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Abstract
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Introduction

‘‘Send Three- and Four-Pence, We’re Going to a Dance’’

This phrase was heard, it is claimed, over the radio during WWI

instead of the transmitted tactical phrase ‘‘Send reinforcements

we’re going to advance’’ [1]. As illustrative as it is apocryphal, this

garbled yet comprehensible transmission sets the tone for our

investigations here. Namely, what happens to knowledge when it is

communicated sequentially along a chain, from one individual to

the next? What fidelity can one expect? How is information lost?

How do innovations occur?

To answer these questions we introduce a theory of sequential

causal inference in which learners in a communication chain

estimate a structural model from their upstream ‘‘teacher’’ and

then, using that model, pass along samples to their downstream

‘‘student’’. This reminds one of the familiar children’s game

Telephone. By way of quickly motivating our sequential learning

problem, let’s briefly recall how the game works.

To begin, one player invents a phrase and whispers it to another

player. This player, believing they have understood the phrase,

then repeats it to a third and so on until the last player is reached.

The last player announces the phrase, winning the game if it

matches the original. Typically it does not, and that’s the fun.

Amusement and interest in the game derive directly from how the

initial phrase evolves in odd and surprising ways. The further

down the chain, the higher the chance that errors will make

recovery impossible and the less likely the original phrase will

survive.

The game is often used in education to teach the lesson that

human communication is fraught with error. The final phrase,

though, is not merely accreted error but the product of a series of

attempts to parse, make sense, and intelligibly communicate the

phrase. The phrase’s evolution is a trade off between comprehen-

sibility and accumulated distortion, as well as the source of the

game’s entertainment. We employ a much more tractable setting to

make analytical progress on sequential learning, based on computa-

tional mechanics [2–4], intentionally selecting a simpler language

system and learning paradigm than likely operates with children.

Specifically, we develop our theory of sequential learning as an

extension of the evolutionary population dynamics of genetic drift,

recasting Kimura’s selectively neutral theory [5] as a special case

of a generalized drift process of structured populations with

memory. This is a substantial departure from the unordered

populations used in evolutionary biology. Notably, this requires a

new and more general information-theoretic notion of fixation.

We examine the diffusion and fixation properties of several drift

processes, demonstrating that the space of drift processes is highly

organized. This organization controls fidelity, facilitates innova-

tions, and leads to information loss in sequential learning and

evolutionary processes with and without memory. We close by

describing applications to learning, inference, and evolution,

commenting on related efforts.

To get started, we briefly review genetic drift and fixation. This

will seem like a distraction, but it is a necessary one since available

mathematical results are key. Then we introduce in detail our

structured variants of these concepts—defining the generalized drift

process and formulating a generalized definition of fixation

appropriate to it. With the background laid out, we begin to

examine the complexity of structural drift behavior. We demon-

strate that it is a diffusion process within a space that decomposes

into a connected network of structured subspaces. Building on this

decomposition, we explain how and when processes jump between

these subspaces—innovating new structural information or

forgetting it—thereby controlling the long-time fidelity of the

communication chain. We then close by outlining future research
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and listing several potential applications for structural drift,

drawing out consequences for evolutionary processes that learn.

Those familiar with neutral evolution theory are urged to skip to

Section Sequential Learning, after skimming the next sections to

pick up our notation and extensions.

From Genetic to Structural Drift
Genetic drift refers to the change over time in genotype

frequencies in a population due to random sampling. It is a central

and well studied phenomenon in population dynamics, genetics,

and evolution. A population of genotypes evolves randomly due to

drift, but typically changes are neither manifested as new

phenotypes nor detected by selection—they are selectively neutral.

Drift plays an important role in the spontaneous emergence of

mutational robustness [6,7], modern techniques for calibrating

molecular evolutionary clocks [8], and nonadaptive (neutral)

evolution [9,10], to mention only a few examples.

Selectively neutral drift is typically modeled as a stochastic

process: A random walk that tracks finite populations of

individuals in terms of their possessing (or not) a variant of a

gene. In the simplest models, the random walk occurs in a space

that is a function of genotypes in the population. For example, a

drift process can be considered to be a random walk of the fraction

of individuals with a given variant. In the simplest cases there, the

model reduces to the dynamics of repeated binomial sampling of a

biased coin, in which the empirical estimate of bias becomes the

bias in the next round of sampling. In the sense we will use the

term, the sampling process is memoryless. The biased coin, as the

population being sampled, has no memory: The past is

independent of the future. The current state of the drift process

is simply the bias, a number between zero and one that

summarizes the state of the population.

The theory of genetic drift predicts a number of measurable

properties. For example, one can calculate the expected time until

all or no members of a population possess a particular gene

variant. These final states are referred to as fixation and deletion,

respectively. Variation due to sampling vanishes once these states

are reached and, for all practical purposes, drift stops. From then

on, the population is homogeneous; further sampling can

introduce no genotypic variation. These states are fixed points—

in fact, absorbing states—of the drift stochastic process.

The analytical predictions for the time to fixation and time to

deletion were developed by Kimura and Ohta [5,11] in the 1960s

and are based on the memoryless models and simplifying

assumptions introduced by Wright [12] and Fisher [13] in the

early 1930s. The theory has advanced substantially since then to

handle more realistic models and to predict additional effects due

to selection and mutation. These range from multi-allele drift

models and F -statistics [14] to pseudohitchhiking models of

‘‘genetic draft’’ [15].

The following explores what happens when we relax the

memoryless restriction. The original random walk model of

genetic drift forces the statistical structure at each sampling step to

be an independent, identically distributed (IID) stochastic process.

This precludes any memory in the sampling. Here, we extend the

IID theory to use time-varying probabilistic state machines to

describe memoryful population sampling.

In the larger setting of sequential learning, we will show that

memoryful sequential sampling exhibits structurally complex,

drift-like behavior. We call the resulting phenomenon structural

drift. Our extension presents a number of new questions regarding

the organization of the space of drift processes and how they

balance structure and randomness. To examine these questions,

we require a more precise description of the original drift theory.

Genetic Drift
We begin with the definition of an allele, which is one of several

alternate forms of a gene. The textbook example is given by

Mendel’s early experiments on heredity [16], in which he observed

that the flowers of a pea plant were colored either white or violet,

this being determined by the combination of alleles inherited from

its parents. A new, mutant allele is introduced into a population by

the mutation of a wild-type allele. A mutant allele can be passed on

to an individual’s offspring who, in turn, may pass it on to their

offspring. Each inheritance occurs with some probability.

Genetic drift, then, is the change of allele frequencies in a

population over time. It is the process by which the number of

individuals with an allele varies generation after generation. The

Fisher-Wright theory [12,13] models drift as a stochastic

evolutionary process with neither selection nor mutation. It

assumes random mating between individuals and that the

population is held at a finite, constant size. Moreover, successive

populations do not overlap in time.

