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Abstract

The infection cycle of viruses creates many opportunities for the exchange of genetic material with the host. Many viruses
integrate their sequences into the genome of their host for replication. These processes may lead to the virus acquisition of
host sequences. Such sequences are prone to accumulation of mutations and deletions. However, in rare instances,
sequences acquired from a host become beneficial for the virus. We searched for unexpected sequence similarity among
the 900,000 viral proteins and all proteins from cellular organisms. Here, we focus on viruses that infect metazoa. The high-
conservation analysis yielded 187 instances of highly similar viral-host sequences. Only a small number of them represent
viruses that hijacked host sequences. The low-conservation sequence analysis utilizes the Pfam family collection. About 5%
of the 12,000 statistical models archived in Pfam are composed of viral-metazoan proteins. In about half of Pfam families, we
provide indirect support for the directionality from the host to the virus. The other families are either wrongly annotated or
reflect an extensive sequence exchange between the viruses and their hosts. In about 75% of cross-taxa Pfam families, the
viral proteins are significantly shorter than their metazoan counterparts. The tendency for shorter viral proteins relative to
their related host proteins accounts for the acquisition of only a fragment of the host gene, the elimination of an internal
domain and shortening of the linkers between domains. We conclude that, along viral evolution, the host-originated
sequences accommodate simplified domain compositions. We postulate that the trimmed proteins act by interfering with
the fundamental function of the host including intracellular signaling, post-translational modification, protein-protein
interaction networks and cellular trafficking. We compiled a collection of hijacked protein sequences. These sequences are
attractive targets for manipulation of viral infection.

Citation: Rappoport N, Linial M (2012) Viral Proteins Acquired from a Host Converge to Simplified Domain Architectures. PLoS Comput Biol 8(2): e1002364.
doi:10.1371/journal.pcbi.1002364

Editor: Burkhard Rost, TUM, Germany

Received January 19, 2011; Accepted December 9, 2011; Published February 2, 2012

Copyright: � 2012 Rappoport, Linial. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a EU Framework VII Prospects consortium and the Israel Science Foundation (ISF 592/07). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: michall@cc.huji.ac.il

Introduction

Many studies, mainly from bacteria and unicellular eukaryotes,

focus on the exchange of genetic material between viruses and

cellular hosts. Sequences are best studied through their structural

and functional domains [1,2,3,4,5]. The evolution of domains is a

significant force for shaping the proteins along the tree of life.

Sequence exchange between genomes within and between super-

kingdoms is evident from the appearance of a domain in a

particular phylogenetic branch [6]. The contribution of horizontal

gene transfer is not limited to bacteria but has occurred across

distant species [3]. For example, some signaling domains in

bacteria are the consequence of a horizontal gene transfer [7].

The viruses are parasitic agents that maintain an intimacy with

their host cells. Consequently, an extensive horizontal evolution

[8] is associated with the viral life cycle. The lack of similarity of

viral proteins (e.g., capsid proteins) with any cellular organisms is

in accord with their early and unique origin [8,9]. Most likely, the

modern viruses originated at the early RNA world of the

primordial genetic pool.

With the increasing numbers of sequenced viruses, similarity

among seemingly unrelated viruses was reported. A role of the

hosts as vehicles for such cases is proposed. For example, the

structural similarities observed between bacterial viruses (PRD1,

Bam35), Chlorella virus (PBCV-1) and adenovirus in the coat

proteins, led to the proposal that all viruses are old, probably

preceding the cellular life. Furthermore, it is compatible with

polyphyletic virus origins, as opposed to the monophyletic origin of

cellular life [10]. Still, assignment of viruses to the phylogenetic

tree of life remains unresolved [11].

Notably, viruses as vectors (mainly RNA viruses) have the

potential to rearrange the genomic material, and thus, to change

the domain architecture [12,13,14]. Studies on horizontal gene

transfer focused primarily on viruses infecting bacteria and

archaea (e.g., bacteriophages) [15,16]. The co-evolution of viruses

toward their hosts indicates an active crosstalk on an evolutionary

time scale [17,18,19].

Several studies reported on a handful of cases of functional

mimicry by viral proteins [20]. In few cases, evidence for gene

transfer from the host to the virus is obvious. For example, the

photosynthetic efficiency in cyanobacteria (Synechococcus and

Prochlorococcus) relies on components of the photosystem II.

These critical components express in the respective phages [21]. In

the case of the phytoplankton–virus system, the DNA virus EhV

that infects the microalge (Emiliania huxleyi), contains a complete

metabolic pathway as a result of a horizontal gene transfer [22]. A
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similar case is demonstrated for the dUTPase genes (Dut) that are

necessary for regulating the cellular levels of dUTP. Phylogenetic

analysis revealed the origin of the viral Dut sequence in a

monophyletic cluster of DNA viruses with eukaryotic hosts [23].

The Acanthamoeba polyphaga Mimivirus and the family

Phycodnaviridae [24], contain many genes that are found in

cellular organisms. For example, the giant virus Cafeteria

roenbergensis virus (CroV) includes numerous eukaryotic-like

genes for translation factors, ubiquitin pathway components, intein

elements, histone acetyltransferase and more [25]. These are

extremely large viruses of aqueous environments that infect

bacteria, animals and protists [26].

A search for similarities between viral and host proteins has

largely been focused on herpesviruses [27], Hepadnaviridae [28]

and others. However, the high mutation rate of RNA viruses [29]

and the coexistence between viruses and their hosts for millions of

years has most likely blurred the sequence similarity. Recently,

several studies challenged the origin of ancient viral segments in

metazoan genomes. These sequences that are called EVE (for

endogenous viral element) encompass all virus-derived genomic

loci [30].

In this paper, we present a coherent survey on protein

sequences that are shared between viruses and their hosts. We

assess the scale of the phenomenon by focusing on the viral-related

protein sequences that appear in metazoa. We have used the

current archive of all proteins [31] as the basis for identifying

sequences with a potentially common origin. Presumably, their

appearance in the virus reflects virus-acquired sequences. Of about

190 instances of highly similar viral-eukaryotes sequences, we

recognize that only a small number originated from a host origin.

We extended the collection of viral proteins that have a host origin

by investigating the eukaryotes-viruses Pfam families [32].

We focused on the 670 Pfam cross-taxa families that contain

viruses and metazoa. A careful examination reveals that these

instances reflect either missed annotations or the remnants of

sequence exchange by virus infection. To distinguish these

possibilities, we constructed sequence alignment trees for all 670

Pfam families. From the properties of the trees, we focused on 335

families that most likely contain viruses that hijacked sequences

from their host. We found that most of the viral proteins in the

orthologous families are much shorter and composed of simpler

domain architectures. In almost all cases, the number of domains

and the sequence of the tails and the inter-domain linkers are

considerably shorter in the viral proteins relative to their

counterpart host proteins. We discuss the potential of such short

viral proteins to interfere with critical cellular functions and thus

are candidates for manipulation strategies in defeating viral

infection.

