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Abstract

Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections,
which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility
and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to
simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point
viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the
dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was
fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates
of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100–
150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence
genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the
variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to
have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the
assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of
HIV-1 virulence.
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Introduction

The median time between HIV-1 seroconversion and progres-

sion to symptomatic Acquired Immune Deficiency Syndrome

(AIDS) is approximately 10 years [1]. However, there is

considerable variation in this rate of progression, with substantial

proportions of infected individuals progressing to AIDS in less

than 5 years, or remaining AIDS-free after 20 years. Explaining

this variability is an important goal of HIV pathogenesis research.

Many cofactors which influence time to AIDS have been identified

e.g. host genetics [2], host age [1], and recently viral factors have

been implicated [3–10].

In this paper we explore the extent to which viral factors which

influence virulence, changing from one infected individual to the

next, may have evolved under natural selection in the early phase

of HIV-1’s history. Between-host selection, leading to changes in

the virulence of HIV-1, has potential major implications for the

number of human life years affected.

Virulence is often defined as the excess mortality of the host

which occurs as a result of infection with a pathogen. In the case of

HIV the excess mortality is nearly 100%, so virulence can be

better defined by the reciprocal of the time from infection to death,

or time to AIDS. However, since this can only be defined at the

host’s death, we use set-point viral load (SPVL) as a proxy for

virulence. This refers to the relatively stable density of virions in

the blood which characterises asymptomatic infection. There is

considerable population level variation in SPVL, in spite of its

relative stability within the individual [11]. SPVL is widely used as

a prognostic indicator for AIDS, as individuals with a higher

SPVL have a higher rate of CD4+ cell decline, and they tend to

progress more rapidly to AIDS [12,13] and die sooner as a

consequence [14]. As a result of its relative constancy during

asymptomatic infection, SPVL can be measured at a wide range of

time points in an individual’s infection [15].

A simple conceptual model of how SPVL may evolve by

between-host natural selection (i.e. selection for the more

transmissible genotypes) requires consideration of the transmission

potential of individuals of different SPVL. The transmission

potential, defined as the product of duration of infection and

infection rate, increases with either component of this product. A

positive correlation between SPVL and transmission rate has been

convincingly demonstrated within heterosexual couples with

initially discordant serostatus [16–18]. Since there is also a

negative correlation between SPVL and duration of asymptomatic

infection [12], there is therefore a trade-off between duration of

and transmission rate during asymptomatic infection. Previous

work has quantified this trade-off to suggest that SPVL most

commonly observed in infections maximise the transmission
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potential, suggesting that the distribution of SPVL was shaped by

natural selection [19].

Natural selection requires that a trait has heritability from one

generation to the next, in addition to variation and differential

reproductive success. A number of recent studies have identified

and quantified this heritable component of SPVL variation which

is maintained from one infection to the next [3,5,6,9,10].

Recent studies from the Netherlands [20] and Italy [21] have

found that the mean log10 SPVL has increased over the recorded

history of an HIV-infected cohort, and the rate of CD4+ cell

decline has increased. However different transmission groups have

demonstrated different patterns of evolution of SPVL. In the initial

stages of the epidemic (mid 1980s) injecting drug users showed

slower CD4+ declines than heterosexuals or men having sex with

men, but this difference decreased over the subsequent decade

[21]. A study with similar methodology in Switzerland found

stable virulence over the same time period [22]. This suggests that

such trends may be area- and risk-group specific. In two studies

showing an increase, the levels of SPVL in the earlier time points

are lower [20,21] than those which are optimal for transmission

[19]. Various studies of the rate of CD4+ decline also suggest an

increasing virulence [23,24]. A study of the in vitro replicative

fitness of viruses sampled at different time points reported a

decrease in replicative fitness over the course of the epidemic in

Amsterdam [25] although a subsequent study of the same city

which controlled for time of seroconversion found an increase

[26]. Overall, observational results on changing virulence are

inconclusive, though they suggest either an equilibrium or a slow

increase in that direction.

The lack of evidence for consistent population level trends in

SPVL evolution [21,22] suggests a) the global distribution of SPVL

has stabilised at an equilibrium level; b) the rate of evolution is very

slow or c) the distribution of SPVL is determined by factors which

do not evolve. However, we think c) unlikely, first due to the

observations on the heritability of SPVL described above, and

second because there is evidence for evolution of SPVL occurring

in particular areas or risk groups [20,21].

To address the expected dynamics of SPVL evolution, we

developed and analysed a deterministic mathematical model of

between-host transmission and evolution incorporating known

parameters linking SPVL to the duration of infection and the rate

of transmission. The broad aim was to investigate the hypothesis

that viral genotypes of intermediate virulence are naturally

selected by transmission [19].

The primary of aim of this study was to use the observed

distribution of SPVL to estimate the quantities of unknown host

and viral factors which affect the process of between-host

evolution. Comparing the model to data allowed us to calculate

the likelihood of the unknown parameters.

