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Abstract

Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves
from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy
homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores,
towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of
these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and
fasting conditions in the context of a whole-body model. The model was validated against previous experimental results
concerning glycogen phosphorylase a (active) and glycogen synthase a dynamics. The model qualitatively reproduced
physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical
role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to
high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile) cycling, priming
the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic
understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the
incorporation of mathematical descriptions of these networks into ‘‘whole-body’’ contextual models that mimic in vivo
conditions.
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Introduction

Glucose is the major metabolic fuel of mammals, with its

maintenance at appropriate levels within the body being crucial

for normal function, while dysregulation is associated with diseases

such as diabetes mellitus, galactosemia and glycogen storage

diseases [1]. Maintaining glucose levels requires a highly

responsive control system capable of balancing a wide range of

environmental conditions, perhaps the most basic of which is

managing the uptake of nutrients from food at irregular time

intervals. Specifically, transitions between fed and fasted states

require rapid shifting between the storage of excess glucose, in the

form of glycogen, within the liver and muscle and the breakdown

of these stores for delivery of glucose to other organs. In healthy

individuals, proper functioning of this system ensures that available

nutrients are efficiently captured and stored during times of excess,

while effectively managed and distributed during times of fasting.

The rate with which the organism responds to these changes

can play a critical role in survival. Optimization of energy storage

is essential during competition for sparse food supplies, while rapid

delivery of these energy supplies during hasty retreat from

predators can mean the difference between life and death [2]. A

key player in energetics, especially for erythrocyte and brain

function, is blood glucose concentration.

The liver is the central organ for regulation of glucose and

glycogen and acts as the primary distributor of nutrients through

the blood to other tissues. When in a fasted state, the liver breaks

down glycogen stores, producing glucose for other tissues. After a

meal, the liver switches to a glucose consuming state, capturing

nearly 26% of the glucose presented to it by the portal system

during the first passage [3]. Nearly 10–15% [4,5] of liver weight is

comprised of glycogen stores when filled.

Glucose regulation within the liver is performed by the glycogen

circuit that controls both the storage of glucose as glycogen

(glycogenesis) as well as its breakdown into glucose-6-phosphate

from hepatic stores (glycogenolysis). Of significance is the fact that

glycogenolysis and glycogenesis are not the result of a single

reversible reaction, but rather are two separate, highly-regulated

pathways. Two key molecular players within these pathways are

glycogen synthase (GS) and glycogen phosphorylase (GP). GS
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drives the synthesis of glycogen, with its activity regulated through

multiple mechanisms including allosteric activation, covalent

modification, as well as enzymatic translocation [6–8]. GP

catalyzes the rate-limiting step in glycogenolysis and it too, is

actively regulated through phosphorylation at a single residue on

the NH2 terminus as well as through allosteric regulation [6–8].

Both these enzymes exist in activated (GSa and GPa) as well as

inactivated (GSb and GPb) states.

As the synthesis of glycogen and its breakdown into glucose

occur through separate pathways, there is the potential for

substrate cycling to occur, wherein glucose and glycogen are

continuously interconverted. In fact, the glycogen circuit exhibits

different behaviors depending on the state of liver glycogen levels

(Figure 1). In the fed state, glucose is plentiful in the blood and

glycogen levels within the liver are relatively high, resulting in the

activation of GS and the synthesis of glycogen. When a fasting

state is entered, glycogen levels in the liver are high and blood

glucose levels are maintained by the breakdown of this glycogen

into glucose-6-phosphate by GPa. Finally, when in the fully fasted

state, glycogen stores within the liver are essentially depleted. It is

here, in the context of glycogen depletion, that cycling is observed

between glycogen and glycose-6-phosphate [9,10].

It has long been suggested that substrate cycling is a generic

mechanism that can potentially improve such properties as

sensitivity and system response time, allowing net synthesis when

there is a small offset in the substrate concentrations [7,10–13].

However, demonstrations of cycling and its functional relevance in

a physiological context are still relatively rare. In this work, we

were particularly interested in investigating the potential role of

the cycling - no cycling architecture of the glycogen circuit

manifested during the transition from a fed to a fasted state. While

the benefit of preventing substrate cycling is apparent since energy

is dissipated in the form of heat during this process, it is not clear

why it is beneficial for glycogen to cycle under the fasted state, as

shown in Figure 1.

Mathematical models, which provide one way to explore such

questions, have been applied successfully to many biological fields,

but their application has been limited in the case of the nutritional

sciences [14]. The number of mathematical models of hepatic

energy metabolism, as it relates to hepatic glycogen storage, has

been slowly increasing in response to interest in the impact of

exercise on energetics in the case of diabetes [14], diet [15] and

athletic training [16]. In addition, large-scale reconstructions of

metabolism, typically based on flux or constraint-based models,

have recently been developed for multiple organ systems including

the liver [17–21]. These stochiometry-based approaches can be

used to analyze the relevant biological network solely based upon

systemic mass-balance and reaction capacity constraints when

kinetic information is missing [22,23]. However, as these

approaches are based on steady state assumptions and do not

consider specific kinetic properties, they provide a fundamentally

different view of metabolism and metabolic dynamics than

detailed mechanistic models.