Results/Discussion

Genetic material exchange between viruses and their
hosts

Figure 1A shows two over-simplified scenarios in support of a

genetic exchange from the virus to the host genome and in the

reverse direction, from the host to the viral genome. In the first

scenario, a viral sequence is detected in the host (e.g., human) but

not in the rest of the phylogenetic branch. The following scenario

accounts for viral sequences acquired from the host (Figure 1A,

right). Under this scenario, the viral gene sequence is identified in

a broad group of organisms that belong to a phylogenetic tree that

includes the host (human). Therefore, the sequence in the virus is

most likely a reflection of a hijacking event, according to an

argument of maximum parsimony.

Supporting evidence for the directionality of the genetic

exchange of viral and cellular organisms relies on a detailed

phylogenetic analysis. The topology of the reconstructed tree is

used to support the most parsimonious scenario (see Materials and

Methods). The simplified illustrations in Figure 1A do not address

the more complicated, realistic instances in which different viruses

carry sequences that resemble various organisms. An additional

criterion used in supporting the occurrence of sequence acquisition

by viruses is the presence of a sequence resemblance in the known

host. The origin of viruses is probably preceding the cellular life

[8,10]. Thus, the ancient events in which viral sequences were

incorporated into an ancestor eukaryote cannot be traced by their

sequence similarity. Still, a conserved functional or structural

similarity could expose such early events [33]. In this study, we

have not attempted to date the horizontal transfer event.

Furthermore, we will not discuss the events of genetic material

exchange (see discussion in [34]), but limit our study to the

acquisition of coding sequences in viruses and metazoa.

There are about one million viral proteins in the UniProt

database (990,049, August 2010) that represent about 66,000 viral

strains. This is a highly redundant resource and about half of it

composed of medically relevant strains including Hepatitis B

viruses (HBV) and Human immunodeficiency virus (HIV). We

took advantage of a reliable source of UniRef [35] that unifies

sequences according to their identity level along the sequence

length. We used UniRef90 classification (see Materials and

Methods). There are .165,000 UniRef90 clusters that contain

at least one viral protein (Figure 1B). However, from this set, we

only considered 262 instances that contain at least two proteins,

where one of them must be a eukaryote (Figure 1B). Of the 5,482

cross-taxa clusters that contain sequences from viruses and cellular

organisms, 95% are sequences of bacteriophages and plasmids

confined to the bacteria [36]. We will not further discuss the events

that are confined to bacteria and archaea.

A taxonomical view shows the diversity of the organisms that

share the UniRef90 clusters with viral proteins (Figure 1C). It

shows that the eukaryotes are the most diverse group with 106

species that share their homologues with viral proteins. This result

Author Summary

Many studies focused on the exchange of genetic material
between viruses and cellular hosts. The diversity of viruses
argues that, along the evolutionary history, viruses have
shaped the host genomes. While most viruses have many
opportunities to exchange genetic material with their
hosts, tracing such events is challenging as the origin of
the sequences is masked by the high mutation rate of
many viruses. On the other end, for completing a
successful infection cycle the viruses must cope with the
cell machinery for entry, replication and translation while
hiding from the host immune system. We collected
evidence for instances of viral protein sequences that
were most probably ‘‘stolen’’ from the hosts. Additionally,
a shared ancestry with metazoa is associated with 670
Pfam domain families. For half of these families, the origin
of the viral proteins from its host is supported. For about
75% of the cross virus-metazoa families, the viral proteins
are significantly shorter than their counterpart host
proteins. Most of these cross-taxa viral proteins are single
domain proteins and proteins with a simple domain
composition relative to the proteins of their hosts. These
viral proteins provide insights on the overlooked intimacy
of viruses and their multicellular hosts.

Host Acquired Sequences in Viral Proteomes
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Figure 1. Lateral gene transfer between virus and host. (A) Two simplified scenarios in support of a genetic exchange event from the virus to
the host genome (left) and from the host to the virus genome (right). A homologue of a viral protein in a eukaryote is marked by a green check mark
and a red X symbol when no homologous sequence is detected. (B) The sequential filtration steps applied from UniProtKB to the set of UniRef90
viruses-mammals cross-taxa clusters. The numbers indicate the size of the dataset after filtering. (C) A species perspective on cross-taxa from the
UniRef90 clusters that contain viruses and eukaryotic proteins. The division is according to the 3 superkingdoms. The number of the different species
that are represented from each superkingdom is indicated. (D) The partition according to the classes of the viruses for UniRef90 clusters that contain
viruses and their mammalian hosts (,2500 proteins). The main viral families that infect vertebrates according to their replication classes are listed in
Supplementary information, Table S1.
doi:10.1371/journal.pcbi.1002364.g001

Host Acquired Sequences in Viral Proteomes
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suggests that the phenomenon of shared sequences is quite broad,

and many eukaryotes have been subjected to a genetic material

exchange. Among the UniRef90 clusters that contain viruses and

eukaryotes (Figure 1B), ,70% are from tetrapoda, 13% plants,

13% arthropoda, 4% fungi and only a smaller percentage of other

taxa. We focused on the cross-taxa clusters of viruses and

mammals (118 clusters include ,2,200 proteins, Figure 1D).

Viruses from Class I (dsDNA viruses with no RNA stage) and class

VI (Retro-transcribing ssRNA, Plus strand) are prevalent among

those that infect mammals [17]. The dominating Class VI viruses

are characterized by their ability to integrate sequences into the

host (Figure 1A, left). Table 1 lists the Class I viral proteins that

share sequences with mammals (23 clusters, Figure 1D). In Class I

viruses, the virus enters the nucleus before its replication (with the

exception of Poxvirus family) and its infectivity is strongly

dependent on the host cell division.

Discriminating whether a sequence has originated from the

virus or the host is not straightforward. We generated for each

cluster a phylogenetic dendogram and analyzed the connectivity of

the viral protein in view of its neighboring sequences. Often the

analyzed cluster is too small. In such cases, we expanded the

cluster to the relaxed UniRef50 classification. We applied

additional criteria in support of a virus having acquired protein

sequences from the host: (i) The tested sequence appears in several

organisms ($2) on the same evolutionary branch (as in Figure 1A,

right); (ii) The tested sequence is not associated with viral

contamination. Most analyzed cross-taxa clusters derive from the

contamination by viral proteins following integration of the virus

to a mammalian genome. Several instances were contaminated by

the extensive use of viral vectors as vehicles in variety of molecular

manipulations (e.g., Adenoviruses, Table 1).