The secondary aim was to assess whether the model, under

these parameter estimates, allows convergence of the SPVL

distribution towards an intermediate level, or at least to slowly

changing levels consistent with observational studies, regardless of

the virulence of the founding strain, and whether this can occur

within a plausible timescale. The estimated time of origin of HIV-

1 is before the most recent common ancestor, which has been

dated to 1908 with 95% confidence interval 1884–1924 [27]. If

evolution has occurred between the founding strain and current

infections then it has occurred over a period of ,100 years.

Results

We modelled the dynamics of putative genotypes of HIV-1

which differ from one another in their mean log10 SPVL. SPVL

was assumed to vary as a result of both host and virus factors.

These genotypes differ in their reproductive success as a result of

the dependency of duration of asymptomatic infection and

transmission rate on SPVL. Their prevalences change over time

through competition for susceptible individuals in a constant

population.

The model is formulated as a standard HIV epidemic model in

which different viral strains or genotypes compete. Virulence is

considered as a one-dimensional trait, with each genotype

represented by a point on the one-dimensional spectrum of

increasing virulence. When a person is infected by a virus of a

given genotype, the infection is characterised by a SPVL which

reflects the virulence, but also other non-viral factors. When

transmitted, the virus can also mutate to higher or lower levels of

virulence.

The model encodes the natural history of infection. After

infection, individuals experience a brief period of highly infectious

acute stage, after which they progress to chronic asymptomatic

infection. Their SPVL determines both the duration and

infectiousness of this asymptomatic stage, after which their viral

load and infectiousness increases again as they progress to AIDS

and death. Individuals are assumed to engage in serially

monogamous partnerships; a realistic description of the sexual

network was not an aim of this study.

For the sake of parsimony, we focused on relatively simple

mathematical models with minimal sets of parameters, and thus

left some important questions open for further study. In particular,

we did not explore the effect of population structure, stochastic

fluctuations, differences between subtypes, superinfection, and

founder effects, and we considered only the situation of natural,

untreated infection, thus appropriate to describing the evolution of

the virus prior to the widespread adoption of antiretroviral

therapy. We also did not address the question of conflicting

directions of selection at the within and between host level,

describing in-host changes in virulence instead as random drift.

We hope to address these important questions in future work.

Author Summary

Recent studies have suggested that virulence in HIV-1 is
partly a characteristic of the virus which is carried from one
infection to the next. An infection with intermediate
virulence will produce more transmissions during the
infectious lifetime because it optimises the trade-off
between rate of transmission and duration of infection.
Natural selection acts on the heritable variation to increase
the relative prevalence of strains with intermediate
virulence. In this study we model the evolution of
virulence in the viral population as these more successful
strains are preferentially transmitted. We fit this model to
data from transmitting couples, and find that the model
fits the data well. We use this fit to estimate the
contribution of the host and the virus to virulence, which
complements recent estimates of the heritability of
virulence. We also estimate the rate at which the viral
determinants of virulence evolve between infections, and
this provides predictions for how rapidly the virulence of
HIV-1 evolves in a population. We suggest that natural
selection on transmissibility results in substantial evolution
of virulence in the population. This is sufficiently rapid for
virulence to have reached current levels over the available
timescale of the human epidemic.

Modelling the Evolution of HIV-1 Virulence
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Variance decomposition
A useful practical and conceptual approach to interpreting

various influences acting on SPVL is to decompose the total

observed variance, sP
2, into its components, genotypic, mutational

and environmental variance (sG
2, sM

2, and sE
2) [28].

sP
2~sG

2zsM
2

viral

zsE
2

host

heritable non-heritable

ð1:1Þ

Genotypic variance sG
2 refers to differences in SPVL between

infected individuals caused by viral factors which are preserved

from one infection to the next. Environmental variance, sE
2, refers

to any source of SPVL variance external to the virus. Host factors

e.g. age [29], sex [30] and host genotype [31], in particular HLA

type [2] contribute significantly to variation in SPVL between

individuals, and there may be other human and non-human

covariates of SPVL e.g. antigenic stimulation [32]. All of these

factors, extrinsic to the virus, contribute to sE
2 in our terminology.

Mutational variance, sM
2, accounts for changes in the viral

virulence genotype which result from mutation of the virus

between one generation and the next (i.e. one infected host and the

next) as a result of within-host replication and selection of the

virus. Since the viral determinants of SPVL are not currently

known, this cannot be related to the nucleotide substitution

rate.The mutational standard deviation, sM, is simply the

expected difference in the viral component of SPVL between an

index and a secondary infection.

Heritability, h2, which has been quantified in previous studies,

was defined as the fraction of variance explained by shared viral

factors within a transmitting couple [6,33]. We estimate h2 as the

proportion of variance in SPVL explained by heritable viral

genetic factors:

h2~
sG

2

sP
2

ð1:2Þ

Alternative definitions of heritability, including the proportion of

variance in SPVL explained by the SPVL of the index case, and

the proportion explained by viral factors, are discussed and

estimated in Text S1.

In this study, we aim to separately estimate sM
2 and sE

2, and

thus gain a better estimate of the extent of viral factors in

individual infections, and the parameters needed to predict

evolution.

Model fitting and parameter estimation
The primary aim of the analysis was to quantify the effects of

host and virus on variation in SPVL. The values of the

environmental and mutational standard deviations (sE and sM)

were estimated using a maximum likelihood approach. Since the

model predicts not just the distribution of SPVL, but how they

change from one infection to the next, the model could predict the

observed SPVL in both index and recipient partners in

transmitting couples.