In the absence of a suitable model for the present work, we

developed a physiological model based on a central control

glycogen circuitry by Hers et al. [7] and Mutalik et al. [24], with

the whole body bioenergetics described in [25–29] as well as the

Figure 1. Liver glycogen levels control circuit architecture. Glycogen is synthesized by GSa and broken down into glucose-6-phosphate by
GPa. Glycogen levels within the liver are shown in the Fed, Fasting and Fasted state as shaded boxes, with full liver glycogen stores being shown as a
solid black box in the Fed portion of the circuit. Arrows indicate which branch of the pathway is active. Substrate cycling occurs in the glycogen-
depleted (empty box), Fasted state.
doi:10.1371/journal.pcbi.1002272.g001

Author Summary

Homeostasis of blood glucose concentrations during
circadian shifts in survival-related activities, sleep and food
availability is crucial for the survival of mammals. This
process depends upon glucose intake, short-term storage
as glycogen, and gluconeogenesis. The integration of
hepatic glycogen anabolic and catabolic dynamics with
whole body energetics is critical for survival. In this paper
we use computational modeling to investigate the
potential survival advantage of substrate (futile) cycling
of glycogen and glycogen precursors. Our simulations,
combined with published experimental results of other
researchers, indicate that as the body enters a state of
fasting, the activity of enzymes involved in the synthesis of
glycogen increases leading to increased substrate cycling.
This increase in substrate cycling allows the system to
respond more rapidly once new external sources of
glucose become available. The whole-body computational
model developed for this work allows the metabolic
control circuitry to be studied under simulated in vivo
conditions, providing functional insights that are not
evident when individual modules of glycogen regulatory
circuitry are examined in isolation.

A Whole-Body Model for Glycogen Regulation
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feedback and feed forward control loops described in [30–33] for

maintaining glucose homeostasis under different fed-fasting

conditions. We placed specific emphasis on investigating the role

of the cycling - no cycling architecture in metabolic functions.

Building on previous biochemical and quantitative modeling

descriptions, this model embedded the glycogen circuit of the liver

within a physiological system composed of muscle, adipose tissue

and blood compartments. By controlling the glucose injection rate

into the blood stream, we were able to simulate system response

across a broad range of fed/fasting conditions. Our simulation

results reproduced previously published experimental observations

and further indicated that the cycling design in Figure 1 provides a

mechanism for decreasing the amount of time it takes to convert

glucose to glycogen in the fasted state.

Results/Discussion

Model overview
We now give a brief overview of our model, with full details and

the complete set of model equations provided in Protocol S1. Note

that the complete MATLAB package together with the description

file are provided in Protocol S2 and S3, respectively. The SBML

code is also provided in Protocol S4 for a broader usage and

implementation. As noted earlier, glycogen is created from glucose

during feeding and is subsequently degraded to release glucose-6-

phosphate during fasting. The hepatic glycogen circuit controlling

this process is embedded within the hepatocyte at the center of our

physiological model (Figure 2). Blood is depicted as a closed loop,

being carried around the body to connect multiple tissue

compartments, including the liver, muscle, and fat. Thus blood

functions as a transport system within our model, providing the

resources needed to manufacture and store hepatic glycogen

during the fed state while carrying its major degradation product,

glucose, away during the fasted state for use by other tissues. The

liver is currently the most detailed compartment in this model,

including selected aspects of glycogenolysis, glycogenesis, glycol-

ysis, gluconeogenesis, the TCA cycle, lipogenesis, lipolysis and

ketogenesis (See Protocol S1 for model equations).

As an animal moves through the fed, fasting and fasted states, its

body switches to different types of metabolic fuels to stabilize blood

glucose concentration. This transition is controlled in large part by

the blood levels of insulin and glucagon, both of which are

generated in a reciprocal manner by the pancreas in response to

changing blood glucose levels. Insulin and glucagon are mutually

antagonistic with respect to many aspects of intermediary

metabolism and their effects on bioenergetics [25,34]. Insulin is a

key regulator for carbohydrate and fat metabolism in the body. It

enhances blood glucose uptake to form triglycerides and glycogen

and suppresses pathways such as gluconeogensis and glycogenolysis

[35]. Glucagon, on the other hand, is secreted from the pancreas

when blood glucose concentration is low. It inhibits glycolysis and

stimulates hepatic glycogenolysis and gluconeogenesis in liver by

increasing the concentration of cAMP [36]. The elevated level of

cAMP in turn activates a cascade of enzymes in the glycogen control

circuitry that enhance the degradation of glycogen molecules [7].

Insulin and glucagon, working in a reciprocal fashion, in

conjunction with other hormonal regulators, such as leptin and

epinephrine, maintain glucose homeostasis in biological systems.

Our physiological model also incorporates aspects of the Cori cycle,

where lactate from muscle and erythrocytes is carried to the liver

and converted to glucose for reuse by these tissues.

Blood glucose is provided from absorbed carbohydrates during

feeding up until digestion is complete, at which point hepatic

glycogen stores take over this role. Depletion of hepatic glycogen

occurs over a period of 12–24 hours, though this varies greatly with

activity levels [7,37]. Once hepatic glycogen stores are consumed,

blood glucose levels are maintained by gluconeogenesis. This

process uses energy derived from storage fat in the form of acetyl

CoA and the carbon skeletons of glycogenic amino acids. In the

present physiological model, glycogenic amino acids are represented

by alanine derived from muscle. The major sites of gluconeogenesis

are the kidney and the liver, with only the latter being represented

here. As blood glucose levels fall due to hepatic glycogen depletion,

blood insulin levels fall while glucagon levels rise, leading to

biochemical changes resulting in the use of alternative fuels in the

form of free fatty acids and ketones, and gluconeogenesis which

requires the use of such energy as mentioned above.