Another source of contamination is from cancerous cells

infected by viruses (e.g., human papilloma virus). In such

instances, some sequences that are assigned as ‘human’ are

incorrectly annotated. In these instances that reflect the incorpo-

ration of the virus to the host, different protein sequences from the

same virus are identified which are best explained as a result of

infection or an integration event. For example, the proteins in

UniRef90 clusters P06426, P06463, P21735, P06788, P36741 and

P21736 belong to Human papilloma virus (Table 1).

Studies on the viral sequences that were integrated into the

vertebrate germ line and hence shaped the vertebrate genetic

heritage were reported [37,38,39]. Herein, we only consider the

protein sequences that are shared by viruses and their metazoan

hosts. The principal virus families that infect multicellular

eukaryotes are listed in Supportive data Table S1.

A small set of highly conserved genes acquired by viruses
For few instances, a support exists for viruses that hijacked

sequences from the host. Among Class I viruses (Table 1) the shared

functions include interlukin-10 (IL-10) (Figure 2), beta-1,6-N-

acetylglucosaminyltransferase (b1,6GnT) (Figure S1) and Ubiquitin.

Table 1. List of UniRef90 clusters that include mammals and dsDNA viruses (Class I).

UniRef90 Accession Cluster name Clus. Size # Species # Viral proteins Bac origina Seed Lengthb Supportc H2Vd

Q02582 Antitermination protein 108 103 13 + 207 Cont NO

Q7YQE1 Beta-1,3-galactosyl-O-glycosyl 12 9 7 2 440 Bovidea YES

Q9IEZ9 E1A nucleoprotein (Frag) 6 2 4 2 12 Cont NO

Q4VHD0 Interleukin 10 (Frag) 10 5 5 2 68 Mammal YES

Q6PVS0 Interleukin 10 (Frag) 2 2 1 2 45 Caprinae YES

P43480 Interleukin-10 13 10 2 2 178 Pecora YES

Q64142 T1 antigen (Frag) 41 2 39 2 134 Cont NO

O75978 L1 capsid protein (Frag) 5 4 4 2 100 Cont NO

O75979 L1 capsid protein (Frag) 2 2 1 2 105 Cont NO

P03073 Large T antigen 4 4 3 2 785 Cont NO

P36741 Major capsid protein L1 9 2 1 2 539 Cont NO

P03076 Middle T antigen 4 4 3 2 421 Cont NO

B9EHT2 Olfr780 protein (transposase) 119 82 2 + 402 N.D. N.D.

P06426 Probable protein E5 3 2 1 2 75 Cont NO

P06463 Protein E6 36 2 1 2 158 Cont NO

P21735 Protein E6 8 2 1 2 158 Cont NO

P06788 Protein E7 10 2 1 2 105 Cont NO

P21736 Protein E7 6 2 1 2 106 Cont NO

P06956 Recombinase cre 28 14 18 + 343 Cont NO

Q6QMZ0 Ribosomal S27a (Frag) 33 28 1 2 115 N.D. N.D

P68834 Small T antigen 10 9 8 2 195 Cont NO

Q8SWD4 Ubiquitin 217 158 119 2 77 Euk YES

P0C6Z6 Viral IL-10 homolog 4 2 1 2 170 Mam YES

aBac, Cluster is mixed with bacterial proteins.
bLength of cluster’s seed protein.
cAnalysis is based on phylogenetic tree and analyzing the expanded cluster according to UniRef50.
dH2V, from host to virus. I.e., sequences acquired by the virus from a metazoan host. N.D. Unresolved; Cont, contamination; Frag, Fragment.
doi:10.1371/journal.pcbi.1002364.t001

Host Acquired Sequences in Viral Proteomes
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The b1,6GnT and IL-10 are found exclusively in metazoa and the

multicellular eukaryotic branch. The key features and the functional

amino acids are conserved in the viral and the corresponding

mammalian proteins (Figure 2A, Figure S1). Indeed, in human cells

lacking b1,6GnT gene, the Bovine herpesvirus 4 (BoHV-4)

sequence fully recovered the missing enzymatic activity [40].

Resolving the evolution of the Ubiquitin in the genome of Pestivirus

suggested that the virus hijacked Ubiquitin-related sequences in two

consecutive events [41].

A browsable table is available at www.protonet.cs.huji.ac.il/

virost/tables/UniRef90-Class1.html.

Figure 2 shows a prototypic case of viral proteins that

resemble the host protein. Interleukin 10 (IL-10) inhibits the

induction of pro-inflammatory cytokines. IL-10 was found in

many viruses including Epstein–Barr virus (EBV), equine

herpesvirus (EHV) and cytomegalovirus (CMV) [42]. Presum-

ably, the gene product protects the infected cells from the host

defense mechanism. An extended cluster of IL-10 (Table 1)

covers 20 viruses and 96 cellular organisms (UniRef50_P22301).

Representatives of viral and metazoan proteins are shown by the

multiple sequence alignment (MSA) (Figure 2B). Most of the

variations in the viral and metazoan protein reside in the

sequence of the N-terminal that covers the signal peptide

(Figure 2B). Traces of a genomic organization of the host in the

viral genome were reported. For example, IL-10 like sequence

from the gammaherpesvirus ovine herpesvirus 2 includes 5 exons

and 4 introns [43].

Inspecting the UniRef90 clusters that contain proteins from

viruses and metazoa (187 clusters) shows a wide variation in the

distribution of protein lengths (Supportive data Table S2).

Viruses tend to reduce their production load by deleting and

reducing the unessential genetic material [44]. While this length

reduction is an absolute necessity for most viruses, some giant

viruses (e.g., Mimivirus, Chlorovirus, and Cafeteria roenbergen-

sis virus) include ,1000 proteins [24,25]. The evolution origin of

proteins from the Giant viruses remains unknown [45]. Still,

12% of the Acanthamoeba polyphaga mimivirus (APMV)

proteins constitute a large number of host related sequences.

The average length of this subset of the Mimivirus proteins (523

amino acids) is similar to the length of their homologous

sequences.

Pfam families are a rich source for tracing viral acquired
sequences

The small numbers of cases of viral acquired sequences (Table 1,

Supportive data Table S2) may indicate the sequence divergence

that had occurred throughout evolution. We therefore expanded

the analysis for remote homologous. We questioned whether the

viral protein sequences that were already substantially diverged

due to a rapid evolution rate, or a long evolutionary history still

maintain the host protein’s functional domain.