Figure 1 shows the likelihood surface for the environmental

and mutational standard deviations (sE and sM), and the bivariate

confidence bounds. The maximum likelihood estimates are

sM = 0.12 (95% confidence interval 0.00 to 0.39) and sE = 0.66

(95% confidence interval 0.47–0.94). The estimates with highest

mutational standard deviation within the 95% confidence bounds

are sM = 0.39 and sE = 0.55 referred to later as the most mutable

plausible scenario. Further details of the likelihood surface are

given in Figure S2. The diagonal nature of the region of high

likelihood in Figure 1 (or better viewed in Figure S2) indicates a

trade-off between the two parameters in terms of the quality of

model fit.

Figure 2 shows the quality of fit of the model to the distribution

of SPVL in index partners and recipients in transmitting couples,

and the estimated heritability was 26% (compared to 27% in a

previous statistical analysis of these couples [6]). We conclude that

the model describes the data well. The distribution and heritability

of set-point viral load is well described by a multi-strain model of

HIV-1 virulence evolution.

Convergence of SPVL distribution
Having derived maximum likelihood estimates of parameters

from an equilibrium solution to the model, the dynamics of

genotype competition were then simulated numerically in order to

assess whether or not convergence would occur under those

parameter values, and on what timescale the convergence would

occur.

The evolution of the SPVL distribution is shown in Figure 3.

Regardless of whether the virulence of the founding genotype was

high or low, the SPVL evolved towards an intermediate level with

a mean log10 SPVL of 4.5.

This convergence on intermediate SPVL values also occurred

when other combinations of parameter values in the region of high

likelihood (Figure 1) were used instead. The rate of convergence

was positively related to sM, as shown in Figure 4(a), where the

maximum likelihood prediction is compared to the most mutable

plausible scenario. Convergence towards intermediate virulence

occurred in approximately 150 years under the maximum

likelihood values. There was still change in the mean after this

time but runs beginning with high or low virulence converge

around this time point. The same point was reached in 50 years

under the most mutable plausible scenario.

The heritability was also calculated over time (Figure 4(b)) and

under maximum likelihood values of sE and sM this reached

equilibrium at 26%, which is consistent with previous studies

[3,5,6,9,10]. Further details of the heritability and variance at

equilibrium are given in Figures S3 and S4.

In order to examine how changes in mean log10 SPVL are

related to the stage of the epidemic, we examined the effect of

proportion infected over time. The effect was most evident when

the founding virulence closely matched the equilibrium virulence

(Figure 5(b)). During the epidemic growth phase the mean

virulence increased to levels above the optimum, and then

returned to the optimum as the proportion infected reached

equilibrium.

We varied the founding virulence to investigate its effect on rate

of convergence (Figure 6(a)). This had a marked effect on how

quickly the mean log10 SPVL reached equilibrium (4.52 log10

SPVL). When the founding genotype had mean 4.5 log10 SPVL,

equilibrium with regard to the mean was reached very quickly, and

the more different the SPVL of the founding genotype, the longer

the time to convergence. A similarly rapid convergence is seen if all

genotypes had equal prevalence at the start of the run. The mean

underwent little change (data not shown) but the variance rapidly

decreased as the most successful genotype, already present in the

population, began to dominate (Figure 6(b)).

Finally, we investigated the sensitivity of our findings to the

choice of parameter values determining the dependencies of

infectiousness and duration of asymptomatic infection on SPVL.

These parameters were previously estimated from datasets from

Amsterdam and Zambia [19]. Here, we tested the sensitivity to

Modelling the Evolution of HIV-1 Virulence
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those estimates by bootstrapping these datasets, refitting the

parameters each time and calculating the corresponding maxi-

mum likelihood estimates of sE and sM. Details of the method are

in Text S1 and Table S2. The resulting maximum likelihood

estimates (Table S3 and Table S4) are similar to those from the

principal analysis (Figure 1).

Discussion

In this paper, we developed a multi-strain evolutionary

epidemiological model of HIV-1 virulence, and showed that it

could accurately reproduce observations on the distribution of viral

load and its heritability in transmitting couples (Figure 2). We were

able to estimate the proportion of variance in set-point viral load

explained by viral genetic factors (26%, 12(sE
2+sM

2)/sP
2), and

separately how much these factors change (‘mutate’) from one

infection to the next. Our best estimate is that virulence changes

slowly towards an evolutionary optimum over decades, but we

cannot rule out faster changes (Figure 4 and Figure 6).

Our aim here was to develop a simple, parsimonious ‘broad-

brush’ model to understand the principles of HIV-1 virulence

evolution in a generalised epidemic using data currently available.

Most of the parameters were derived from Sub-Saharan African

studies (Table S1), suggesting that the model has most direct

relevance for this context. This is our intention, as this is where most

of the adaptation of HIV-1 to the human population has occurred.

The parameters determining the curve of survival from disease

progression were derived from European data, and since these data

predate antiretroviral therapy they are not expected to differ

substantially from parameters derived from Sub-Saharan Africa.