In tissues such as the heart and muscle, a number of factors

regulate the use of alternative energy sources in order to spare blood

glucose for use by erythrocytes (which depends solely on blood

glucose [38]) and the brain (which mainly depends on blood glucose

but can use ketone bodies as an alternative during fasting [39]). Our

general bioenergetic model includes a number of tissue and

biochemical components that were selected on the basis of their

relationship to glycogen metabolism. The timing of these events and

the dynamics of blood insulin, glucagon, glucose, free fatty acids,

ketones, and levels of hepatic glycogen stores in response to fasting

and feeding cycles from our simulation are shown in Figure 3 and are

consistent with those which were previously described in [25–29].

The cyclic-AMP (cAMP) induced glucose-glycogen
circuitry

Internal cues: cAMP activates a cascade of enzymes.

The glycogen circuitry is activated by intra- and extracellular

signals including cAMP, glucose and glucose-6-phosphate. As

blood glucose begins to fall in the post-absorptive state, glucagon is

secreted from the pancreas and causes elevation of cAMP levels

[36]. The increase in cAMP signal leads to activation of cAMP-

dependent protein kinase (CAPK), which in turn activates

phosphorylase kinase (PK). PK phosphorylates GS (less active, b-

form) and GP (more active, a-form) and drives the system to enter

a catabolic state where glycogen molecules are broken down to

supply liver glucose output and maintain blood glucose levels.

Note that GP can be inhibited directly by high levels of glucose

[10] as indicated in Figure 4. Protein phosphatase-1 (PP-1) is

another key element in this regulation, acting as the primary

phosphatase catalyzing the dephosphorylation of PK, GP, and GS.

A variety of evidence shows that GPa has an inhibitory effect on

the dephosphorylation (activation) of GS under fed conditions

[7,40], as shown on the bottom of Figure 4. This inhibition is

mediated by the direct binding of GPa to glycogen synthase

phosphatase (GS phosphatase), a major enzyme catalyzing the

conversion of GS from the D (b - phosphorylated, less active) to

the I (a - unphosphorylated, active) form. To model this inhibitory

effect, we incorporated the dissociation constant (Kd ) between GPa

and GS phosphotase, as first proposed by Mutalik et al. [24]. As a

whole, the intracellular cAMP concentration determines the level

of activated kinases and phosphatases within the cell, which in turn

determines the levels of GPa and GSa and therefore the glycogen

degradation and synthesis rates [7,24].

As mentioned above, GPa inactivates GS phosphatase by direct

binding under the fed condition. In fact, Stalmans et al. [40]

observed that only after the levels of GPa dropped below 10% of

the total enzyme (a+b) would liver GS then be activated. It has also

been shown that the inhibition of GS phosphatase by GPa

depends on liver glycogen concentration and that a minimal

amount of glycogen is required for this inhibition [41,42].

Therefore, the level of inhibition of GS phosphatase by GPa is

A Whole-Body Model for Glycogen Regulation
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highly dependent on both the activation state induced by external

glucose and hormonal cues, as well as the internal state of liver

glycogen stores (indicated by a red arrow in Figure 4). Since this

inhibition is induced by direct binding of GPa to GS phosphatase,

one way to model the difference in inhibition is through the

dissociation constant (Kd ) of these two enzymes, as first proposed

by Mutalik et al. [24]. Note that in their work, a Kd of

2|10{3mM was set to correspond to a fasted state while a Kd

of 2|10{3mM corresponded to a fed state. As described further

below, we similarly use the dissociation constant of GS

phosphatase and GPa as a means to model the discrepancy in

the enzymatic activities in fed and fasting states. For a detailed

discussion, we refer the readers to [24].

External cues: Insulin, glucagon and cAMP. Insulin and

glucagon are two key hormones that both regulate, and are

regulated by, blood glucose concentration. The concentrations of

these two hormones are governed by the equations [43]:

d½Bins�
dt

~kinsz
k1ins

1z(
kmins

½Bgluc�
)ni

{kd Bins½Bins�, ð1Þ

d½Bglucgn�
dt

~kglucgnz
k1glucgn

1z(
½Bgluc�

kmglucgn

)ng

{kd Bglucgn½Bglucgn�: ð2Þ

Figure 2. Diagrammatic representation of key features of the physiological model. The general design principles of the model are based
on established bioenergetic physiology [1]. The liver, placed at the center of this diagrammatic representation of ‘‘the body’’, contains the glycogen
circuitry which lies within hepatocytes connected to other organs by the vascular system (show in red). Blood within the vascular system travels
around the body, carrying materials between the liver and other organs, with a cycle time of about one minute. Key: Gluc = glucose; FFA = free fatty
acids; Ket = ketones; TAG = triacylglycerol; ACoA = acetyl CoA; Alan = alanine. Note that kidney, brain and erythrocytes are not included in the current
model.
doi:10.1371/journal.pcbi.1002272.g002