The Pfam provides a comprehensive resource of functional and

structural families and domains. Each Pfam entry represents a

statistical model with an average sequence identity of 30–40%

among the members of the family. Currently, Pfam covers 11,912

families, where 1,165 families include at least a viral protein and a

eukaryotic protein representative. Some Pfam families are

extremely large. Among families that contain metazoa and viral

proteins are ‘Helix-loop-helix DNA-binding domain’ (,6000

proteins) and ‘Sugar transporter’ (,12,000 proteins). Contamina-

tion of viral proteins in metazoan proteomes (e.g., Capsid, Env,

Tat) occurs mainly as a result of viral vector manipulations in cell

lines, leading to incorrect assignment as a viral-eukaryotic cross-

taxa family. An example is the GFP family (PF01353) that we have

Figure 2. Multiple sequence alignment for Interlukin-10 (IL-10). (A) Functional features of human IL-10 include the disulfide bridges,
glycosylated modified residues (blue, diamond line) and the signal peptide (red frame). Most viral proteins in the cluster share the 180 amino acid
proteins. (B) Multiple sequence alignments (MSA) from viral representatives (red frame) and various mammals are shown. The viral proteins include
Orf virus (ORFV), Macacine herpesvirus 4 (Rhesus lymphocryptovirus), Bovine papular stomatitis virus and Cercopithecine herpesvirus 12 (CeHV-12)
(Baboon herpesvirus). Weak sequence similarity is confined to the N-terminal that covers the signal peptide.
doi:10.1371/journal.pcbi.1002364.g002

Host Acquired Sequences in Viral Proteomes

PLoS Computational Biology | www.ploscompbiol.org 5 February 2012 | Volume 8 | Issue 2 | e1002364



manually removed from the analysis. To reduce such sporadic

instances, we considered Pfam families having at least two

metazoan proteins, resulting in a list of 667 Pfam families.

Supportive data Table S3 lists the species, composition of the

domains and the proteins’ length.

The relatively small numbers of cases of viral acquired

sequences (Table 1, Supportive data Table S2) may indicate the

sequence divergence that had occurred throughout evolution.

Therefore, we expanded the analysis for remote homologous. We

questioned whether the viral protein sequences that were already

substantially diverged due to a rapid evolution rate, or a long

evolutionary history still maintain the host protein’s functional

domain.

Over 300 cross-taxa Pfam families (virus-metazoa) are best

explained by a viral acquisition of host sequences. Instances of

lateral gene transfer between bacteria and their bacteriophages

dominate many of the cross-taxa Pfam families. Other families

contain genuine viral proteins contaminated by metazoan

proteins.

In order to justify the directionality of sequences from the hosts

to the virus, we constructed for each of the 667 Pfam families a

sequence-based tree (MSA based on the domain and not the full

length sequence). We considered Pfam families in which only 1–2

viral proteins are included in the family, and families in which the

percentage of the virus proteins in the family is small (,5%,

Figure 3A). The vast majority (547 families, 82%) of the analyzed

Pfam families fulfilled these criteria (Figure 3A, blue). We also

requested that the viral proteins are clustered in sub-trees within

the family tree. We counted the number of viral proteins spreading

within the sequence alignment tree. We suggest that viral proteins

that are clustered in a defined sub-tree (called Viral Cluster, VC)

are likely to represent a single episode of acquired sequence from

the host. Consequently, only a limited diversity among the closely

related viruses is expected in view of the rest of the tree. 64% of the

547 Pfam families from the previous selection fulfill the

requirement for clustered viral proteins. These are the Pfam

families that contain #2 viral clusters (60%), and other families

(4%) that are specified by a high degree of condensation (i.e. the

ratio of the viral proteins to the number of VCs is $3). These

filtration steps further reduced the list of relevant Pfam families to

335 (Figure 3B).

We show a tree constructed for one of the 335 families. The IL-

6 (PF00489) family contains 10 viral proteins (Figure 3C, blue) that

are split to two sub-trees of viral clusters (VC) and other 136

Metazoan proteins (marked as collapsed sub-trees). The maximal

depth in this tree is 19 (included in the collapsed sub-tree, red

triangle). The deepest viral protein in the tree is of depth = 9, and

its normalized depth is 9/19 = 0.474. The depth of the viral cluster

(VC, the maximal sub-tree which contains all viral proteins) is

therefore, 4/19 = 0.211.

The normalized depth for all the proteins in the 335 Pfam

families (Figure 3D, top) is analyzed in view of the distribution of

the normalized depth of the viral proteins within these families

(Figure 3D, bottom). It seems that the two distributions are

remarkably different (Figure 3D) which is in accord with the

notion that the viral proteins are relatively isolated subsets among

the proteins from the cellular organisms in the relevant Pfam

families.

Table 2 shows a sample of these families along with the

cellular process and the protein function in the viral life cycle.

A full list of the 667 Pfam families with the analyzed

properties of their alignment trees is provided in Supportive

data Table S3.

The PAAD/DAPIN/Pyrin family in view of the domain
composition and viral evolution

One of the families that exemplified the trend found in virus-

metazoa Pfam families is the PAAD/DAPIN/Pyrin family

(PAAD_DAPIN, PF02758). This domain family is a diverse

family (26% average sequence identity) that includes 34

cellular species and 5 dsDNA viruses that belong to the

Poxviridae. The PAAD domain is at the N-terminal regions of

proteins. This domain occurs in several multicellular organ-

isms, in the context of inflammation, signaling and apoptosis

(Figure 4).

Several observations could be extracted for the PAAD domain:

(i) Based on a multiple sequence alignment (MSA) of the PAAD

domain sequences it is evident that the 5 viral proteins were

diverged significantly (Figure 4B). All 5 viral proteins reside in

one cluster, in the phylogenetic tree, together with other

mammals as their sibling in the tree (Figure 4A, blue font). The

domain architecture within the protein of the family is best

explained by an initial extensive duplication of the PAAD domain

(Figure 4A, green symbol). At present we identified ,50 such

proteins in human and mouse (Figure 4A); (ii) Most members of

the PAAD family contain additional domains (in 158/177

occurrences). For example, the combination of PAAD and

NACHT domains (Figure 4A, red symbol) are in 93 proteins,

and PAAD, NACHT and LRR are in 2 proteins; (iii) The

majority of the other domains (e.g., HIN-200, CARD) function in

the regulation of apoptosis; (iv) All 5 viral proteins are single-

domain proteins with PAAD domain. There are other 19 cases of

the single domain proteins (Figure 4A, red font). Note that these

proteins spread throughout the sequence-based tree. Presumably,

it is a reflection of a domain loss event. Some of these proteins are

fragments (e.g., Q5T3V8_HUMAN), and others include less

characterized PfamB domains [32] (e.g., IFI4L_MOUSE,

Q3UPZ5_MOUSE).

Viral proteins that originated from the host sequences
are mostly single domain proteins

The initial tests on UniRef90 covered 14,000 proteins in

relatively small clusters (,90 proteins on average, Supportive data

Table S2). In contrast, the collection of the cross-taxa Pfam

families (Table S3) covers 161,000 viral proteins and 400,000

metazoan proteins. Therefore, focusing on the cross-taxa Pfam

families provides an opportunity to increase the statistical power of

the tests.