We do not expect the epidemic in other contexts to differ

drastically. Two studies which have observed a change in virulence

Figure 1. Likelihood surface for the environmental and mutational standard deviation (sE and sM). The maximum likelihood estimate is
represented by the red point, and the regions of 50%, 95% and 99.9% confidence in orange, yellow and green respectively. The method for
calculating confidence intervals is given in Text S1 equation (5.4).
doi:10.1371/journal.pcbi.1002185.g001

Modelling the Evolution of HIV-1 Virulence
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in the Netherlands [20] and Italy [21] appear to support our

hypothesis as the virulence in both situations has risen from a sub-

optimal level towards equilibrium, as predicted in our model. The

same trend was not seen in Switzerland [22], however, and further

work is required to apply the model rigorously to the European

context with a view to explaining these trends. More realistic

predictions will require more detailed models, and by necessity

more data. We list some factors that could be included in a more

detailed analysis.

Describing the differences between subtypes of HIV-1 seems

like one of the biggest challenges to the model presented here. We

considered virulence evolution on a single dimension of low-to-

high, with single functions describing the relationship between

viral load, infectiousness and duration of asymptomatic infection.

HIV-1 subtypes in fact differ in their transmission parameters

independently of their differences in SPVL [4,7,8]. Subtype A

shows a slower disease progression when compared to other

subtypes [34]. More specifically, data from the Rakai study

showed that subtype A infection results in slower disease

progression than subtype D even though the distribution of SPVL

is the same [4,7]. From the same cohort it was shown that subtype

A is also more transmissible than subtype D even when viral load

and other confounding variables are controlled for in a regression

[35]. Subtype A is therefore fitter than D in both duration and

transmissibility, and the evolutionary hypothesis would predict the

gradual replacement of subtype D by subtype A, which has been

observed in Uganda [36] and Greece [37]. Other noteworthy

trends include the dominance of subtype C in southern Africa

[38], which may be a result of an extended period of high viraemia

in primary infection [39]. Taken together, these findings strongly

suggest that HIV-1 virulence can change in ways not fully reflected

by set-point viral load, and thus that more data are needed to

identify other appropriate surrogate measures (or determinants) of

virulence. More generally, the theoretical challenge is then to

explain in terms of these other determinants of infectiousness and

survival, how differences in virulence are maintained in different

viral subtypes.

There are a number of other directions in which our model

could be developed. In this study the mutational variance, the

extent to which the viral genotype changed from one infection to

the next, was considered independent of the age of infection (AOI).

At first, this may seem a paradoxical choice, since mutation which

occurs between hosts must be the result of mutations and selection

occurring within the infected host. It would reasonable to suggest

that the size of between-host mutation is positively related to the

AOI, since nucleotide divergence from the founding strain has

been shown to occur at a constant rate during infection [40]. If this

were the case, the between-host mutation rate would be the same

regardless of the generation time and consequently of the virulence

of the virus. However, a study of within-host evolution over time

found that the rate of divergence from the founding genotype was

positively correlated with viral load [41], suggesting that higher

virulence infections diverge more rapidly. A model with a

mutational variance independent of the AOI allows for this, as a

higher virulence virus will have more generations in a given

amount of time and therefore more between-host mutation events.

An accurate functional representation of mutational variance as

a function of AOI thus requires more detailed understanding than

seems currently possible. To resolve this, and for the sake of

parsimony, we assume that the two effects described above cancel

each other out, and thus that the mutational variance is

independent of AOI. To test the sensitivity to this assumption,

we changed the model to include AOI-dependent mutational

variance (linearly increasing as a function of time), and the results

were qualitatively and quantitatively similar (data not shown).

An additional problem with this model is that the data to which

the model is fitted consists of transmission pairs, for most of whom

the age of infection at which transmission occurs is unknown.

Assuming an AOI-independent mutational variance considerably

reduces the complexity of the analysis. There is however little

doubt that extending the model to include a more detailed

description of within-host processes and also resolving the effects of

conflicting selection at the within and between host levels will be

enlightening.

Figure 2. Fit of the model (red line) to data (black line). (a) The distribution of SPVL in the index partner, and (b) the recipient. Where these
roles are unknown, each individual in the pair represents half an individual in each figure. The modelled distributions were calculated from equations
(3.5) and Text S1 (5.5) for the recipient and index partner, respectively.
doi:10.1371/journal.pcbi.1002185.g002
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The pattern of mutation was modelled as a log-normal

distribution. It may be reasonable to assume that the distribution

is negatively skewed because deleterious mutations are much more

frequent than beneficial ones, for example in the case of protease

gene [42]. However, it is misleading to compare the between-host

mutation process to the mutation of individual viral genomes

because deleterious mutations may be counterbalanced by within-

host selection for viable viruses and there is no evidence for

asymmetry in the net effect.

The host effect in this study was also modelled by a log-normal

distribution which is justified if there are a large number of host effects

and they are assumed to each have a multiplicative effect on SPVL.