A Whole-Body Model for Glycogen Regulation
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where kins and kglucgn are the basal secretion rates and kd Bins and

kd Bglucgn are the degradation rates for insulin and glucagon,

respectively. We assume that the release rate of insulin into the

blood increases with glucose levels according to Hill kinetics with a

Hill coefficient of ni. The maximal insulin-induced release rate is

k1ins and the glucose concentration at which this rate is half its

maximum is kmins. Similarly, to model the decrease in glucagon at

high blood glucose levels, we assume the release rate of glucagon

decreases according to Hill kinetics. The Hill coefficient is ng, the

maximum induced release rate is k1glucgn, and the glucose

concentration at which the release rate is half its maximum is

kmglucgn. The values of the parameters in the above two equations

are chosen such that the concentrations of insulin and glucagon

are in the range of ½7|10{6,1:3|10{6�mM and ½3|10{8,

5|10{8�mM, taken from physiologically relevant ranges

determined from rodent studies [27].

cAMP is a secondary messenger that is regulated by both insulin

and glucagon. Following a drop in blood glucose levels, cAMP

activates CAPK according to the following reaction:

R2C2z2cAMP<R2CcAMP2zC

R2CcAMP2z2cAMP<R2CcAMP4zC
ð3Þ

The above reaction includes two steps and results in the release of

2 molecules of catalytic subunit C from CAPK by 4 molecules of

cAMP. The equation that governs the concentration of cAMP is

then [43]:

d½cAMP�
dt

~
kc1½Bglucgn�ng

k
ng
cm1z½Bglucgn�ng {

kc2½Bins�ni

kni
cm2z½Bins�ni

½cAMP�

{2kgc1½R2C2�½cAMP�2z2k{gc1½R2CcAMP2�½C�

z2kgc2½R2CcAMP2�½cAMP�2{2k{gc2½R2CcAMP4�½C�,

ð4Þ

where we assume Michaelis-Menten type kinetics for the

regulatory functions of insulin and glucagon on cAMP. The

two Michaelis-Menten constants kcm1 and kcm2 were set to be

the mean values of the glucagon and insulin concentrations,

1|10{6mM and 4|10{8mM, respectively, while the

parameters involved in the activation of CAPK are adopted

from [24].

The amount of the catalytic subunit C determines the activity

level of GP and GS [7,24]. Together, these two enzymes regulate

the metabolism of liver glycogen: if GS is more active, the system

converts excessive glucose into glycogen for short-term storage; if

GP is mostly active, the system utilizes glycogen to make glucose to

supply the needs of other organs. The equation for the glycogen

concentration is [43]:

d½glyc�
dt

~
kL2½GSa�½g6p�
kmL2z½g6p� {

k{L2½GPa�½glyc�
k{mL2z½glyc� , ð5Þ

where again we use Michaelis-Menten kinetics to describe the

enzymatic activities.

Finally, the glucose concentrations in liver ½gluc� and blood

½Bgluc� are given in Equations (6) and (7) correspondingly [43],

where vtL1, vtF1 and vtS1 are the glucose transport rates from the

blood stream to liver, adipose tissue and muscle, vL1 and v{L1 are

the reaction rates for the conversion of glucose into g6p and g6p

back to glucose, vd Bgluc~0:015mM=min is the degradation

rate of blood glucose and vfeed is the feeding function for blood

glucose, which is subject to change under different feeding

patterns.

d½gluc�
dt

~vtL1{vL1zv{L1, ð6Þ

Figure 3. Simulation results: dynamic responses of selected hormones and substrates during a 24-hour fasting period. Note that
hormone and substrate concentrations are normalized by their maximum values during the simulation. Blood glucose concentration has a multiplier
of 0.8 to give a better view. Key: bl gluc = blood glucose; pl glucagon = plasma glucagon; pl ins = plasma insulin; pl FFA = plasma free fatty acids; bl
ket = blood ketone bodies.
doi:10.1371/journal.pcbi.1002272.g003
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d½Bgluc�
dt

~vfeed{vtL1{vtF1{vtS1{vd Bgluc,

vtL1~ktL1(½Bgluc�{½gluc�),

vL1~
kL1½gluc�

kmL1z½gluc� 1z
½Bins�ep1

k
ep1
Dinsz½Bins�ep1

 !
,

v{L1~
k{L1½g6p�

k{mL1z½g6p� 1z
½Bglucgn�ep9

k
ep9
Dglucgnz½Bglucgn�ep9

 !
,

vtF1~ktF1½Bgluc� 1z
½Bins�ep12

k
ep12
Dinsz½Bins�ep12

 !
,

vtS1~ktS1½Bgluc� 1z
½Bins�ep13

k
ep13
Dinsz½Bins�ep13

 !
:

ð7Þ

The degree of substrate cycling depends upon the
dissociation constant Kd

Mutalik and Venkatesh [24] computed the dose response curves

of the enzymes in the glycogen circuitry based on their empirically

derived input functions for glucose-6-phosphate (G6p) and cAMP.

Again, we note that the dissociation constant (Kd ) of GS

phosphatase and GPa is the key factor in determining the amount

of substrate cycling at steady state. In fact, Mutalik et al. [24]

defined different physiological states based on the value of Kd ,

where a smaller value (2|10{3mM) corresponded to a fed state

and a larger one (2|10{3mM) corresponded to a fasted state. We

followed a similar approach to construct the dose response curves

for these enzymes. Unlike [24], the glycogen circuitry was

incorporated into a 4-compartment physiological model. As a

result, the dynamics of cAMP and glucose-6-phosphate were

simulated directly within our model and the entire system can be

more realistically simulated by simply controlling the plasma

glucose concentration.