Several statistical observations regarding the sequences

among the cross-taxa families of viruses and multicellular

organisms can be made: (i) The average length of the metazoan

proteins is 507 amino acids, while the average length for the

viral proteins in these families is only 396 amino acids (P-value

of ,1.0e-17 by the KS-test, Figure 5A). (ii) For 73% of all

families, the viral proteins are shorter than the length of the

average metazoan proteins in the family (P-value,1.0e-13 by

the Hypergeometric test). (iii) In 67% of the families, the

number of Pfam domain appearances (including several repeats

of the same domain or different ones, Figure 5B) is smaller in

the viral proteins relative to the metazoan proteins in the family

(P-value,1.0e-40 by the KS test). (iv) In 62% of the families,

the number of different Pfam domains is higher in the

metazoan proteins relative to the viral proteins. (v) For the

discussed families, the median number of Pfam domains is 1.06

while, for the metazoan proteins, this value is 1.7 (P-

value,1.0e-32 by KS test).

Host Acquired Sequences in Viral Proteomes
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Elimination of sequence tails and internal domain in viral
proteins

Many metazoan proteins are multi-domain (colored rectangle,

Figure 5B). We tested whether the viral acquired sequences that

belong to multi-domain proteins displayed a stronger tendency for

a size reduction (see scheme, Figure 5B). A reduction in length of

viral proteins may be a reflection of reducing the number of

domains (Figure 5B, b–c), shortening the length of the linker

sequences (Figure 5B, a) or even the trimming of the length of the

domain itself.

Among the 667 analyzed Pfam families, in 103 of them, the

metazoan proteins contain at least 3 Pfam domains. In 85% of this

set (88 families), the viral proteins are shorter (Figure 5B, virus).

Remarkably, the average length of these 103 metazoan proteins

families is 912 amino acids relative to 503 amino acids for the viral

proteins that belong to these families. Similarly, in this set of multi-

domain proteins the viral proteins have an average of 2.9 domains,

while the metazoan proteins have 4.6 domains on average (paired

t-test, p-value of 1.0e-11). This shows that the tendency to reduce

the protein length and the number of domains is stronger when the

number of Pfam occurrence in the original host protein is higher.

In order to reduce the risk of misclassification, we further

restricted the analysis to Pfam families of viruses-metazoa (with $3

Pfam domains) that contain at least 2 viral proteins (total of 50

families). The length of the viral proteins is significantly reduced.

For 90% of these families (above the reference line, Figure 5C), the

viral proteins are shorter than their matched metazoan proteins.

In order to determine whether the reduction in length is due to a

reduction in the number or the properties of the domains, we

repeated the analysis for the ratio of the number of distinct

domains (depicted by the different colored rectangles, Figure 5B)

in the viral and their relevant metazoan sequences (Figure 5D).

For 80% of the families (families above the reference line), number

of different Pfam domains that are associated with viral proteins is

reduced. Note that by this measure, a short viral protein (Figure 5B

a–b) still has a ratio of 1.0. We show that the viral proteins are not

only significantly shortened, but have also converged to a simpler

domain composition.

The length of the individual domains between the viral and the

metazoan host proteins is identical (Supportive data Figure S2).

Recall, that this observation may be mainly due to the definition of

belonging to a Pfam domain family.

The high statistical significance of these trends is consistent with

a possibility that the short viral proteins have resulted from the

acquisition of fragments from the host protein. Alternatively, it can

be the result of a refinement of the acquired sequences during viral

evolution. We separated each protein into three segments: (i) The

Pfam domain(s); (ii) The tail linker (TAIL) that combines the

amino acid extension towards the N- and the C-termini of the

protein, beyond the boundary of the domain(s); (iii) The internal

domain linker (IDOL) that comprises the sum of the amino acid

spacers between domains. Clearly a single domain protein lacks

IDOL.

We performed a separate analysis for the TAIL and the IDOL

sequences (Figures 6A–6D). The study was performed on all the

families that have at least 2 Pfam domains (unique or repeated).

The average TAIL in viral proteins is 14 amino acids while the

metazoan protein TAIL length is 85 amino acids (p-value,1.0e-

150, Figures 6A–6B). Trimming of protein tails at both termini

often leads to a loss of cellular localization signals (e.g., KDEL,

PDZ binding sites are found at C-termini) [17]. Importantly, the

average IDOL length of the viral proteins in the Pfam families is

Table 2. A sample of the cross-taxa Pfam families of viruses and metazoa.

Pfam ID Common phyla Cluster Name Virus familya Function # Species (Sequences) # Viruses

PF01027 Euk-Bac UPF0005 I-Her, I-Pox Inhibit apoptosis 735 (1845) 12

PF02758 Chordata PAAD_DAPIN I-Pox Inhibit apoptosis 34 (182) 5

PF00020 Metazoa TNFR/NGFR I-Her, I-Iri, I-Pox Inflammation, apoptosis, autoimmunity 97 (853) 37

PF01403 Metazoa Sema I-Her, I-Iri, I-Pox Induced B and T cell proliferation 104 (693) 28

PF00341 Metazoa PDGF I-Iri, I-Pox, VI-Ret Mitogen 87 (270) 10

PF00235 Euk Profilin I-Pox Interrupt actin 231 (628) 20

PF00413 Euk Rad9 I-Phy Cell-cycle arrest Transcription 93 (164) 2

PF00084 Euk Sushi I-Her, I-Pox Innate and adaptive immunity 163 (6244) 43

PF07988 Vertebrate Wos2 VI-Ret Regulation cell cycle 15 (52) 2

PF00243 Chordata NGF I-Pox Neuronal survival 805 (1684) 3

aVirus class is indicated by the Baltimore classification (Table S1). Virus families that do not infect vertebrates are shown in italic. For interactive Table see www.protonet.
cs.huji.ac.il/virost/tables/Pfam.html. For a complete list see Supportive data Table S3.

doi:10.1371/journal.pcbi.1002364.t002

Figure 3. Analysis of the cross-taxa Pfam domains. (A) Partition of the 667 Pfam families according to the ratio of the viral proteins to all the
proteins that belong to the family (in %). The vast majority (82%) of the Pfam families contain #5% of viral proteins (blue). (B) Partition of the Pfam
families in which the viral proteins are clustered. VC, a cluster that includes only viral proteins in a sub-tree; #VC, the number of Viral Clusters. The
analysis covers the Pfam families that contain #5% of viral proteins (blue slice from A). We consider only 335 Pfam families that contain the families
with (i) only one VC (41%), (ii) 19% with exactly 2 VCs and (iii) 4% with #10 VCs but with a condensation factor $3 (#Vir/#VC). Using this filtration
additional 36% of the families were removed (marked, others). (C) Alignment tree of IL-6 Pfam family (PF00489). The family contains 10 viral proteins
(blue font), 2 viral clusters (#VC, blue font sub-trees) and 136 metazoan proteins. Collapsed sub-trees are represented by a triangle indicating the
number of proteins as the tree leafs. The maximal leaves in this tree are 19 (in the collapsed sub-tree, red triangle). The deepest viral protein in the
tree is of depth 9, and thus the normalized (norm.) depth is 9/19 = 0.474. The depth of the viral cluster (VC, the maximal sub-tree which contains only
viral proteins) is 4/19 = 0.211. (D) The distribution of normalized depths of all proteins for the 335 Pfam families (top) and the distribution of the
depths of the viral proteins in these families (bottom).
doi:10.1371/journal.pcbi.1002364.g003
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30 amino acids, while, for the metazoan equivalent proteins, the

length is 67 amino acids (p-value,1.0e-150, Figures 6C–6D).