Host effects are known to account for a certain quantity of SPVL

variation [2,29–31,43] and a very low estimate of the environmental

variance would not be consistent with these studies. The maximum

likelihood estimate of sE was encouragingly high (sE = 0.66,

Figure 1), contributing 71% of the total variance in SPVL. As

more is understood about how the host contributes to variation in

SPVL, this source of variance may be further decomposed [31].

The epidemiological component of this model could be made

more realistic. The model could for example be structured by age,

sex, location, sexual activity, HLA type and include stochastic

effects. It is not clear to us what effect on virulence these

heterogeneities will have, but they might help for example explain

Figure 3. The evolving distribution of SPVL. The SPVL distribution evolves in the population over the years since introduction of the founding
genotype. Maximum likelihood values from Figure 1 were used (sM = 0.12, sE = 0.66). The mean log10 SPVL of the founding genotype was (a) 3.5 and
(b) 5.5.
doi:10.1371/journal.pcbi.1002185.g003

Modelling the Evolution of HIV-1 Virulence
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the persistence of diversity between subtypes and help provide

reasonable initial conditions, since a stochastic model could

elucidate which viruses are more likely to have started the

epidemic. The analysis could be further developed by relaxing the

assumption that the SPVL is at an evolutionary optimal

equilibrium, though we note that this assumption provides good

agreement with data (Figure 2). We note that the mean log10

SPVL and its heritability do not change substantially in the later

stages of the epidemic (Figure 4a–c), and the mean log10 SPVL of

the Ugandan data (4.51) is close to the predicted equilibrium value

(4.52), suggesting that even if the observed data do not represent

an equilibrium, they represent something close enough to render

the maximum likelihood parameter estimations reasonable.

Despite being simple and parsimonious rather than detailed, our

model provides a general framework that makes use of the most

recent data on the heritability of set-point viral load, and that can

be used to interpret past and predict future trends in SPVL.

One interesting trend is that the mean log10 SPVL can be

observed to increase above the equilibrium value for a short while

during the early stages of the epidemic. Epidemic growth is

expected to favour a higher virulence than at equilibrium as a

result of the cumulative advantage of rapid transmission when

hosts are abundant [19,44]. This is better demonstrated in

Figure 5(c) which shows the evolution of the mean log10 SPVL

from a founding virulence very close to the equilibrium mean. At

this level of resolution the temporary spike in virulence can be

Figure 4. Mean log10 SPVL and heritability over time. (a) Mean log10 SPVL, (b) heritability. The epidemic was run under maximum likelihood
parameter (sM = 0.12 and sE = 0.66, black), or the combination of parameters with maximum sM, consistent with high likelihood (sM = 0.39 and
sE = 0.55, red). The solid lines show runs in which the founding genotype had m = 5.5, while the dashed lines show runs with a founding genotype
with m = 3.5.
doi:10.1371/journal.pcbi.1002185.g004

Modelling the Evolution of HIV-1 Virulence
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seen, and this corresponds to the period of epidemic growth. As

the number of susceptible individuals grows and the epidemic

begins to slow, the virulence decreases in response towards

equilibrium as longer-lived genotypes are favoured.

This suggests that if SPVL can evolve at the between-host level

then a growing epidemic could select for higher virulence viruses.

Bolker et al. [44] model this phenomenon and suggest that the peak

of this transient virulence is likely to occur late within the first

exponential growth phase of the epidemic, so if this were observable

the virulence is likely still to be in this transient state above the

equilibrium. Whether this phenomenon has contributed to the

recent increase in virulence in Italy and the Netherlands [20,21]

cannot be distinguished from an increase in virulence as a result of

the founder having sub-optimal virulence. A future slight decrease

in virulence as an epidemic saturates would provide evidence for this

hypothesis, if it could be identified [44]. The optimum virulence

could also be shifted by a widespread intervention which affects the

nature of transmission such as circumcision, vaccination, or

antiretroviral therapy. In the current study we introduced a model

which may be used to predict such effects on virulence.

Recently published studies reporting the development of a

reasonably effective vaccine [45] and a protective vaginal gel [46]

are promising in the fight against HIV transmission. Hypothet-

ically, a vaccine may offer more protection against lower virulence

genotypes and select for more virulent ones, or vice versa. Gandon

et al. [47] produced simple models which suggested that vaccines

which target infection or transmission should have a negligible or

negative effect on virulence as reducing the rate of transmission

benefits pathogens which keep their host alive longer. However

they also modelled vaccines which reduce the growth or the

toxicity of the pathogen and suggest that this would select for

pathogens which have higher virulence which would have a

negative effect when unvaccinated individuals were infected.

Antiretroviral therapy during asymptomatic infection reduces

transmission rate [48,49], presumably by reducing viral load

[50,51]. Antiretroviral therapy would therefore modify the

relationship between SPVL, transmission and duration of

asymptomatic infection, and it is possible to construct hypothetical

scenarios that could select for either increased or decreased SPVL.

In summary, our model could be used to predict (in general terms)

the effects different interventions would have on virulence. These

changes are expected to be relatively modest compared to gains

obtained by curtailing transmission, but nonetheless some

consideration should be given to the possibility of increased

virulence and whether it could be mitigated.

