling relative to those who are diagnosed. We can

also detect the effects on transmission rates of covariates that are not

explicitly included in the coalescent model.

Our models have additional utility beyond the calculation of

infector probabilies. Similar methods could be used to calculate

the distribution of the number of unsampled infected individuals in

a transmission chain between two sample units. For example, this

has relevance for studies of the evolution of virulence of HIV

[32,33], which is frequently assessed by conducting comparative

phylogenetic analyses of set-point viral load and declining slope

CD4. Most comparative phylogenetic analyses are based on

diffusion models of a continuous trait, however models which

account for discrete transmission events may be more appropriate.

One could, for example, use information about the length of a

transmission chain to obtain estimates of how set point viral load

correlates between epidemiologically linked pairs.

This method for calculating infector probabilities is based on a

population genetic model that makes assumptions about the

epidemiological and immunological process. The model does not

account for the potential for superinfection, recombination, or

complex within-host evolutionary dynamics which could confuse

phylogenetic inference and decrease confidence in putative

transmission links. Furthermore, the model does not account for

multiple- or serial-sampling of a single infected host. Future

research is needed on methods for relaxing these assumptions as

well as for quantifying error that may arise from violation of model

assumptions in realistic settings.

Supporting Information

Figure S1 Simulated number of infections through time for the

SIRS model.

(PNG)

Figure S2 Regression of true transmission events (ticks on axis

coded zero or one) on calculated infector probabilities Wij . Left:

samples of 10% at endemic equilibrium. Right: samples of 10% at

peak prevalence.

(PNG)

Figure S3 Top: Model structure and population size over time

for a model with three states. Blue arrows represent birth within

and between states. Red arrows represent migration between

states. Bottom: Regression of true transmission events (ticks on axis

coded zero or one) on calculated infector probabilities. At right is

shown the ROC curve if infector probabilities are used for

classification of the event that a putative transmission pair is real.

(PNG)

Figure S4 The log of the expected number of transmissions to at

least one other sample unit is shown in aggregated form for

different stages of infection and diagnosis status (top). Each stage is

represented twice in this figure because an infected individual may

be undiagnosed or diagnosed (labels prefixed with ‘D.’). A sampled

lineage from an undiagnosed individual corresponds to a situation

in which a pathogen is sequenced at the same time that the patient

is diagnosed. A quantile-quantile comparison of the distributions

of log infector probabilities for EHI and chronic stages is shown at

bottom left. A quantile-quantile comparison for undiagnosed and

diagnosed is shown at bottom right.

(PDF)
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Figure S5 The cophenetic distance between each pair of tips in

the HIV gene genealogy is shown versus the calculated infector

probabilities.

(PNG)

Text S1 Additional simulation experiments.

(PDF)
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