Under these assumptions the Fisher-Wright theory reduces drift

to a binomial or multinomial sampling process—a more compli-

cated version of familiar random walks such as Gambler’s Ruin or

Prisoner’s Escape [17]. Offspring receive either the wild-type allele

A1 or the mutant allele A2 of a particular gene A from a random

parent in the previous generation with replacement. A population

of N diploid individuals will have 2N total copies of these alleles.

(Though we first use diploid populations (two alleles per individual

and thus a sample length of 2N) for direct comparison to previous

work, we later transition to haploid (single allele per individual)

populations for notational simplicity.) Given i initial copies of A2

in the population, an individual has either A2 with probability

i=2N or A1 with probability 1{i=2N. The probability that j

copies of A2 exist in the offspring’s generation given i copies in the

parent’s generation is:

pij~
2N

j

� �
i

2N

� �j

1{
i

2N

� �2N{j

: ð1Þ

This specifies the transition dynamic of the drift stochastic process

over the discrete state spacef0,1=2N, . . . ,(2N{1)=2N,1g:
This model of genetic drift is a discrete-time random walk,

driven by samples of a biased coin, over the space of biases. The

population is a set of coin flips, where the probability of HEADS

or TAILS is determined by the coin’s current bias. After each

generation of flips, the coin’s bias is updated to reflect the number

of HEADS or TAILS realized in the new generation. The walk’s

absorbing states—all HEADS or all TAILS—capture the notion

of fixation and deletion.

Author Summary

Human knowledge is often transmitted orally within a
group via a sequence of communications between
individuals. The children’s game of Telephone is a familiar,
simplified version. A phrase is uttered, understood, and
then transmitted to another. Genetic information is
communicated in an analogous sequential communication
chain via replication. We show that the evolutionary
dynamics of both problems is a form of genetic drift which
accounts for memory in the communication chain. Using
this, one can predict the mechanisms that lead to
variations in fidelity and to structural innovation.

Structural Drift
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Genetic Fixation
Fixation occurs with respect to an allele when all individuals in

the population carry that specific allele and none of its variants.

Restated, a mutant allele A2 reaches fixation when all 2N alleles in

the population are copies of A2 and, consequently, A1 has been

deleted from the population. This halts the random fluctuations in

the frequency of A2, assuming A1 is not reintroduced.

Let X be a binomially distributed random variable with bias

probability p that represents the fraction of copies of A2 in the

population. The expected number of copies of A2 is E½X �~2Np.

That is, the expected number of copies of A2 remains constant

over time and depends only on its initial probability p and the total

number (2N) of alleles in the population. However, A2 eventually

reaches fixation or deletion due to the change in allele frequency

introduced by random sampling and the presence of absorbing

states. Prior to fixation, the mean and variance of the change in

allele frequency Dp are:

E½Dp�~0 and ð2Þ

Var½Dp�~ p(1{p)

2N
, ð3Þ

respectively.

On average there is no change in frequency. However, sampling

variance causes the process to drift towards the absorbing states at

p~0 and p~1. The drift rate is determined by the current

generation’s allele frequency and the total number of alleles. For

the neutrally selective case, the average number of generations

until fixation (t1) or deletion (t0) is given by Kimura and Ohta [5]:

t1(p)~{
1

p
4Ne(1{p) log (1{p)½ � and ð4Þ

t0(p)~{4Ne
p

1{p

� �
log p, ð5Þ

where Ne denotes effective population size. For simplicity we take

Ne~N, meaning all individuals in the population are candidates

for reproduction. As p?0, the boundary condition is given by:

t1(0)~4Ne: ð6Þ

That is, excluding cases of deletion, an initially rare mutant allele

spreads to the entire population in 4Ne generations.

One important consequence of the theory is that when fixation

(p~1) or deletion (p~0) are reached, variation in the population

vanishes: Var½Dp�~0. With no variation there is a homogeneous

population, and sampling from this population produces the same

homogeneous population. In other words, this establishes fixation

and deletion as absorbing states of the stochastic sampling process.

Once there, drift stops.

Figure 1 illustrates this, showing both the simulated and

theoretically predicted number of generations until fixation occurs

for N~10, as well as the predicted time to deletion for reference.

Each simulation was performed for a different initial value of p
and averaged over 400 realizations. Using the same methodology

as Kimura and Ohta [5], we include only those realizations whose

mutant allele reaches fixation.

Populations are produced by repeated binomial sampling of 2N
uniform random numbers between 0 and 1. An initial probability

1{p is assigned to allele A1 and probability p to allele A2. The

count i of A2 in the initial population is incremented for each

random number less than p. This represents an individual

acquiring the allele A2 instead of A1. The maximum likelihood

estimate of allele frequency in the initial sample is simply the

number of A2 alleles over the sample length: p~i=2N. This

estimate of p is then used to generate a new population of

offspring, after which we re-estimate the value of p. These steps are

repeated each generation until fixation at p~1 or deletion at p~0
occurs. This is the Monte Carlo (MC) sampling method.

Kimura’s theory and simulations predict the time to fixation or

deletion of a mutant allele in a finite population by the process of

genetic drift. The Fisher-Wright model and Kimura’s theory

assume a memoryless population in which each offspring inherits

allele A1 or A2 via an IID binomial sampling process. We now

generalize this to memoryful stochastic processes, giving a new

definition of fixation and exploring examples of structural drift

behavior.

Methods

Sequential Learning
How can genetic drift be a memoryful stochastic process?

Consider a population of N haploid organisms. Each generation

consists of N alleles and so is represented by a string of N symbols,

e.g. A1A2 . . . A1A1, where each symbol corresponds to an

individual with a particular allele. In the original drift models, a

generation of offspring is produced by a memoryless binomial

sampling process, selecting an offspring’s allele from a parent with

replacement. In contrast, the structural drift model produces a

generation of individuals in which the sample order is tracked. The

population is now a string of alleles, giving the potential for

memory and structure in sampling—spatial, temporal, or other

interdependencies between individuals within a sample.

Figure 1. Time to fixation for a population of N~10 individuals
(sample size 2N~20) plotted as a function of initial allele
probability p under the Monte Carlo (MC) sampling regime and
as given by theoretical prediction (solid line) of Eq. (4). Time to
deletion is also shown (dashed line), Eq. (5).
doi:10.1371/journal.pcbi.1002510.g001

Structural Drift
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At first, this appears as a major difference from the usual setting

employed in population biology, where populations are treated as

unordered collections of individuals and sampling is modeled as an

independent, identically distributed stochastic process. That said,

the structure we have in mind has several biological interpreta-

tions, such as inbreeding and subdivision [18] or the life histories

of heterogeneous populations [19]. We later return to these

alternative interpretations when considering applications.

The model class we select to describe memoryful sampling is the

e-machine : the unique, minimal, and optimal representation of a

stochastic process [4]. As we will show, these properties give an

important advantage when analyzing structural drift, since they

allow one to monitor the amount of structure innovated or lost

during drift. We next give a brief overview of e-machines and refer

the reader to the previous reference for details.