While a short TAIL may be explained by the viruses having

acquired a fragmented sequence from their hosts, the same trend

was found for the IDOL. Figure 6C shows that while only 54% of

the metazoa IDOL have a length of ,40 amino acids, in the viral

proteins from the same Pfam families, 96% of the proteins have

IDOL that are shorter than 40 amino acids. These results are

consistent with an active trimming and refinement process

throughout viral evolution. Short IDOL length is advantageous

in suppressing protein misfolding, and hence, improving transla-

tion effectiveness [46].

Similarly to the finding of short IDOL sequences in viral

proteins, we identified instances of an internal domain which is

missing in the viral protein while the flanking domains are

maintained in the same order in the eukaryotic homologous

protein (Figure 6E). The viral putative phosphatidylinositol kinase

L615 (UniProt: Q5UR69) is a 701 amino acid protein from the

Acanthamoeba polyphaga Mimivirus (APMV) that infects Amoe-

ba. It has two Pfam domains: FYVE (PF01363) followed by

PI3_PI4_kinase (PF00454). There are no other known proteins

with identical domain architecture in the Amoebozoa kingdom

(there are 7 such proteins in other kingdom, e.g., Stramenopiles

and Excavata). However, there are 3 proteins from the genus

Dictyosteliida (slime molds) that do belong to the Amoebozoa

kingdom (UniProt D3BQ22, Q54UU9 and EGC34678). In all 3

of these proteins, the architecture is composed of FYVE domain

followed by PI3Ka and PI3_PI4_kinase. The missing domain of

PI3Ka in the Mimivirus (APMV) provides an evidence for an

active elimination of an internal domain based on parsimonious

argument. The findings of shorter IDOL (Figures 6C–6D) or

absence of internal domains (Figure 6E) are probably the result of

the trimming and shortening of the sequences after their

acquisition by the virus. The possibility of a domain insertion in

eukaryotes cannot be excluded.

Unified strategies in viral proteins acquired from the
hosts

The exhaustive search for sequences that were hijacked by

viruses from their host allowed us to speculate on the underlying

modes of mimicry. It was shown that once a mimicry function by a

virus is established, the corresponding functional partner protein

of the host undergoes a fast positive selection to overcome the

deleterious effect of the viral mimicry [20].

According to these findings, the viral proteins that originated

from the hosts are short versions of the full-length host proteins

(Figures 5–6, Supplemental Figures S2, S4). Furthermore, these

proteins are characterized by a substantial reduction in the

architectures of the domains (Figure 5) and the protein linkers

(Figure 6). We classified these proteins into distinct (yet not

exclusive) modes of action. For simplicity, we unified the viral

acquired sequences from the cross-taxa families to 5 strategy

modes (Figure 7).

Mode A depicts a competition on a receptor binding by a viral

ligand that replaces the natural one. Examples for this mode are

the expression of the secreted IL-10 (Figure 2), IL-8 (UniProt:

Q98158, Q98314, D2E2Z5) and PDGF (UniProtKB Q80GE8,

Q2F842 and D0VXD7). These secreted mitogens are identified in

class I and class VI viruses (Table 2).

Viral proteins participate in a rich protein-protein interaction

(PPI) network [47]. Mode B illustrates PPI, where the virus uses an

acquired sequence for replacing a host partner protein or for

interacting with a preexisting protein complex. The result is an

alteration of the cells’ function. Examples for viral proteins that

interfere with the host PPI are the anti-apoptotic Bcl-2 sequences

and Profilin (Table 2, for example UniProt: Q5IXM3, P33828,

P68695). Mammalian Semaphorins (Sema7) and the Smallpox

virus A39R protein (Table 2, UniProt: Q775N9, B7SV99,

Q0N658, A0ES13) share identical binding modes with a cross-

reactivity towards common receptors [48].

Mode C depicts the role of protein modifications (e.g.,

phosphorylation). A viral protein can either mimic the host

modifications (Figure 7, marked C1). Alternatively, a modification

occurs by a viral enzyme (Figure 7, marked C3). Such mimicry can

lead to a modification of the original site or at an entirely new site

(Figure 7, marked C2). Apparently, there are instances in which

both the modifying enzyme and the target proteins are both

sequences that were acquired from the host (Figure 7, marked C4).

This mode is dependent on the presence of active kinases (or

phosphatases). For example, human cytomegalovirus (HCMV)

kinase introduces phosphorylation sites that perfectly mimic the

function of the cellular CDK2 (cyclin dependent kinase) [49]. An

evolutionary tree alignment for viral B1R protein kinase

(Supplemental Figure S3) supports the functional overlap and

mimicry with the closely related cellular kinases.

Mode D depicts the importance of nucleic acid regulation of

transcription. In this mode, a viral protein mimics the host

regulation by either competing for an existing transcription factor

(Figure 7, marked D1), or by modifying the transcription program

Figure 4. Analysis of the Pfam PAAD/DAPIN/Pyrin domain
family. (A) PAAD_DAPIN (PF02758) is a diverse domain family at the N-
terminal of all proteins. Visualization of the phylogenetic alignment tree
is based on iTOL [56]. The Pfam family (182 proteins) includes 5 viruses
from the dsDNA (Class I) that belong to Poxviridae. The viruses are
shown in blue. Additional 19 proteins contain only the PAAD domain
(red color). Each protein is shown as well as the schematic domain
composition. Note that most proteins appear in the context of
additional Pfam entries (158/177 occurrences). The length of proteins
and the corresponding domains are indicated by their colored symbols
in the outer circle. The mammalian proteins are highlighted. (B) MSA of
the viral proteins covering the ,80 amino acids of the PAAD domain
indicating the high divergence among these viral proteins. Similarity
level is shown in a gradient of gray color.
doi:10.1371/journal.pcbi.1002364.g004
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following a DNA/RNA binding (Figure 7, marked D2). For

example, the Epstein-Barr virus (EBV) encodes an activator

protein that is similar to Fos/Jun family (bZIP_1, PF00170. For

example, UniProt: Q80GR6, Q8QQX9, Q6USE5, D2Y5S7).