The dose-response curves for GSa and GPa at two specified

values of Kd are shown in Figure 5. Here, the system was run to

steady state with a fixed blood glucose concentration between

5 mM and 10 mM, the typical range for fed-fasting experiments in

Figure 4. The central control glycogen circuitry (modified from Figure 3.1 in [43]). Rectangles and circles enclose the names or
abbreviations of enzymes and substrates accordingly. The reactions as a result of an increase in cAMP concentrations are shown with bold arrows.
cAMP = cyclic adenosine monophosphate; R2C2 = cAMP dependent protein kinase; C = R2C2 catalytic subunit; PKb = inactive phosphorylase kinase;
PKa = active phosphorylase kinase; GPb = inactive glycogen phosphorylase; GPa = active glycogen phosphorylase; GSb = inactive glycogen
phosphorylase; GSb = inactive glycogen synthase; GSa = active glycogen synthase; P = phosphate; g-6-p = glucose-6-phosphate; PP1, protein
phosphatase-1.
doi:10.1371/journal.pcbi.1002272.g004

A Whole-Body Model for Glycogen Regulation
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rodents [27,44–46]. By increasing the Kd constant from

2|10{3mM to 2|10{3mM, the crossover point of GPa and

GSa shifted from a higher glucose concentration to a lower one

(from 7:45mM to 6:70mM) with a correspondingly higher

activated fraction (from 5% to 60%). This fraction represents the

maximum percentage of both enzymes being active simultaneous-

ly, thus it is an indicator of the degree of substrate cycling in the

system. We note that the inhibitory effect by GPa on the activation

of GS through direct binding to GS phosphatase is partially

released with a larger Kd .

The response time for glycogen synthesis decreases with
a larger value of Kd in the glycogen depleted state

From the above discussion, it is apparent that the inhibition of

GS activation by GPa through direct regulation of GS

phosphatase varies with the state of fasting. With a larger Kd ,

the maximum amount of substrate cycling (co-activated fraction of

GS and GP) is higher at the steady state. Here, we further

investigated the dynamics of GS and GP but in the context of a

glycogen depleted liver.

To simulate the response of the system to glucose in a glycogen

depleted state, we provided a constant input of glucose with

Kd~10{3mM and ran the simulation to steady state. We then

gradually throttled back the glucose input, and waited until liver

glycogen was completely depleted. Glucose supply then re-

entered the blood stream as a step function at t = 0, after which

the dynamics of hormone, enzyme and substrate responses were

observed. The results for two values of Kd , Kd~10{3mM and

Kd~10{3mM are shown in Figure 6A. Note that the

observation period began at t~0. A detailed description of the

plasma glucose feeding function F1(t) is provided in Figure S5 in

Protocol S1.

Figures 6A–B show selected enzyme activities and glycogen

concentration as a function of time. Note that ‘‘glycogen

concentration’’ here and in the later context refers to the amount

of glucose converted to glycogen as one molecule of glycogen

comprises an indeterminate number (hundreds or thousands) of

glucose subunits. At t~0, liver glycogen stores are completely

depleted and GP is mostly active (over 70% in the a-form). The

sudden increase in the blood glucose concentration drove the

transition from a GP-dominant to GS-dominant scenario. There

was a major difference in when and where the intersection of GPa

and GSa activity curves occurred for the two selected values of Kd .

Under Kd~2|10{3mM, the point of intersection occurred at

60% and t~13:4mins (Figure 6A-left panel). In contrast, this

point shifted to 5% and t~30:6mins with Kd~2|10{3mM
Figure 6B-right panel.

Figure 6B showed the liver glycogen concentration as a function

of time. Again, the observations started at t~0 where the blood

glucose supply resumed. Readily apparent was the slow but nearly

immediate increase in the glycogen concentration at t~0 under

Kd~2|10{3mM (black line with dots). Recall that at this value,

the level of inhibition of GS phosphatase by GPa was much

reduced, allowing the coexistence of 60% of GSa and GPa. In

contrast, the liver glycogen concentration remained at a negligible

level until t~27mins with Kd~2|10{3mM (solid line with

squares) where substrate cycling was reduced to 5%. Therefore,

the system was able to respond quickly to the glucose stimulus and

drive an immediate synthesis of glycogen with a higher level of

substrate cycling. In both cases, a dramatic change in the synthesis

rate of glycogen occurred where GSa and GPa intersect (15 mins

and 30.6 mins correspondingly).

We next further investigated the relationship between the

system response time and the level of substrate cycling in a

glycogen depleted liver. Instead of two values of Kd (marked by a

red square (2|10{3mM) and triangle (2|10{3mM) in Figure 7),

we considered a range of values from 2|10{3mM to

5|10{3mM. There are two different ways to define the system

response time to glucose stimulus: (1) the time when the GSa and

GPa curves intersect or (2) the time when glycogen concentration

exceeds a threshold value. We selected a threshold value of

0.5 mM, the glycogen concentration reached at the end of the

simulation (t~40mins) with the smallest Kd~2|10{3mM. The

time response curves under both definitions were shown in

Figure 7A as a blue and black line respectively. The differences in

the response time shown on both curves were on the order of

30 mins between the largest and smallest Kd . In Figure 7B, we

provided the co-active percentage of GS and GP at the

intersection point.