The e-machine representations of the finite-memory discrete-

valued stochastic processes we consider here form a class of

(deterministic) probabilistic finite-state machine or unifilar hidden

Markov model. An e-machine consists of a set of causal states

S~f0,1, . . . ,k{1g and a set of per-symbol transition matrices:

fT (a)
ij : a[Ag, ð7Þ

where A~fA1, . . . ,Amg is the set of alleles and where the

transition probability T
(a)
ij gives the probability of transitioning

from causal state Si to causal state Sj and emitting allele a. The

causal state probability Pr (s), s[S, is determined as the left

eigenvector of the state-to-state transition matrix T~
P

a[A T (a).

Maintaining our connection to (haploid) population dynamics,

we think of an e-machine as a generator of populations or length-

N strings: aN~a1a2 . . . ai . . . aN ,ai[A. As a model of a sampling

process, an e-machine gives the most compact representation of

the distribution of strings produced by sampling.

Consider a simple binary process that alternately generates 0s

and 1s called the Alternating Process shown in Figure 2. Its e-machine

generates either the string 0101 . . . or 1010 . . . depending on the

start state. The per-symbol transition matrices are:

T (0)~
0:0 1:0

0:0 0:0

� �
and ð8Þ

T (1)~
0:0 0:0

1:0 0:0

� �
: ð9Þ

Enforcing the alternating period-2 pattern requires two states, A
and B, as well as two positive probability transitions T

(0)
AB~1:0 and

T
(1)
BA~1:0. Branching transitions are required for a process to

structurally drift; the Alternating Process has none. Two simple e-

machines with branching structure are the smaller Fair Coin

Process (Figure 3) and more complex Golden Mean Process

(Figure 4). Both are discussed in detail later.

Beyond using -machines as generators of stochastic processes,

as just described, several alternative reconstruction algorithms exist to

infer -machines from data samples—tree-merging [2], state-

splitting [20], and spectral [21]. These algorithms share a general

approach: First, estimate the distribution of subsequences. (If given

data as a single string, for example, slide a window of length N
over the string and count subsequences of lengths 1 . . . N.) Second,

compute the distinct probability distributions of future subse-

quences conditioned on past subsequences (histories). Third,

partition histories into equivalence classes (causal states) that give

the same conditional future distributions. And, finally, calculate

the transition dynamic between states. Properly reconstructed, the

causal states form a minimal sufficient statistic for prediction in the

sense of Kullback [22]. Here, we circumvent these methods’

complications. Section Structural Innovation and Loss introduces

an alternative that avoids them and is, at the same time, more

computationally efficient.

We are now ready to describe sequential learning, depicted in

Figure 5. We begin by selecting the -machine M0 as an initial

population generator. Following a path through M0, guided by its

transition probabilities, produces a length-N string aN
0 ~a1 . . . aN

that represents the first population of N individuals possessing

alleles ai[A. We then infer an A-machine M1 from the population

aN
0 . M1 is then used to produce a new population aN

1 , from which

Figure 2. -Machine for the Alternating Process consisting of
two causal states S~fA,Bg and two transitions. State A emits
allele 0 with probability one and transitions to state B, while B emits
allele 1 with probability one and transitions to A.
doi:10.1371/journal.pcbi.1002510.g002

Figure 3. -Machine for the Fair Coin Process consisting of a
single causal state S~fAg and a self-transition for both HEADS
and TAILS. Each transition is labeled pDa to indicate the probability
p~T

(a)
ij of taking that transition and emitting allele a[A. We refer to the

Biased Coin Process when p=1=2.
doi:10.1371/journal.pcbi.1002510.g003

Figure 4. -Machine for the Golden Mean Process consisting of
two causal states S~fA,Bg that generates a population with no
consecutive 0s. In state the probabilities of generating a 0 or 1 are p
and 1{p, respectively.
doi:10.1371/journal.pcbi.1002510.g004

Structural Drift
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a new -machine M2 is estimated. This new population has the

same allele distribution as the previous, plus some amount of

variance. The cycle of inference and re-inference is repeated while

allele frequencies drift each generation until fixation or deletion is

reached. At that point, the populations (and so -machines ) cannot

vary further. The net result is a stochastically varying time series of

-machines (M0,M1,M2, . . .) that terminates when the populations

aN
t stop changing.

Thus, at each step a new representation or model is estimated

from the previous step’s sample. The inference step highlights that

this is learning: a model of the generator is estimated from the

given finite data. The repetition of this step creates a sequential

communication chain. Sequential learning is thus closely related to

genetic drift except that sample order is tracked, and this order is

used in estimating the next generator.

The procedure is analogous to flipping a biased coin a number

of times, estimating the bias from the results, and re-flipping the

newly biased coin. Eventually, the coin will be completely biased

towards HEADS or TAILS. In our drift model the coin is replaced by

an -machine, which removes the IID model constraint and allows

for the sampling process to take on structure and memory. Not

only do the transition probabilities T
(a)
ij change, but the structure of

the generator itself—the number of states and the presence or absence

of transitions—drifts over time to capture the statistics of the

sample using as little information as possible. This is an essential

and distinctive aspect of structural drift.

Before we can explore this dynamic, we first need to examine

how an -machine reaches fixation or deletion.

Structural Stasis
Recall the Alternating Process from Figure 1, producing the

strings 0101 . . . and 1010 . . . depending on the start state.

Regardless of the initial state, the original e-machine is re-inferred

from any sufficiently long string it produces. In the context of

sequential learning, this means the population at each generation

is the same.

However, if we consider allele A1 to be represented by symbol 0
and A2 by symbol 1, neither allele reaches fixation or deletion

according to current definitions. Nonetheless, the Alternating

Process prevents any variance between generations and so, despite

the population not being all 0 s or all 1 s, the population does

reach an equilibrium: half 0 s and half 1 s. For these reasons, one

cannot use the original population-dynamics definitions of fixation

and deletion.

This leads us to introduce structural stasis to combine the notions

of fixation, deletion, and the inability to vary caused by periodicity.

Said more directly, structural stasis corresponds to a process

becoming nonstochastic, since it ceases to introduce variance

between generations and so prevents further drift. However, we

need a method to detect the occurrence of structural stasis in a

drift process.

A state machine representing a periodic sampling process

enforces the constraint of periodicity via its internal memory. One

measure of this memory is the population diversity H(N) [23]:

H(N)~H½A1 . . .AN � ð10Þ

~{
X

aN [AN

Pr (aN ) log2 Pr (aN ), ð11Þ

where the units are [bits]. (For background on information theory

as used here, the reader is referred to Ref. [24].) The population

diversity of the Alternating Process is H(N)~1 bit at any size

N&1. This single bit of information corresponds to the machine’s

current phase or state. Generally, though, the value diverges—

H(N)!N—for arbitrary sampling processes, and so population

diversity is not suitable as a general test for stasis.

Instead, the condition for stasis can be given as the vanishing of

the growth rate of population diversity:

hm~ lim
N??
½H(N){H(N{1)�: ð12Þ

Equivalently, we can test the per-allele entropy of the sampling

process. We call this allelic entropy:

hm~ lim
N??