The difference in specificity and the dimerization properties of the

EBV activator allows the activation of an alternative transcription

program [50].

Mode E collectively points to the generic strategies for

damaging and deactivating the host proteins. It could be achieved

by protein tagging (i.e., SUMO, ubiquitin), or the activation of

viral proteases. Among the cross-taxa Pfam families, some families

are associated with specialized proteases (Table S3). Mode E

shows the various routes by which acquired sequences alter key

cellular processes. Molecular mimicry in trafficking and the

subcellular localization is common to many viruses. For example,

Soluble N-ethylmaleimide sensitive factor Attachment Protein (a-

SNAP) is a conserved protein among all eukaryotes. It was also

found in Canarypox and Fowlpox viruses [51]. These proteins

may alter the balance of the vesicular trafficking, docking and the

membrane fusion machinery. In autophagy, viral proteins exploit

processes such as membrane fusion and protein folding for the

benefit of their replication [52].

We limit the discussion to the modes by which the shorter

versions of the viral acquired proteins exhibit their impact on some

cellular functions. The described modes (A–E) are effective in

additional instances of molecular and functional mimicry [53,54].

Concluding remarks
Inspecting the viral proteome is challenging, as the majority of

viral sequences are redundant and poorly annotated. Importantly,

the rapid evolution and the high mutation rate in some viral classes

often leads to the loss of a detectable sequence similarity and,

therefore, additional cases of virus hijacking events cannot be

detected based on sequence similarity search methods. Despite

Figure 5. Length of proteins and Pfam domain properties of viral-metazoan proteins. (A) Analysis of the protein length distribution of
viral (red) and metazoan proteins (blue) for the 667 Pfam based families. (B) A schematic view of multicellular proteins and possible variations.
Changes in the viral protein length relative to the host related proteins in the same protein Pfam family could be due to a shortening of IDOL (inter-
domain linkers) and the tail linkers (TAILs) (a); Additional scenarios are the elimination of a domain that is characterized by several appearances (b),
and the elimination of multiple domains (c). (C, D) The results for 50 cross-taxa Pfam families that fulfill the following criteria: (i) at least 2 metazoan
infected viral proteins, (ii) Pfam appearance is at least 3. The data points represent the proportion of the metazoan proteins’ length relative to the
viral proteins’ length in each of the analyzed Pfam family (C), and the ratio of the number of the distinct Pfam domains in metazoan relative to the
viral proteins (D). The horizontal broken line (reference line) in C and D marks no difference in the properties measured between metazoan and viral
proteins (ratio of 1.0). M/V indicates metazoan/virus ratio.
doi:10.1371/journal.pcbi.1002364.g005
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these drawbacks, we have traced hundreds of viral proteins with

respect to their hosts. Only a small fraction of them shows high

sequence similarity with corresponding host proteins. For the

majority of the cases, the origin of the viral sequences and possible

derivations from the host call for applying powerful models for

remote homologues.

We provided analysis for 670 homologous families (according to

the Pfam definition). For half of these families we provided support

for sequence acquisition by the viruses from their hosts. The

candidate sequences for a host to viral acquisition are useful in

exploring the mechanisms by which viruses hijack and refine

sequences.

We found that most of the viral proteins that potentially

originated from host sequences are significantly shorter and

contain fewer domains. Furthermore, we propose that the

sequence refinement by the virus is a dynamic process. The

inter-domain linkers (e.g., sequences connecting domains, but

excluding the amino- and carboxyl tails) are significantly short,

relative to other related proteins (Figure 6). The viral proteins act

in the cell according to a finite number of strategies. The simpler

domain composition of these viral proteins is sufficient for the

utilization of functional mimicry. Currently, we are expanding

the analysis by identifying short peptides in viral proteomes that

serve as competition agents for neutralizing critical cellular

functions.

The collections of 187 UniRef90 clusters and the 667 Pfam

cross-taxa families are available as interactive tables. These tables

are available at:

www.protonet.cs.huji.ac.il/virost/tables/UniRef90.html

www.protonet.cs.huji.ac.il/virost/tables/Pfam.html

Figure 6. Linker and internal domain properties for cross-taxa Pfam families. (A) The section of the cumulative fraction function for length
of ,300 amino acids for the viral proteins (red) and the metazoan proteins (blue) for the tail linkers (TAILs). While 50% of the TAILs are longer than 40
amino acids in the metazoan proteins, only 3% of the TAILs are longer than this value. For the absolute cumulative fraction graphs, see Supplemental
data Figure S4. (B) A histogram for the number of occurrences for TAIL length for viral (red) and metazoan (blue) proteins. Note that the histogram is
limited to 200 amino acids. (C) A similar analysis as in A is shown for the inter-domain linkers (IDOLs). While 47% of IDOLs in metazoan proteins are
longer than 40 amino acids, only 3% of these IDOLs are below this length among the viral proteins from the same Pfam families. For the complete
cumulative graphs see Supportive data Figure S4. (D) A histogram for the number of occurrences for IDOL length for viral (red) and metazoan (blue)
proteins. (E) BLAST search results for phosphatidylinositol kinase L615 (UniProt: Q5UR69) from the Acanthamoeba polyphaga Mimivirus (APMV) that
infects Amoeba. The two Pfam domains: FYVE (PF01363) and PI3_PI4_kinase (PF00454) are indicated. The 3 top hit proteins are from UniProt D3BQ22,
Q54UU9 and GenBank EGC34678 from Dictyosteliida. Additional of the internal Pfam PI3Ka domain is detected in the apparent host. Numbers on
arrows correspond to relevant BLAST scores. The numbers in the protein frames indicate the amino acid position of the domain on the protein and
the length of the protein.
doi:10.1371/journal.pcbi.1002364.g006

Figure 7. Representative strategies carried on by viral proteins acquired sequences from the hosts. The schematic modes of action (A–
E) for the mimics by viral sequences are shown. The host protein (blue) and the protein-activated stage (orange) are illustrated in the top panel. Viral
proteins that contain sequences that originated from the hosts may alter the host’s cell through several strategies marked A1–E2. A fundamental
principle is a competition with the native proteins (Modes A, B), an alteration by modifications of a target protein (Mode C), the ability to override the
transcription program (Mode D) and the impact on the integrity of the target protein and the underlying cell biological processes (Mode E). The
frame around the protein (in E) indicates a sub-cellular localization. See text for details.
doi:10.1371/journal.pcbi.1002364.g007
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Materials and Methods

Databases
UniProKB includes 990,049 sequences (taxonomy-viruses). The

viral proteins include ,15,000 reviewed proteins (UniProt/

SwissProt). The rest of the proteins are from UniProt/TrEMBL.