Conclusion
Our results support the hypothesis that the distribution of SPVL,

and by implication of HIV-1 virulence, can plausibly be explained

by selection for increased transmission in populations, though

differences between viral subtypes needs to be elucidated in future

work. Our method disaggregates the effects of viral factors acting to

determine SPVL, the effect of mutation (and thus indirectly within-

host evolution), and other environmental and host factors. The best

estimates indicate a relatively high proportion of SPVL explained by

viral factors (26%), as well as a modest rate of evolution of putative

viral virulence factors. Reconciling these findings with data on

within-host viral evolution may yet shed further light on the role of

viral factors in HIV-1 pathogenesis.

Materials and Methods

Viral genotypes and SPVL phenotypes
In order to simplify simulations, we modelled a discrete finite set

of viral strains (‘genotype’), each capable of producing a finite

range of possible SPVL (‘phenotype’).

Each infected host in the model carries a viral genotype, i, and

has a phenotype, j. Hosts were not explicitly described in the model,

rather the model specified the dynamics of relative prevalences of

hosts infected with a virus of genotype i and phenotype j. In other

words, we used a compartmental multi-strain epidemic model.

Each genotype is defined by a predisposition to give rise to

higher or lower SPVL. Following the decomposition given by

equation (1.1), viral loads can be given as:

Vj~mizej ð2:1Þ

where ej is the environmental component (with mean zero and

variance sE
2) and mi is the component attributed to viral factors.

Figure 5. The evolution of the mean and the epidemic growth
pattern. The founding genotype has m = 4.5, very close to the
equilibrium mean, to illustrate changes in the mean in response to
growth or shrinkage of the epidemic. (a) The evolution of the mean
log10 SPVL during epidemic growth (b).
doi:10.1371/journal.pcbi.1002185.g005
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For a population of individuals infected with viral genotype i, the

mean log10 SPVL will be given by mi, which is therefore a natural

measure of the virulence of genotype i. For two viral genotypes i

and k such that i is more virulent than k, i.e. mi.mk, not all

individuals infected with genotype i will have higher SPVL than

individuals infected with genotype k, but on average they will.

The means log10 SPVL for the viral genotypes, mi, are in the range

2.0–7.0, and SPVL phenotypes, Vj, are in the range 0.0–9.0,

discretised with step 0.05 and 0.025 respectively. An individual

carrying genotype i, will have a phenotype j with a probability

denoted by fij which is taken from a normal distribution with mean mi

and variance sE
2 (2.2), normalised to sum to one for each genotype i.

fij~W Vj

��mi,sE
2

� �
ð2:2Þ

Prevalence
The prevalence of infections with viral genotype i, SPVL

phenotype j, and age of infection a is represented by Yij,a(t) at time

point t. The age of infection is the time since the individual was

Figure 6. Evolution of SPVL from various scenarios of founding genotype. (a) Mean log10 SPVL over time for different founding virulences.
These range from m = 2.5 to 6.5 log10 SPVL, ‘‘All’’ (red) begins with all genotypes from mi = 2.0 to 7.0 at equal prevalence, and ‘‘Equilibrium’’ (dashed
black) is the SPVL value to which all scenarios in this figure are evolving. (b) Evolution of SPVL distribution from high diversity scenario where all
genotypes are equally represented at the start, corresponding to ‘‘All’’ in panel (a). The parameter values for both are maximum likelihood values,
sM = 0.12 and sE = 0.66.
doi:10.1371/journal.pcbi.1002185.g006
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infected. During the course of an infection each host passes

through three stages, primary, asymptomatic and disease (AIDS)

(P, A and D) as the age of infection a increases.

Duration of infection
Primary and disease stages have equal duration (DP and DD) and

rate of transmission (bP and bD), regardless of SPVL. Duration of

and rate of transmission during asymptomatic infection are

dependent on SPVL and the relationships were modelled as Hill

functions as fitted in Fraser et al. [19], from which the parameter

values relating to these functions were also taken (Table S1). The

mean duration of the asymptomatic stage of infection for a given

SPVL j is given by:

DA Vj

� �
~

DmaxD50
Dk

Vj
DkzD50

Dk
ð2:3Þ

The progression from asymptomatic to disease stage is governed

by a survival function in Text S1 equation (5.1), in which SPj,a is

the probability of an individual with SPVL Vj remaining AIDS free

at age of infection a. This is illustrated in Figure S1.

Rate of transmission
The unadjusted rate of transmission during this stage is given

by:

b̂bA Vj

� �
~

bmaxVj
bk

Vj
bkzb50

bk
ð2:4Þ

Rates of transmission are adjusted for duration and partner

change rate, c, in order to apply to a serial monogamy model (5.2).

Force of infection
The rate of transmission, bj,a, is given in equation (5.3) which

incorporates the different stages of infection and the curve for

survival during asymptomatic infection. The force of infection for

genotype i at time t, is calculated in equation (2.5) where Dt is the

size of the time-step.

FOIi tð Þ~
X

j

X
a

Yij,a tð Þbj,aDt ð2:5Þ

Mutation
Between generations a between-host mutation step occurs, so

the force of infection for genotype k seeds a distribution of

genotypes. The probability mik of an infection with genotype mean

mk mutating so as to seed a new infection with genotype mean mi is

taken from a normal distribution with mean mk and variance sM
2

(2.6), normalised to sum to one for each genotype k.

mik~W mijmk,sM
2

� �
ð2:6Þ

Note that this is not mutation in the genetic sense, but rather a

measure of the change in the distribution of viral genotypes that

occurs over the course of infection within the host.