H(N)

N
, ð13Þ

where the units are [bits per allele]. Allelic entropy gives the

average information per allele in bits, and structural stasis occurs

when hm~0. While closer to a general test for stasis, this quantity is

difficult to estimate from population samples since it relies on an

asymptotic estimate of the population diversity. However, the

allelic entropy can be calculated in closed-form from the e-

machine representation of the sampling process:

hm~{
X
s[S

Pr (s)
X
a[A
s0[S

T (a)
ss0 log2 T (a)

ss0 , ð14Þ

For example, the Alternating Process has hm~0, the Fair Coin

Process hm~1, and the Golden Mean Process hm~2=3; all in units

of bits per symbol. When hm~0, the sampling process has become

periodic and lost all randomness generated via its branching

transitions. In this way, we replace the vanishing variance (Dp~0)

of a single bias parameter in the Kimura drift setting with a

general measure of the sampling process’s stochasticity. This new

criterion subsumes the notions of fixation and deletion as well as

periodicity. An e-machine has zero allelic entropy if any of these

conditions occur. More formally, we have the following statement.

Definition Structural stasis occurs when the sampling process’s allelic

entropy vanishes: hm~0.

Proposition Structural stasis is a fixed point of finite-memory structural

drift.

Figure 5. Sequential inference with a chain of -machines. An
initial population generator M0 produces a length-N string
aN

0 ~a1 . . . aN from which a new model M1 is inferred. These steps
are repeated using M1 as the population generator and so on, until a
terminating condition is met.
doi:10.1371/journal.pcbi.1002510.g005

Structural Drift
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Proof Finite-memory means that the e-machine representing the population

sampling process has a finite number of states. Given this, if hm~0, then the

e-machine has no branching in its recurrent states: T
(a)
ij ~0 or 1, where Si

and Sj are asymptotically recurrent states. This results in no variation in the

inferred e-machine when sampling sufficiently large populations. Lack of

variation, in turn, means the transition probabilities can no longer change and

so the drift process stops. If allelic entropy vanishes at time t and no mutations

are allowed, then it is zero for all t
0
wt. Thus, structural stasis is an absorbing

state of the drift stochastic process.

Results

While more can be said analytically about structural drift, our

present purpose is to introduce the main concepts. We will show

that structural drift leads to interesting and nontrivial behavior.

First, we calibrate the new class of drift processes against the

original genetic drift theory.

Memoryless Drift
The Biased Coin Process is represented by a single-state e-

machine with a self loop for both HEADS and TAILS symbols; see

Figure 3. It is an IID sampling process that generates populations

with a binomial distribution of alleles. Unlike the Alternating

Process, the coin’s bias p is free to drift during sequential inference.

These properties make the Biased Coin Process an ideal candidate

for exploring memoryless drift.

Figure 6 shows structural drift, using two different measures, for

a single realization of the Biased Coin Process with initial p~ Pr
[HEADS] = Pr [TAILS] = 0.5. Structural stasis (hm~0) is reached

after 115 generations. The initial Fair Coin e-machine occurs at

the left of Figure 6 and the final, completely biased e-machine

occurs at the right.

Note that the drift of allelic entropy hm and p~ Pr [TAILS] are

inversely related, with allelic entropy converging quickly to zero as

stasis is approached. This reflects the rapid drop in population

diversity. After stasis occurs, all randomness has been eliminated

from the transitions at state A, resulting in a single transition that

always produces TAILS. Anticipating later discussion, we note

that during this run only Biased Coin Processes were observed.

The time to stasis of the Biased Coin Process as a function of

initial p~ Pr [HEADS] was shown in Figure 7. Also shown there

was the previous Monte Carlo Kimura drift simulation modified to

terminate when either fixation or deletion occurs. This experiment

illustrates the definition of structural stasis and allows direct

comparison of structural drift with genetic drift in the memoryless

case.

Not surprisingly, we can interpret genetic drift as a special case

of the structural drift process for the Biased Coin. Both simulations

follow Kimura’s theoretically predicted curves, combining the

lower half of the deletion curve with the upper half of the fixation

curve to reflect the initial probability’s proximity to the absorbing

states. A high or low initial bias leads to a shorter time to stasis as

the absorbing states are closer to the initial state. Similarly, a Fair

Coin is the furthest from absorption and thus takes the longest

average time to reach stasis.

Structural Drift
The Biased Coin Process represents an IID sampling process

with no memory of previous flips, reaching stasis when

Pr[HEADS] = 1.0 or 0.0 and, correspondingly, when hm(Mt)~0:0.

We now introduce memory by starting drift with M0 as the Golden

Mean Process, which produces binary populations with no

consecutive 0s. Its e-machine was shown in Figure 4. Note that

one can initialize drift using any stochastic process; for example,

see the e-machine library of Ref. [25].

Like the Alternating Process, the Golden Mean Process has two

causal states. However, the transitions from state A have nonzero

entropy, allowing their probabilities to drift as new e-machines are

inferred from generation to generation. If the A?B transition

probability p (Figure 4) becomes zero the transition is removed,

and the Golden Mean Process reaches stasis by transforming into

the Fixed Coin Process (top right, Figure 6). Instead, if the same

transition drifts towards probability p~1, the A?A transition is

removed. In this case, the Golden Mean Process reaches stasis by

transforming into the Alternating Process (Figure 2).

To compare structural drift behaviors, consider also the Even

Process. Similar in form to the Golden Mean Process, the Even

Process produces populations in which blocks of consecutive 1s

must be even in length when bounded by 0s [24]. Figure 8

compares the drift of Pr[HEADS] for a single realization of the

Biased Coin, Golden Mean, and Even Processes. One observes

that the Even and Biased Coin Processes reach stasis as the Fixed

Coin Process, while the Golden Mean Process reaches stasis as the

Alternating Process. For different realizations, the Even and

Golden Mean Processes might instead reach different stasis points.

It should be noted that the memoryful Golden Mean and Even

Processes reach stasis markedly faster than the memoryless Biased

Coin. While Figure 8 shows only a single realization of each

sampling process type, the top panel of Figure 9 shows the large

disparity in stasis times holds across all settings of each process’s

initial bias. This is one of our first general observations about

memoryful processes: The structure of memoryful processes

substantially impacts the average time to stasis by increasing

variance between generations. In the cases shown, time to stasis is

greatly shortened.