The results from this analysis provide a possible explanation as

to why the biological system has different metabolic mechanisms

(different Kd ) under different fasting states. In a glycogen-depleted

state, it is essential to have a highly responsive system, ready for

replenishing energy reserves as soon as nutrients become available.

Our simulation results clearly showed that the high degree of

substrate cycling occurring in the fasted state accelerated the

system response in this respect by about 30 minutes, which would

be physiologically significant for survival. Conversely, avoiding

substrate cycling in a fed state is also desirable from an energy

Figure 5. Fractional activation of GPa and GSa plotted against blood glucose concentration under two selected K 0d s. A:
Kd~2|10{3mM corresponds to a stronger binding between glycogen phosphorylase a (GPa) and GS phosphatase, which results in a strong
inhibition on the activation of glycogen synthase (GSa). B: Kd~2|10{3mM corresponds to a weaker binding between GPa and GS phosphatase,
where the inhibition by GPa is partially relieved.
doi:10.1371/journal.pcbi.1002272.g005
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expenditure standpoint, as the combination of reactions involving

GS, GP, glucose 1-phosphate uridylytransferase and nucleoside

diphosphate kinase result in an ATP consuming reaction

(ATPzH2O?ADPzPi).

Comparison with experiments
We have shown that the level of inhibition of GS phosphatase

by GPa through the dissociation constant Kd , or equivalently the

level of substrate cycling, determined the system response time in a

Figure 6. Time evolutions curves of selected enzymes and substrates. A: Time response curves of GSa and GPa under two selected K 0d s after
glucose stimulus enters blood stream at t~0 in a glycogen depleted liver. Crossover of GSa and GPa occurs at 13.4 and 30.6 minutes respectively. B:
Liver glycogen concentration plotted against time under the two selected K 0d s.
doi:10.1371/journal.pcbi.1002272.g006

Figure 7. Enzymes and substrate responses over a series of Kd ranging from 2|10-3mM to 0:5|10-2mM. A: System response time to
glucose stimulus plotted against Kd in a glycogen depleted liver. Blue: system response time defined by the cross-over point of glycogen synthase a
(GSa) and glycogen phosphorylase a (GPa). Black: system response time defined by the time when liver glycogen concentration exceeds 0.5 mM.
Note that the difference in system response time is about 30 mins for the lowest and highest values of Kd selected here under both definitions. B:
The co-activated percentage of GSa and GPa at the cross-over point as a function of Kd . Note that this percentage represents the maximum co-active
percentage of both enzymes, hence it is an indicator of the level of substrate cycling in the system. The points inside the rectangles
(Kd~2|10{3mM) and triangles (Kd~2|10{3mM) are the two values chosen in Figure 6.
doi:10.1371/journal.pcbi.1002272.g007
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glycogen depleted liver. Previous studies have shown that this

inhibition is glycogen dependent [41,42]. Watts et al. [47]

reported that the GS phosphatase activity decreased in the livers

of fasted, fed and gsd/gsd (liver glycogen storage disorder) mice

and the addition of glycogen to homogenates of liver from starved

rats reduced the glycogen synthase phosphatase activity. More

recently, Armstrong et al. [48] pointed out that there are unique

binding sites for GPa, PP-1 and glycogen in the hepatic glycogen-

targeting subunit of protein phosphatase 1 (PP1{GL), a GS

phosphatase specific to liver. Therefore, it is reasonable to assume

that this inhibitory regulation changes according to the liver

glycogen level. We modeled this effect by using the following

expression for the dissociation constant Kd :

Kd~(Kmax
d {Kmin

d )
1

1z
½glyc�
kd mg

� �n zKmin
d ð8Þ

where [glyc] is the liver glycogen concentration,

Kmax
d ~3:2|10{3 mM, Kmin

d ~2|10{3 mM, kd mg~5mM and

the Hill constant n~5. Note that the parameters were chosen to

match the experimental results of [49] as shown in Figure 8.

We compared our model predictions to experimental studies

that investigated GS and GP levels within fed and fasted livers in a

rodent model system [49]. In this work, Hue et al. measured GP

and GS activities over time in isolated hepatocytes under

sequential changes to the glucose concentration (from 5.5 mM

to 55 mM) in the incubation medium. Results from this study were

redrawn in Figure 8.

It is important to note that we are comparing a ‘‘whole-body’’

simulation with results obtained from cultured cells which are not

interacting with events driven by other tissues, such as fat and

muscle. However, this comparison demonstrates clear similarities

between these cell culture data and our simulations with respect to

responses of the glycogen regulatory circuitry to blood glucose

concentrations. We started our simulation at the fed steady state

and fasted the model system to two different times, 250 mins and

1200 mins, to represent fed and fasted livers respectively. In the

simulation for fed livers, 250 mins fasting time was chosen to

recreate a fasting environment as seen at the beginning of the

experiments (Figure 8A), where GP is mostly in the active form

and over 90% GS is in the inactive form [49]. Note that after

250 mins, the liver glycogen level was at about 75% of the fed

steady state. In the simulation for fasted livers, 1200 mins was

chosen after which only less than 1% glycogen remained. We then

compared the response from both livers under 4 different glucose

feeding rates (kf ~0:2,0:4,0:6and1:4mM=min), as shown in

Figure 9. Since we made our observation only after glucose

supply re-entered the blood stream, we shifted the simulation time

forward to 250 mins and 1200 mins in the fed and fasted livers

and denoted them as t~0.