This model for the change that occurs from one infection to the

next, defined by equation (2.6), represents the simplest possible

model of the effect of within-host evolution on the distribution of

transmitted viruses. More complex models, with directional and

host-dependent selection, could feasibly be encoded in more

complex mutational matrices.

New infections in each time-step
The total number of infections for a given genotype in the next

time step, t+Dt, is calculated by the sum of the elementwise

product of each FOIk and the probability that it will mutate into

genotype i, mik. This is scaled according to X(t), the proportion of

susceptibles in the population at time t, meaning that the

genotypes are competing for the available pool of susceptibles.

To give the prevalence for each genotype and its SPVL category in

the next set of new infections (where a = 0), this value is multiplied

by the probability of genotype i producing SPVL category j, fij.

Yij,0 tzDtð Þ~X tð Þfij

X
k

FOIk tð Þmik ð2:7Þ

Update infections
The prevalent infections are updated as in equation (2.8). The

term SPj,a is the function of survival from progression to AIDS,

given in equation (5.1). Since AIDS is a stage of determined

length, DD, the function of survival from death at age of infection a

is given by SPj,a{DD
, the probability of surviving progression to

AIDS at a time DD years previously.

Yij,a tzDtð Þ~Yij,a tð ÞSPj,a{DD
ð2:8Þ

Update susceptibles
The terms Xout(t) and Xin(t) refer to new infections and deaths,

respectively.

Xout tð Þ~
X

i

X
j

Yij,0 tð Þ ð2:9Þ

Xin tð Þ~
X

i

X
j

X
a

Yij,a tð Þ 1{SPj,a{DD

� �
ð2:10Þ

These are used to update the susceptible pool, with new infections

being removed and individuals who die of AIDS being replaced in

the population.

X tzDtð Þ~X tð Þ{Xout tð ÞzXin tð Þ ð2:11Þ

Calculating R0 for each genotype
The basic reproductive rate, R0, can be calculated for each

genotype, and this can be used to calculate the genotype

distribution at equilibrium using the next-generation formalism.

The R0 of each genotype is calculated in two steps. Firstly the

transmission potential is calculated for an infection with SPVL

category j by multiplying the rate of transmission in each of the

three stages of infection by the length of that stage. The duration

of asymptomatic infection DA(Vj) is the mean of the survival curve.

TPj~bPDPzbA Vj

� �
DA Vj

� �
zbDDD ð3:1Þ
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Secondly, the basic reproductive rate, R0i, for each genotype i, is

then calculated by taking the weighted average transmission

potential, TPj, weighted by the probability that infection with

genotype i results in infection with SPVL category j.

R0i~
X

j

TPjfij ð3:2Þ

Solution to equilibrium using next-generation formalism
The R0 for each genotype k (3.2) and the probability that

genotype k mutates into genotype i (2.6) can be used to calculate

the next-generation matrix, K.

Kik~mikR0k ð3:3Þ

The distribution of genotypes at equilibrium is the eigenvector e
corresponding to the dominant eigenvalue, l, of K.

Ke~le ð3:4Þ

The prevalence of SPVL category j, pj, at equilibrium in the

population is then calculated as follows.

p Vj

� �
~
X

i

eifij ð3:5Þ

This value can then be directly compared with the observed

distribution of SPVL.

The likelihood of each run of the model is calculated by

comparison with data from a previous study reporting the SPVL of

phylogenetically confirmed transmission pairs [6] selected from a

cohort in Rakai, Uganda [52,53]. The likelihood is given by the

probability of observing the index SPVL, Vd, and the recipient’s

SPVL, Vr. This is calculated using conditional probabilities and is

given as follows. The mean log10 SPVL of the genotypes infecting

the recipient and index case are given by mx and my. As these are

unknown, all possible combinations of genotypes are considered.

p Vr\Vdð Þ~
X

x

p Vr mxjð Þ
X

y

p mx my

��� � b Vdð Þp Vd my

��� �
p my

� �
C

ð3:6Þ

in which C is a constant:

C~
X

j

b Vj

� �X
k

p Vj mkj
� �

p mkð Þ ð3:7Þ

and the following have been previously defined in equations (2.2),

(2.6) and (3.4):

p Vr mxjð Þ~fxr ð3:8Þ

p mx my

��� �
~mxy ð3:9Þ

p mið Þ~ei ð3:10Þ

The total log likelihood is calculated for each couple c in which the

direction of transmission is known, and for each couple u where

the direction is unknown the log likelihood is worked out for each

direction and the mean is taken (in this case, Vm and Vf refer to

SPVL of males and females, respectively).