Isostructural Subspaces
To illustrate the richness of structural drift and to understand

how it affects average time to stasis, we examine the complexity-

entropy (CE) diagram [26] of the e-machines produced over

Figure 6. Drift of allelic entropy hm and Pr[HEADS] for a single
realization of the Biased Coin Process with sample size N~100.
The drift of Pr[HEADS] is annotated with its initial machine M0 (left inset)
and the machine at stasis M115 (right inset).
doi:10.1371/journal.pcbi.1002510.g006

Structural Drift

PLoS Computational Biology | www.ploscompbiol.org 6 June 2012 | Volume 8 | Issue 6 | e1002510



several realizations of an arbitrary sampling process. The CE

diagram displays how the allelic entropy hm of an e-machine varies

with the allelic complexity Cm of its causal states:

Cm~{
X
s[S

Pr (s) log2 Pr (s), ð15Þ

where the units are [bits]. The allelic complexity is the Shannon

entropy over an e-machine ’s stationary state distribution Pr (S). It

measures the memory needed to maintain the internal state while

producing stochastic outputs. e-Machine minimality guarantees

that Cm is the smallest amount of memory required to do so. Since

there is a one-to-one correspondence between processes and their

e-machines, a CE diagram is a projection of process space onto the

two coordinates (hm,Cm). Used in tandem, these two properties

differentiate many types of sampling process, capturing both their

intrinsic memory (Cm) and the diversity (hm) of populations they

generate.

Subspace diffusion. Two such CE diagrams are shown in

Figure 10, illustrating different subspaces and stasis points

reachable by the Golden Mean Process during structural drift.

Consider the left panel first. An e-machine reaches stasis by

transforming into either the Fixed Coin or the Alternating Process.

To reach the former, the e-machine begins on the upper curve in

the left panel and drifts until the A?B transition probability nears

zero and the inference algorithm decides to merge states in the

next generation. This forces the e-machine to jump to the Biased

Coin subspace on the line Cm~0 where it will most likely diffuse

until the Fixed Coin stasis point at (hm,Cm)~(0,0) is reached. If

instead the A?B transition probability drifts towards zero, the

Golden Mean stays on the upper curve until reaching the

Alternating Process stasis point at (hm,Cm)~(0,1). Thus, the two

stasis points are differentiated not by hm but by Cm, with the

Alternating Process requiring 1 bit of memory to track its internal

state and the Biased Coin Process requiring none.

What emerges from these diagrams is a broader view of how

population structure drifts in process space. Roughly, the Mt

diffuse locally in the parameter space specified by the current,

fixed architecture of states and transitions. During this, transition

probability estimates vary stochastically due to sampling variance.

Since Cm and hm are continuous functions of the transition

probabilities, this variance causes the Mt to fall on well defined

curves or regions corresponding to a particular process subspace.

(See Figures 4 and 5 in Ref. [26] and the theory for these curves

and regions there.)

We refer to these curves as isostructural curves and the associated

sets of e-machines as isostructural subspaces. They are metastable

subspaces of sampling processes that are quasi-invariant under the

structural drift dynamic. When one or more e-machine parameters

diffuse sufficiently so that inference is forced to change topology by

adding or removing states or transitions to reflect the statistics of

the sample, this quasi-invariance is broken. We call such

topological shifts subspace jumps to reflect the new region occupied

by the resulting e-machine in process space, as visualized by the

CE diagram. Movement between subspaces is often not bidirec-

tional—innovations from a previous topology may be lost either

temporarily (when the innovation can be restored by returning to

the subspace) or permanently. For example, the Golden Mean

subspace commonly jumps to the Biased Coin subspace but the

opposite is highly improbable without mutation. (We consider the

latter type of structural drift elsewhere.)

Before describing the diversity seen in the CE diagram of

Figure 10’s right panel, we first turn to analyze in some detail the

time-to-stasis underlying the behavior illustrated in the left panel.

Subspace decomposition. A pathway is a set of subspaces

passed through by any drift realization starting from some initial

process and reaching a specific stasis point. The time to stasis of a

Figure 7. Time to stasis as a function of initial Pr[HEADS] for
structural drift (SD) of the Biased Coin Process versus Monte
Carlo (MC) simulation of Kimura’s model. Kimura’s predicted
times to fixation and deletion are shown for reference. Each estimated
time is averaged over 100 realizations with sample size N~1000.
doi:10.1371/journal.pcbi.1002510.g007

Figure 8. Drift of Pr[HEADS] for a single realization of the Biased
Coin, Golden Mean, and Even Processes, plotted as a function
of generation. The Even and Biased Coin Processes become the Fixed
Coin Process at stasis, while the Golden Mean Process becomes the
Alternating Process. Note that the definition of structural stasis
recognizes the lack of variance in the Alternating Process subspace
even though the allele probability is neither 0 nor 1.
doi:10.1371/journal.pcbi.1002510.g008
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drift process P is the sum of time spent in the subspaces c visited

by its pathways to stasis r, weighted by the probabilities that these

pathways and subspaces will be reached. The time spent in a

subspace ciz1 merely depends on the transition parameter(s) of the

e-machine at the time of entry and is otherwise independent of the

prior subspace ci. Thus, calculating the stasis time of a structured

population can be broken down into independent subspace times

when we know the values of the transition parameters at subspace

jumps. These values can be derived both empirically and

analytically, and we aim to develop the latter for general drift

processes in future work.

More formally, the time to stasis ts of a drift process P is simply

the weighted sum of the stasis times for its connected pathways r:

ts(P)~
XDrD

i~1

Pr (ri DP)ts(ri DP), ð16Þ

Similarly, the stasis time of a particular pathway decomposes into

the time spent diffusing in its connected subspaces c:

ts(ri DP)~
XDcD
i~1

Pr (ci Dri,P)t(ci Dri,P): ð17Þ

To demonstrate, Figure 9 shows the stasis time of the Golden

Mean Process (GMP) with initial bias p0 in more detail. Regression

lines along with their 95% confidence intervals are displayed for

simulations with initial biases 0:1,0:2, . . . , and 0:9. The middle

panel shows the total time to stasis as the weighted sum of its Fixed

Coin (FC) and Alternating Process (AP) pathways:

ts(GMP(p0))~ Pr (FCDGMP(p0))ts(FCDGMP(p0))

z Pr (APDGMP(p0))ts(APDGMP(p0)):

For low p0, the transition from state A to state B is unlikely, so 0 s

are rare and the AP pathway is reached infrequently. Thus, the

total stasis time is initially dominated by the FC pathway

(Pr (FCDGMP(p0)) is high). As p0?0:3 and above, the AP

pathway is reached more frequently (Pr (APDGMP(p0)) grows)

and its stasis time begins to influence the total. The FC pathway is

less likely as p0?0:6 and the total time becomes dominated by the

AP pathway (Pr (APDGMP(p0)) is high).

Since the AP pathway visits only one subspace, the bottom

panel shows the stasis time of the FC pathway as the weighted sum

of the Golden Mean (GM) and Biased Coin (BC) subspace times:

ts(FCDGMP(p0))~

Pr (GMDFC,GMP(p0))t(GMDFC,GMP(p0))z

Pr (BCDFC,GMP(p0))t(BCDFC,GMP(p0)):

ð18Þ

This corresponds to time spent diffusing in the GM subspace before

the subspace jump and time spent diffusing in the BC subspace

after the subspace jump. Note that the times quoted are simply

Figure 9. Top: Time to stasis of the Golden Mean, Even, and Biased
Coin Processes. Middle: Stasis time of the Golden Mean Process as the
weighted sum of stasis times for the Fixed Coin (FC) and Alternating
Process (AP) pathways. Bottom: Stasis time of the FC pathway as the
weighted sum of Golden Mean (GM) and Biased Coin (BC) subspace
diffusion times.
doi:10.1371/journal.pcbi.1002510.g009
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diffusion times within a subspace, since not every subspace in a

pathway contains a stasis point.