Multiple aspects of our simulation results matched reported

experimental observations of [49]. For instance, simulations and

experiments showed the activation of GS to be highly suppressed

by GPa in the fed state. For the lowest glucose injection rate,

kf ~0:2mM=min, GS is not activated at all, which was also

observed in experiments by Hue et al. (Figure 8A). Both the

experimental and simulation results showed that the active

percentage of GS was higher in the fasted than in the fed state

at the end of the experiment/simulation (t~20mins). Further-

more, in both experimental studies and simulations, GS always

responded more rapidly (on the order of 10–15 minutes as defined

by the cross-over point of GSa and GPa) in the glycogen-depleted

compared to the fed state. As the injection rate of glucose

increased, the response time of GSa was shortened. Note that the

glycogen concentrations from our simulation are provided in

Figure S6 in Protocol S1, which also indicated a quicker response

from the fasted livers. Although we can accurately capture the

changes in response time under different glucose concentrations, it

is clear that we have only addressed limited aspects of the relevant

metabolic pathways and associated regulatory components. For

instance, it is known that bioenergetics is regulated by a number of

mechanisms including push-pull [50] and negative feedback, the

latter being an integral component of our whole-body and

glycogen-specific models. Furthermore, transcript level regulation

is required to capture variations in enzyme concentration that

occur under different fasting conditions. Such investigations lie

outside the scope of the current model.

Conclusions
The cells, tissues, organs, bodies and populations of all living

organisms are in a constant state of sensing and response to

numerous external and self-generated stimuli [51]. Feedback

loops, both positive and negative, play intrinsic roles in

homeostatic regulation of biological systems. Negative feedback

loops underpin the majority of the balances of nature, from

predator-prey relationships to biochemical networks, and are

clearly subjected to evolutionary pressures [52]. Negative feedback

is a common mode of control for signaling networks [53], reducing

time required to reach steady states [30], providing a mechanism

for reducing fluctuations in protein expression levels and pathway

activity. In contrast to stabilizing activity, in the presence of

sufficient time delays, negative feedback can have destabilizing

effect and generate overshooting and random oscillations,

rendering noise a challenging issue in the modeling of biochemical

networks [54]. No attempt was made to incorporate stochasticity

into the present investigations. Biological systems employ negative

feedback combined with controlled time delays as a means of

inducing functional oscillations. Such internally generated oscilla-

tions are responsible in large part for circadian rhythms and the

cell cycle [55], which are intimately linked to the subject of feed-

fasting cycles in the present work.

In this work, we have developed a physiological model that

simulates selected major components of bioenergetics as outlined

in [25–27]. The outer general bioenergetics model (outer ring of

Figure 2) was created as a ‘‘test bed’’ [56,57] for the glycogen

circuit, which permits simulation of the glycogen regulatory

circuitry in response to physiological changes that mimic the

effects of fasting and feeding on whole-body energetics. As we

could find no such testbed for the hepatic glycogen regulatory

circuit that we were investigating, and as such circuits interact in

potentially unpredictable ways with other body systems via the

vascular, nervous, and other communication systems, we endeav-

ored to build such a software platform for our investigations.

Analysis of this model suggests that the glycogen circuit’s context-

dependent (fed or fasted) architecture allows for a significant

increase in response time when the organism is in a fasted state.

Suppression of substrate cycling in the fed state could provide a

strategy for energy conservation leading to optimal energy storage.

The current work also provides a platform for further

investigation into bioenergetic diseases such as diabetes and

glycogen storage disease (GSD). Type VI and type IX GSD,

representing 25–30% of the total cases, are either due to a

deficiency in glycogen phosphorylase or an abnormality in the

enzyme that activates it [58]. Therefore, it is crucial to understand

glucose-glycogen metabolism in a whole body environment,

especially the regulatory mechanisms for some of the key enzymes
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in these pathways such as glycogen synthase and glycogen

phosphorylase. Interestingly, this work could also be of value for

research into optimization of nutrition protocols for athletes or

soldiers who are required to perform under stress. Glycogen

supercompensation, where glycogen storage ability is increased

following glycogen depletion when consuming a high carbohy-

drate diet, is an important issue for performance in athletes.

Numerous studies have been carried out to investigate the

relationship between the amount and type of carbohydrate

ingestion and the maximum glycogen resynthesis rate [59–61].