‘~
X

c

log p V c
r \V c

d

� �� �
z

X
u

1

2
log p Vu

m\Vu
f male donorj

� �� �
zlog p Vu

f \Vu
m female donorj

� �� �� �ð3:11Þ

Calculate heritability
Heritability is the proportion of total variation which is

determined by genetic variation in the viral population. It was

measured previously by calculating the proportion of the total

variance which was explained by carrying genetically similar virus

[6]. This can be measured for the modelled distribution in a

similar fashion. The non-heritable component is the variance in

SPVL in individuals infected by an index partner with a particular

SPVL, as a proportion of total variance. This is weighted

according to each possible SPVL of the index.

h2~1{
s2

Ezs2
M

� �
s2

P

ð3:12Þ

s2
P~

X
r

Vrð Þ2p Vrð Þ{
X

r

Vrp Vrð Þ
 !2

ð3:13Þ

Likelihood
The likelihood was estimated by calculating the total likelihood,

,total, for each combination of values of sE (range 0–1.2, step 0.005)

and sM (range 0–1.0, step 0.005). Outside of these ranges the

likelihood of observing the data is very low, as the variance of the

equilibrium distribution becomes vastly higher than is observed.

These values were used instead of their squares, sE
2 and sM

2,

because they are on the same scale as log10 SPVL and are

therefore directly related to the size of the host effect and of

between-host mutation. Furthermore, using sE and sM gives

greater resolution at lower values in the range of interest.

The values of Y0 and mı̂ were not included in this analysis as they

are not relevant to the equilibrium distribution since they serve

only as starting points in the model. All other parameter values

were taken from the literature (Table S1).

The maximum likelihood combination of these two parameters

was estimated and the 95% confidence bounds were identified

using a likelihood ratio test (5.4).

Convergence of SPVL distribution
The next-generation formalism solution described above is

sufficient for analysing the equilibrium distribution of SPVL as the

end results are identical. However, the model must be run in full to

determine the rate at which SPVL evolves in real time.

To run the model in continuous time, the infection is initialised

at time t = 0 for the starting genotype ı̂ with mean mı̂ and a

proportion Y0 of the population are infected. The total number of

infected individuals at the start of the epidemic all enter genotype

category ı̂, and are divided up between all the SPVL categories

according to fı̂j.
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Vj Yîij,0 0ð Þ~Y0 f̂iij ð4:1Þ

All other genotype categories begin at zero, (4.2), as do all ages of

infection greater than zero (4.3).

Vj ,Vk=i Ykj,0 0ð Þ~0 ð4:2Þ

Vj ,Vi,Vaw0 Yij,a 0ð Þ~0 ð4:3Þ

The model was run for 500 years in discrete time-steps

corresponding to one month for each set of the parameter values.

Parameter values, listed in Table S1, were taken from the

literature [19,54,55]. Analyses were conducted using C++,

MATLAB and R [56–58], the latter of which was also used to

produce the figures [59].

Supporting Information

Figure S1 Possible disease progression outcomes for an
infection with log10 SPVL of 6.0. All individuals have the

same length of primary and disease stage infection, regardless of

SPVL. The survival function is the border between asymptomatic

and disease stage infection (‘‘survival’’ here refers to survival from

progression to AIDS, not death). A similar pattern is seen at other

SPVL, but with a different survival function.

(TIFF)

Figure S2 Details of the likelihood surface. (a) For each

value of sM, the value of sE which gives the highest likelihood is

marked in orange on the figure, while the yellow region gives the

95% confidence bounds. Similarly, for each value of sE, the

optimum sM value is marked in dark blue, with 95% confidence

bounds in light blue. Where the maximum likelihood regions for

the two parameters overlap this is marked in green, and the point

of maximum likelihood is white. (b) Likelihood at the optimum

value of sE for each value of sM i.e. it tracks the likelihood of the

orange line. (c) Likelihood at the optimum value of sM for each

value of sE i.e. it tracks the likelihood of the dark blue line.

(TIFF)

Figure S3 Heritability of SPVL measured at equilibri-
um for each combination of parameters sM and sE. The

black line represents the border of the 95% confidence interval on

the maximum likelihood plot, Figure 1.

(TIFF)

Figure S4 Population variance of SPVL measured at
equilibrium for each combination of parameters sM and
sE. The black line represents the border of the 95% confidence

interval on the maximum likelihood plot, Figure 1.

(TIFF)

Table S1 Parameter values. Where possible these values

have been taken from the literature, and a broad range of plausible

values are applied to unknown parameters.

(DOC)

Table S2 The range of values used to construct the latin
hypercube sample. The values for each point in the hypercube

were sampled from a uniform distribution within that range.

(DOC)

Table S3 The maximum likelihood estimates of sM and
sE in 1000 bootstraps. The figures are the proportion of each

combination of values of sM and sE which were the maximum

likelihood estimate when a low resolution likelihood surface was

calculated with 1000 sets of bootstrapped parameters. These

exclude 19 bootstraps in which the optimised parameter values

gave a next-generation matrix with mixed signs, rendering the

result incalculable.

(DOC)

Table S4 The combination of parameters with the
highest value of sM in 1000 bootstraps. The figures are

the proportion of each combination of values of sM and sE which

formed the highest value of sM which was still consistent with the

95% confidence region of the maximum likelihood estimate.

Where several values of sE were available, the one with the highest

likelihood was chosen.

(DOC)

Text S1 Supporting information containing further
details of the methods and results.
(DOC)
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