These expressions emphasize the dependence of stasis time on

the transition parameters at jump points as well as on the

architecture of isostructural subspaces in drift process space. For

example, if the GM jumps to the BC subspace at p~0:5, the stasis

time will be large since the e-machine is maximally far from either

stasis point. However, the inference algorithm will typically jump

at very low values of p resulting in a small average stasis time for

the BC subspace in the FC pathway. Due to this, calculating the

stasis time for the GMP requires knowing the AP and FC

pathways as well as the value of p where the GM?BC jump

occurs.

Structural innovation and loss. Inference of e-machines

from finite populations is computationally expensive, particularly

in our sequential setting with many realizations. The topology of

the e-machine is inferred directly from the statistics of finite

samples; both states and transitions are added and removed over

time to capture innovation and loss of population structure. In the

spirit of Kimura’s pseudo-sampling variable (PSV) method [27], we

introduce a PSV algorithm for efficient structural drift simulation

and increased control of the trade-off between structural

innovation and loss.

Instead of inferring and re-inferring an e-machine each

generation, we explicitly define the conditions for topological

changes to the e-machine of the previous generation. To test for

structural innovation, a random causal state from the current Mt is

cloned and random incoming transitions are routed instead to the

cloned state. This creates a new model M ’t that describes the same

process. Gaussian noise is then added to the cloned state’s

outgoing transitions to represent some change in population

structure. The likelihood of the population aN
t is calculated for

both Mt and M ’t and the model with the maximum a posteriori

(MAP) likelihood is retained:

MMAP~argmaxfPr (aN
t DMt), Pr (aN

t DM ’t)g: ð19Þ

If the original Mt was retained, its transition parameters are

updated by feeding the sample through the model to obtain edge

counts which are then normalized to obtain probabilities. This

produces a generator for the next generation’s population in a way

that allows for innovation. As well, it side-steps the computational

cost of the inference algorithm.

To capture structural loss, we monitor near-zero transition

probabilities where an e-machine inference algorithm would

merge states. When such a transition exists we test for structural

simplification by considering all pairwise mergings of causal states

and select the topology via the MAP likelihood. However, unlike

above, we penalize likelihood using the Akaike Information

Criterion (AIC) [28]:

AIC~2k{2 ln (L), ð20Þ

and, in particular, the AIC corrected for finite sample sizes [29]:

AICc~AICz
2k(kz1)

n{k{1
, ð21Þ

where k is the number of model parameters, L is the sample

likelihood, and n is the sample size. A penalized likelihood is

necessary because a smaller e-machine is more general and cannot

fit the data as well. When penalized by model size, however, a

smaller model with sufficient fit to the data may be selected over a

larger, better fitting model. This method allows loss to occur while

again avoiding the expense of the full e-machine inference

algorithm. Extensive comparisons with several versions of the

latter show that the new PSV structural drift algorithm produces

qualitatively the same behavior.

Having explained how the pseudo-drift algorithm introduces

structural innovation and loss we can now describe the drift runs of

Figure 10’s right panel. In contrast to the left panel, structural

innovation was enabled. The immediate result is that the drift

process visits a much wider diversity of isostructural subspaces—

sampling processes that are markedly more complex. e-Machines

with 8 or more states are created, some of which are quite entropic

and so produce high sampling variance. Stasis e-machines with

Figure 10. Complexity-entropy diagram for 30 realizations of the Golden Mean Process with N~1000, both without (left) and with
(right) structural innovation. Alternating Process and Fixed Coin pathways are clearly visible in the left panel where the Golden Mean subspace
exists on the upper curve and the Biased Coin subspace exists on the line Cm~0. e-Machines within the same isostructural subspace have identical
colors.
doi:10.1371/journal.pcbi.1002510.g010
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periods 3, 4, 5, and 6 are seen, while only those with periods 1 and

2 are seen in runs without innovation (left panel).

By way of closing this first discussion of structural drift, it should

be emphasized that none of the preceding phenomena occur in the

limit of infinite populations or infinite sample size. The variance

due to finite sampling drives sequential learning, the diffusion

through process space, and the jumps between isostructural

subspaces.

Discussion

Applications and Extensions
Much of the previous discussion focused on structural drift as a

kind of stochastic process, with examples and behaviors selected to

emphasize the role of structure. Although there was a certain

terminological bias toward neutral evolution theory since the latter

provides an entree to analyzing how structural drift works, our

presentation was intentionally general. Motivated by a variety of

potential applications and extensions, we describe these now and

close with several summary remarks on structural drift itself.

Emergent semantics and learning in communication

chains. Let’s return to draw parallels with the opening example

of the game of Telephone or, more directly, to the sequential

inference of temporal structure in an utterance passed along a

serially coupled communication chain. There appears to be no

shortage of related theories of language evolution. These range

from the population dynamics of Ref. [30] and the ecological

dynamics of Ref. [31] to the cataloging of error sources in human

communication [32] and recent efforts to understand cultural

evolution as reflecting learning biases [33,34].

By way of contrast, structural drift captures the language-centric

notion of dynamically changing semantics and demonstrates how

behavior is driven by finite-sample fluctuations within a seman-

tically organized subspace. The symbols and words in the

generated strings have a semantics given by the structure of a

subspace’s e-machine ; see Ref. [3]. A particularly simple example

was identified quite early in the information-theoretic analysis of

natural language: The Golden Mean e-machine (Figure 4)

describes the role of isolated space symbols in written English

[35, Figure 1]. Notably, this structure is responsible for the

Mandelbrot-Zipf power-law scaling of word frequencies [36,37].

More generally, though, the semantic theory of e-machines shows

that causal states provide dynamic contexts for interpretation as

individual symbols and words are recognized. Quantitatively, the

allelic complexity Cm(Mt) is the total amount of semantic content

that can be generated by an Mt [3]. In this way, shifts in the

architecture of the Mt during drift correspond to semantic

changes. That is, diffusion within an isostructural subspace

corresponds to constant semantics, while jumps between isostruc-

tural subspaces correspond to semantic innovations (or losses).

In the drift behaviors explored above, the Mt went to stasis

(hm~0) corresponding to periodic formal languages. Clearly, such

a long-term condition falls far short as a model of human

communication chains. The resulting communications, though

distant from those at the beginning of the chain, are not periodic.

To more closely capture emergent semantics in the context of

sequential language learning, we have extended structural drift to

include mutation and selection. In future work we will use these

extensions to investigate how the former prevents permanent stasis

and the latter enables a preference for intelligible phrases.