Of related interest, a study by Roberts et al. [62] demonstrated

that metabolism of simple sugars leads to a higher glycogen

resynthesis rate than that generated through the metabolism of

complex carbohydrates. Under the current computational model

Figure 8. Previous experimental results by Hue et al. Glycogen phosphorylase a (GPa) and glycogen synthase a (GSa) activities in hepatocytes
under fed (A) and fasted conditions (B) are redrawn from experimental results by Hue et al. [49]). From left to right, top to bottom in panel A and B: 4
increasing glucose concentrations from 5.5 to 55 mM in the incubation medium caused a sequential inactivation of glycogen phosphorylase and
activation of glycogen synthase.
doi:10.1371/journal.pcbi.1002272.g008
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Figure 9. Simulation results by computational modeling (a parallel comparison to Figure 8). Glycogen synthase a (solid circles) and
glycogen phosphorylase a (open circles) activities are plotted against time under 4 different glucose input rate in fed (A) and fasted livers (B). From
left to right, top to bottom: vfeed~0:2,0:4,0:6,1:4mM=min. Note that the y-axis is the active to total enzyme percentage.
doi:10.1371/journal.pcbi.1002272.g009
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platform, these observations could be further investigated in a

continuous parameter space, and an optimal nutrition plan for

these individuals might be predicted by taking into account energy

flows. Computational models, such as the one developed here,

could assist in the design of nutrition plans for athletes and

individuals suffering from bioenergetic challenges, including

diabetes.

Materials and Methods

One of the goals of our metabolic model was to capture key

features of the dynamics of internal energy sources, from fed

through fasted states, to include blood glucose, liver glycogen,

FFAs, and ketone bodies, regulated by plasma glucagon and

insulin. The dynamics of these substrates and enzymes are

described in [25–27], while the whole body energetics have been

reviewed in [26,28,29]. A summary of these time events is given in

[63]. Such a simulation would then provide a dynamic framework

within which to test the behavior of the underlying control

circuitry, as for glycogen in the present study. When the

physiological system enters the fasting state, blood glucose

concentration drops, flipping a reciprocal switch with respect to

plasma insulin and glucagon concentrations [28,36]. cAMP then

responds and transmits a signal to the glycogen circuitry to

regulate the activities of GP and GS [7]. As a result, hepatic

glycogen is being depleted as it is catabolized to maintain blood

glucose levels within the physiological range needed for survival.

The level of plasma free fatty acids and ketone bodies also rise to

provide alternative metabolic fuels. A diagram of the concentra-

tions of selected metabolites with respect to time after fasting

commences is available in Figure 3. Except for the similar

characteristic behaviors described previously in [25–29], our

model is also able to capture the damped oscillations at the

beginning of a new local stable state.

Metabolic pathways
Here we give a brief overview of the four major compartments

in our liver-centered physiological model, as shown in Figure 2.

For a detailed description of these pathways, model equations and

parameters, please refer to Protocol S1. A detailed parameter-

based sensitivity analysis has also been conducted and results

revealed that blood glucose is not sensitive to 10-fold changes in

the parameters that describe the activity of each enzyme. The

results are provided in Table S8–S10 in Protocol S1.
Liver. As a center of bioenergetic regulation, the liver is able

to convert glucose that is surplus to immediate energy demands

into a short term energy storage form, glycogen, and utilize it to

maintain blood glucose homeostasis during the early stages of

fasting. Besides its regulatory functions in glycogenesis and

glycogenolysis, the liver is also capable of processing amino acids

and free fatty acids from muscle and adipose tissue, respectively, to

stabilize the blood glucose level when hepatic glycogen is depleted.

Recognizing its irreplaceable role in metabolism, the liver is

modeled extensively within our physiological network. The eight

simplified pathways in the liver include glycolysis, gluconeogenesis,

glycogenesis, glycogenolysis, TCA cycle, lipogenesis, lipolysis and

ketogenesis.

Adipose tissue. As mentioned above, glycogen is a effective

short term energy reserve because it can be catabolized quickly to

satisfy a urgent need for glucose. In terms of long term energy

storage, however, it is not as effective as triglycerides, which is a

much more compact energy storage device which is largely

contained within adipose tissues. Since our model is focused on the

liver’s role in metabolism, a brief sketch of the metabolic

interactions between this organ and those in the fat and muscle

tissue are included in our simulations. An important role of fat is

that glucose is taken up by fat in an insulin-dependent manner and

is stored as triacylglycerol within fat as an energy depot that is

available to drive gluconeogenesis when blood glucose levels drop

and glucose generation is needed. The conversion of glucose into

and free fatty acids in fat tissue are described in Protocol S1. The

only metabolites modeled for fat tissue are glucose-6-phosphate,

acyl-CoA, triacylglycerol and free fatty acids.

Muscle. Muscle is another major site for glycogen storage.

However, muscle glycogen cannot contribute directly to plasma

glucose since muscle lacks glucose-6-phosphatase, an important

enzyme in the gluconeogenesis pathway. Instead, the end product

of glycolysis, pyruvate, can either form lactate or alanine (our

representative for amino acids and proteins), to be transported to

the liver. Alanine is a direct substrate for gluconeogenesis in liver

while lactate assists in the maintenance blood glucose level through

the Cori cycle, in which lactate is used in gluconeogenesis in liver.

In our model, muscle is modeled as a sink term for metabolic fuels

such as glucose and ketone bodies and also an alternative energy

source to provide lactate and alanine. The metabolites modeled

for muscle are glycogen, glucose-6-phosphate, pyruvate, lactate,

alanine and ketone bodies.

Blood. For simplification, all the metabolic processes (except

for degradation) are ignored in the blood. It only serves as a

transport system, conveying nutrients between the major organs

simulated by the model.

All the transport processes described above are shown in Figure

S4 in Protocol S1 and a more detailed description is also provided

there.
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