There are 430.6 K sequences after removal of HIV and HBV

sequences. Only 241.8 K are full-length (56.1%), while the rest are

denoted as ‘fragments’. The percentage of full-length proteins in

metazoa is 54% (1.191 M/2.2051 M). The pre-calculated classi-

fications of UniRef90 (i.e., identity of .90% at the amino acid

level) reduce the UniProKB set to 175,236 clusters. Additional

steps of filtrations are: (i) Considering only clusters with a minimal

size of 2 proteins (62,129 clusters); (ii) Clusters that also include the

metazoan proteins (187 clusters).

ViralZone is a database that manually assigns host-virus pairs

(http://www.expasy.ch/viralzone, coordinated by UniProt/

SwissProt). ViralZone holds reference strains viruses that

belong to 83 families and 330 genera. This is a high quality

collection of ‘complete proteome’. All viruses are classified into

7 disjoint classes (Baltimore classification index): (I) Double

stranded DNA viruses; (II) Single stranded DNA viruses; (III)

Double-stranded RNA and Single-stranded RNA viruses with

positive and negative sense, respectively (IV, V); (VI) Positive

sense single stranded RNA viruses that replicate through a

DNA intermediate; (VII) Double-stranded DNA viruses that

replicate via a single-stranded RNA intermediate. Major

families of viruses infecting vertebrates are listed in Supporting

information, Table S1.

Pfam 24.0 (11,912 families) [32] is a high quality resource for

domains and families. A valid cross-taxa list was generated.

Eukaryotes and viruses cross-taxa resulted in 1,165 Pfam entries.

The following filtration steps were applied: (i) Pfam families with

at least one viral protein and at least one metazoan protein

(taxid: 33208), total of 859 Pfam families. (ii) Restricting the

Pfam to families that have at least one metazoan protein and at

least one metazoan-infecting virus resulted in 796 Pfam families.

(iii) Pfam families with .95% viral proteins for structural

element of the virus (e.g., Env, Coat, Capsid). (iv) Enzymes of the

replication system were excluded, as these genes are the outcome

of several events of genetic exchange [55]. Specifically, we

excluded families of RNA/DNA polymerases (39 families), Exo/

Endonuclease (16 families), Helicase (15 families), tRNA

synthetase (8 families) and Primase (8 families). We also manually

eliminated the cluster represented by the GFP (PF01353) that

reflects the inevitable contamination from the extensive use of

GFP as vectors in many molecular biology techniques. The

filtered list includes 667 protein Pfam families (Supplemental

data Table S3).

Linker length statistics
We define linker sequences as TAILs (Tail Linkers) and IDOLs

(Inter Domain Linkers). The TAILs are all sequences at the two

terminals external to the first and last domain in the protein. Each

protein provides two entries. The IDOL is a collection of all inter-

domain sequences (excluding TAIL). Protein TAIL’s length was

defined as the mean of the two tail segments. In the same way,

IDOL length was defined as the mean of the lengths of the inter

domains linkers.

We collected the Pfam data for all proteins having at least 2

domains (i.e., having at least one IDOL) and one of the domains

belong to the 667 Pfam domain families (Table S3). There are

,57,000 such viral proteins and ,98,000 metazoan proteins.

Data analysis
Statistical tests were applied for the set of viral proteins in view

of the host cellular protein for each cluster (or Pfam family

collection). We applied statistical confidence tests (P-values) based

on the non-parametric Kolmogorov-Smirnov (KS), Student t-test

and the hypergeometric distribution tests. The KS test is based on

the maximum distance between the two cumulative curves based

on the separated viral and host proteins and viral and metazoan

for the TAILs and IDOLs.

Bioinformatics tools
Multiple sequence alignments (MSA) by ClustalW were used for

constructing the Phylogenetic trees. Local alignment searches are

from NCBI-BLAST. BLAST was activated with a ‘gap costs’ for

Existence: 10 and for Extension: 1. The resetting of the BLAST

parameters was needed for systematic identification of missing

domains detection scheme. The phylogenetic trees were built using

the iTol [56].

Supporting Information

Figure S1 Highly conserved sequences from Class I
virus-mammal cross-taxa UniRef90 clusters. (A) A scheme

of the human b-1,6-N-acetylglucosaminyltransferase (b1,6GnT) is

shown. The functional features indicated are the disulfide bridges,

the glycosylation sites (diamond) and the membrane anchor domain

(red box). (B) ClustalW based multiple sequence alignment (MSA) of

b1,6GnT with representative proteins from the UniRef90 cluster

UniRef90_Q7YQE1. The b1,6GnT sequences of the 2 viruses (from

bovine herpesvirus type 4 (BHV-4, marked by arrows) are shown. All

functional features that are shown in (A) are fully conserved.

(PPT)

Figure S2 Statistical analysis of protein lengths and
Pfam domains. Analysis was performed for a collection of 667

analyzed cross-taxa Pfam entries (Supportive data Table S3). The

graphs show the distribution of averages proteins length (two

distributions per each Pfam family: one for the metazoan proteins

and one for the viral proteins. A statistical KS test was performed on

the domains length. No significant difference between the metazoan

domains and the counterpart viral domains is detected. The same

results were observed when using other statistical tests (e.g., t-test,

not shown). The average and median proteins length and the

average and median domain length is shown, next to the results of

the statistical significant tests.

(PPT)

Figure S3 Phylogenetic tree of the viral B1R kinase
family. A BLAST search (http://blast.ncbi.nlm.nih.gov) for the 32

highest scored proteins that belong to the B1R kinase family is

shown. The query protein used is protein kinase CMLV190 from

Camelpox virus. All viruses that were identified belong to dsDNA

Class I of different genera. The tree branches are color coded for

viruses and mammals (including platypus). All the 21 viral sequences

belong to dsDNA Class I from different genera. Representatives are

of Orthopoxvirus (Variola, cowpox virus) Capripoxvirus (e.g.,

Lumpy skin disease virus), Leporipoxvirus (Rabbit fibroma virus)

and Yatapoxvirus (e.g., Yaba monkey tumor virus) and more.

(PPT)

Figure S4 Linker lengths in Pfam families that contain
viral and metazoan proteins. The cumulative fraction

function for all analyzed Pfam families for TAIL and IDOL

sequences. A zoomed section of this graph is shown in Figure 6.

Viral proteins are marked in red and metazoan proteins in blue.

(PPTX)
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Table S1 Baltimore Classification for the major viral
families infecting vertebrate.
(XLSX)

Table S2 Collection and properties of the UniRef90
clusters for virus-eukaryote cross-taxa.
(XLSX)

Table S3 Collection and properties of the 667 Pfam
families of the cross-taxa of metazoa and viruses.
(XLSX)
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