Cultural evolution and iterated learning. Extending these

observations, the Iterated Learning Model (ILM) of language

evolution [38,39] is of particular interest. In this model, a language

evolves by repeated production and acquisition by agents under

cultural pressures and the ‘‘poverty of the stimulus’’ [38]. Via this

process, language is effectively forced through a transmission

bottleneck that requires the learning agent to generalize from finite

data. This, in turn, exerts pressure on the language to adapt to the

bias of the learner. Thus, in contrast to traditional views that the

human brain evolved to learn language, ILM suggests that

language also adapts to be learnable by the human brain.

ILM incorporates the sequential learning and propagation of

error we discuss here and provides valuable insight into the effects

of error and cultural mutations on the evolution of language for

the ‘‘human niche’’. There are various simulation approaches to

ILM with both single and multiple agents based on, for example,

neural networks and Bayesian inference, as well as experiments

with human subjects. We suggest that structural drift could also

serve as the basis for single-agent ILM experiments, as found in

Swarup et al. [40], where populations of alleles in the former are

replaced by linguistic features of the latter. The benefits are

compelling: an information-theoretic framework for quantifying

the trade-off between learner bias and transmission bottleneck

pressures, visualization of cultural evolution via the CE diagram,

and decomposition of the time-to-stasis of linguistic features in

terms of isostructural subspaces as presented above.

Epochal evolution. Beyond applications to knowledge trans-

mission via serial communication channels, structural drift gives an

alternative view of drift processes in population genetics. In light of

new kinds of evolutionary behavior, it reframes the original

questions about underlying mechanisms and extends their scope to

phenomena that exhibit memory in the sampling process or that

derive from structure in populations. Examples of the latter

include niche construction [41], the effects of environmental toxins

[42], changes in predation [43], and socio-political factors [44]

where memory lies in the spatial distribution of populations. In

addition to these, several applications to areas beyond population

genetics proper suggest themselves.

An intriguing parallel exists between structural drift and the

longstanding question about the origins of punctuated equilibrium [45]

when modeled as the dynamics of epochal evolution [46,47]. The

possibility of evolution’s intermittent progress—long periods of

stasis punctuated by rapid change—dates back to Fisher’s

demonstration of metastability in drift processes with multiple

alleles [13].

Epochal evolution, though, presented an alternative to the view

of metastability posed by Fisher’s model and Wright’s adaptive

landscapes [48]. Within epochal evolutionary theory, equivalence

classes of genotype fitness, called subbasins, are connected by

fitness-changing portals to other subbasins. A genotype is free to

diffuse within its subbasin via selectively neutral mutations, until

an advantageous mutation drives genotypes through a portal to a

higher-fitness subbasin. An increasing number of genotypes derive

from this founder and diffuse in the new subbasin until another

portal to higher fitness is discovered. Thus, the structure of the

subbasin-portal architecture dictates the punctuated dynamics of

evolution.

Given an adaptive system which learns structure by sampling its

past organization, structural drift theory implies that its evolu-

tionary dynamics are inevitably described by punctuated equilib-

ria. Diffusion in an isostructural subspace corresponds to a period

of structured equilibrium in a subbasin and subspace jumps

correspond to rapid innovation or loss of organization during the

transit of a portal. In this way, structural drift establishes a

connection between evolutionary innovation and structural

change, identifying the conditions for creation or loss of

organization. Extending structural drift to include mutation and

selection will provide a theoretical framework for epochal
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evolution using any number of structural constraints in a

population.

Evolution of graph-structured populations. We focused

primarily on the drift of sequentially ordered populations in which

the generator (an e-machine ) captured the structure and

randomness in that ordering. We aimed to show that a

population’s organization plays a crucial role in its dynamics.

This was, however, only one example of the general class of drift

process we have in mind. For example, computational mechanics

also describes structure in spatially extended systems [49,50].

Given this, it is straightforward to build a model of drift in

geographically distributed populations that exhibit spatiotemporal

structure.

Though they have not tracked the structural complexity

embedded in populations as we have done here, a number of

investigations consider various classes of structured populations.

For example, the evolutionary dynamics of structured populations

have been studied using undirected graphs to represent correla-

tions between individuals. Edge weights wij between individuals i
and j give the probability that i will replace j with its offspring

when selected to reproduce.

By studying fixation and selection behavior on different types of

graphs, Lieberman et al. found that graph structures can

sometimes amplify or suppress the effects of selection, even

guaranteeing the fixation of advantageous mutations [51]. Jain

and Krishna [52] investigated the evolution of directed graphs and

the emergence of self-reinforcing autocatalytic networks of

interaction. They identified the attractors in these networks and

demonstrated a diverse range of behaviors from the creation of

structural complexity to its collapse and permanent loss.

Graph evolution is a model of population structure comple-

mentary to that presented by structural drift. In the latter, e-

machine structure evolves over time with nodes representing

equivalence classes of the distribution of selectively neutral alleles.

Unlike e-machines, the multinomial sampling of individuals in

graph evolution is a memoryless process. A combined approach

will allow one to examine how amplification and suppression of

selection and the emergence of autocatalysis are affected by

external influences on the population structure. For example, this

could include how a population uses temporal memory to

maintain desirable properties in anticipation of structural shifts

in the environment. The result would provide a theory for niche

construction in which a nonlinear dynamics of pattern formation

spontaneously changes population structure.

Final Remarks
The Fisher-Wright model of genetic drift can be viewed as a

random walk of coin biases, a stochastic process that describes

generational change in allele frequencies based on a strong

statistical assumption: the sampling process is memoryless. Here,

we developed a generalized structural drift model that adds

memory to the process and examined the consequences of such

population sampling memory.

Memoryful sampling is a substantial departure from modeling

evolutionary processes with unordered populations. Rather than

view structural drift as a replacement for the well understood

theory of genetic drift, and given that the latter is a special case of

structurally drifting populations, we propose that it be seen as a

new avenue for theoretical invention. Given its additional ties to

language and cultural evolution, we believe it will provide a novel

perspective on evolution in nonbiological domains, as well.

The representation selected for the population sampling

mechanism was the class of probabilistic finite-state hidden

Markov models called e-machines. We discussed how a sequential

chain of e-machines inferred and re-inferred from the finite data

they generate parallels the drift of alleles in a finite population,

using otherwise the same assumptions made by the Fisher-Wright

model. The mathematical foundations developed for the latter and

its related models provide a good deal quantitative, predictive

power. Much of this has yet to be exploited. In concert with this, e-

machine minimality allowed us to monitor information processing,

information storage, and causal architecture during the drift

process. We introduced the information-theoretic notion of

structural stasis to combine the concepts of deletion, fixation,

and periodicity for drift processes. Generally, structural stasis

occurs when the population’s allelic entropy vanishes—a quantity

one can calculate in closed form due to the e-machine

representation of the sampling process.

We revisited Kimura and Ohta’s early results measuring the

time to fixation of drifting alleles and showed that the generalized

structural drift process reproduces these well known results when

staying within the memoryless sampling process subspace. Starting

with structured populations outside of that subspace led the

sampling process to exhibit memory effects including structural

innovation and loss, complex transients, and greatly reduced stasis

times.

Simulations demonstrated how an e-machine diffuses through

isostructural process subspaces during sequential learning. The

result was a very complex time-to-stasis dependence on the initial

probability parameter—much more complicated than Kimura’s

theory describes. Nonetheless, we showed that a process’ time to

stasis can be decomposed into sums over these independent

subspaces. Moreover, the time spent in an isostructural subspace

depends on the value of the e-machine probability parameters at

the time of entry. This suggests an extension to Kimura’s theory

for predicting the time to stasis for each isostructural component

independently. Much of the phenomenological analysis was

facilitated by the global view of drift process space given by the

complexity-entropy diagram.

Drift processes with memory generally describe the evolution of

structured populations without mutation or selection. Nonetheless,

we showed that structure leads to substantially shorter stasis times.

This was seen in drifts starting with the Biased Coin and Golden

Mean Processes, where the Golden Mean jumps into the Biased

Coin subspace close to an absorbing state. This suggests that even

without selection, population structure and sampling memory

matter in evolutionary dynamics. The temporal or spatial memory

captured by the e-machine can be interpreted as nonrandom

mating, reducing the effective population size Ne and, in doing so,

increasing sampling variance. It also suggests that memoryless

models restrict sequential learning and overestimate stasis times for

structured populations.

We demonstrated how structural drift—diffusion, structural

innovation and loss—are controlled by the architecture of

connected isostructural subspaces. Many questions remain about

these subspaces. What is the degree of subspace-jump irrevers-

ibility? Can we predict the likelihood of these jumps? What does

the phase portrait of a drift process look like? Thus, to better

understand structural drift, we need to analyze the high-level

organization of generalized drift process space.

Fortunately, e-machines are in one-to-one correspondence with

structured processes [25]. Thus, the preceding question reduces to

understanding the space of e-machines and how they can be

connected by diffusion processes. Is the diffusion within each

process subspace predicted by Kimura’s theory or some simple

variant? We have given preliminary evidence that it does. And so,

there are reasons to be optimistic that in face of the open-ended

complexity of structural drift, a good deal can be predicted
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analytically. And this, in turn, will lead to quantitative applica-

tions.
Author Contributions

Conceived and designed the experiments: JPC SW. Performed the

experiments: JPC SW. Analyzed the data: JPC SW. Contributed

reagents/materials/analysis tools: JPC SW. Wrote the paper: JPC SW.

References

1. Smith CUM (1988) Send reinforcements we’re going to advance. Bio Phil 3:
214–217.

2. Crutchfield JP, Young K (1989) Inferring Statistical Complexity. Phys Rev Lett
63: 105–108.

3. Crutchfield JP (1992) Semantics and Thermodynamics. In: Casdagli M,

Eubank S, eds. Non-linear Modeling and Forecasting. New York: Addison-
Wesley. pp 317–359.

4. Shalizi CR, Crutchfield JP (2001) Computational Mechanics: Pattern and
Prediction, Structure and Simplicity. J Stat Phys 104: 817–879.

5. Kimura M, Ohta T (1969) The Average Number of Generations until Fixation

of a Mutant Gene in a Finite Population. Genetics 61: 763–771.
6. van Nimwegen E, Crutchfield JP, Huynen M (1999) Neutral evolution of

mutational robustness. Proc Natl Acad Sci U S A 96: 9716–9720.
7. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability

promotes evolvability. Proc Natl Acad Sci U S A 103: 5869–5874.
8. Raval A (2007) Molecular Clock on a Neutral Network. Phys Rev Lett 99:

138104–138108.

9. Crutchfield JP, Schuster PK (2003) Evolutionary Dynamics: Exploring the
Interplay of Selection, Accident, Neutrality, and Function. Santa Fe Institute

Series in the Sciences of Complexity Oxford University Press.
10. Koelle K, Cobey S, Grenfell B, Pascual M (2006) Epochal evolution shapes the

phylodynamics of interpandemic inuenza A (H3N2) in humans. Science 314:

1898–1903.
11. Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge,

UK: Cambridge University Press. 367 p.
12. Wright S (1931) Evolution in Mendelian Populations. Genetics 16: 97–126.

13. Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford, England:
Clarendon Press. 272 p.

14. Holsinger KE, Weir BS (2009) Genetics in geographically structured

populations: Defining, estimating and interpreting F ST. Nat Rev Gen 10:
639–650.

15. Gillespie JH (2000) Genetic Drift in an Infinite Population: The Pseudohitchhik-
ing Model. Genetics 155: 909–919.

16. Mendel G (1925) Experiments in Plant Hybridisation. Cambridge: Harvard

University Press.
17. Feller W (1968) An Introduction to Probability Theory and Its Applications,

Volume 1. San Francisco: John Wiley and Sons. 3rd edition. 509 p.
18. Gillespie JH (2004) Population Genetics: A Concise Guide Johns Hopkins

University Press. 2nd edition.
19. Leibler S, Kussell E (2010) Individual histories and selection in heterogeneous

populations. Proc Natl Acad Sci U S A 107: 13183–13188.

20. Shalizi CR, Shalizi KL, Crutchfield JP (2002) Pattern Discovery in Time Series,
Part I: Theory, Algorithm, Analysis, and Convergence. http://arXiv.org/abs/

cs.LG/0210025.
21. Varn DP, Canright GS, Crutchfield JP (2002) Discovering planar disorder in

close-packed structures from x-ray diffraction: Beyond the fault model. Phys

Rev B Condens Matter 66: 174110–3.
22. Kullback S (1959) Information Theory and Statistics. San Francisco: John Wiley

and Sons. 432 p.
23. Pielou EC (1967) The use of information theory in the study of the diversity of

biological populations. In: Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability; vol. 4 University of California Press. pp
163–177.

24. Crutchfield JP, Feldman DP (2003) Regularities unseen, randomness observed:
Levels of entropy convergence. CHAOS 13: 25–54.

25. Johnson BD, Crutchfield JP, Ellison CJ, McTague CS (2010) Enumerating
finitary processes. http://arxiv.org/abs/1011.0036.

26. Feldman DP, McTague CS, Crutchfield JP (2008) The organization of intrinsic

computation: Complexity-entropy diagrams and the diversity of natural
information processing. CHAOS 18: 59–73.

27. Kimura M (1980) Average Time until Fixation of a Mutant Allele in a Finite
Population under Continued Mutation Pressure: Studies by Analytical,

Numerical, and Pseudo-Sampling Methods. Proc Natl Acad Sci U S A 77:

522–526.

28. Akaike H (1974) A new look at the statistical model identification. IEEE Trans
Automat Contr 19: 716–723.

29. Burnham KP, Anderson D (2002) Model Selection and Multi-Model Inference.
New York: Springer.

30. Komarova N, Nowak MA (2003) Language Dynamics in Finite Populations.

J Theor Biol 221: 445–457.
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