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Abstract

Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for
realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and
post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily
strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths.
It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its
impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to
analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance
criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses.
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Introduction

Long term synaptic plasticity has been established as one of the

most important components for learning and memory. In parallel

with experimental investigations, numerous computational models

of synaptic plasticity have been developed to simulate network

function and to establish the fundamental characteristics and

limitations of plasticity. Despite the complexity of the underlying

neurobiology, theoretical studies have in the interest of tractability

mostly focused on highly simplified plasticity rules [1]. However,

more realistic models are now becoming possible in the light of

more detailed experimental characterization of synaptic plasticity

[2,3].

One such experimental finding is that strong synapses are

harder to potentiate than weak ones, that is, the percentage

increase in strength is significantly smaller for strong synapses than

for weak synapses [4,5]. Meanwhile, synaptic depression protocols

lead to a percentage decrease in strength independent of strength

itself [6]. This phenomenon has been observed under both

classical and spike timing dependent plasticity protocols [7], and is

known as soft-bound or weight-dependent plasticity (see Discus-

sion for possible biophysical correlates). Soft-bound plasticity

contributes to saturation of LTP when one tries to induce it

repeatedly. Observation of LTP saturation has been used as

evidence that synaptic plasticity did occur during some earlier

learning protocol [8,9].

Soft-bound plasticity automatically constrains the synaptic

weights, and thereby resolves simply, but effectively, the danger

of unconstrained plasticity, namely that on repeated activation,

synaptic strength would grow indefinitely. In many modeling

studies weight dependence is ignored, instead hard-bounds are

typically introduced that cap the minimal and maximal synaptic

weights (also known as weight clipping), which are often

supplemented with constraints on the total weight [10,11]. In

other plasticity rules, such as Oja’s rule [12], weight dependence

might be present but it is not biologically motivated. However,

including weight dependence in plasticity rules is not just a minor

fix noticeable only if synapses reach extreme values. It has

profound consequences for plasticity and its dynamics: First, it

leads to unimodal synaptic weight distributions [13,14], consistent

with distributions observed both in electro-physiological [15] and

in spine size data [16]. Second, it weakens competition between

synaptic inputs [17,18] and instead causes the synaptic weight to

depend smoothly on the correlation between inputs [19],

consistent with recent data [20]. Finally, as a result of the weaker

competition, for identically sized synaptic updates soft-bound

plasticity is less stable compared to hard-bound plasticity [21].

Despite the experimental evidence for soft-bound plasticity

rules, the effect of weight dependence on information storage is not

well understood [22]. A priori it is not clear whether soft-bound

plasticity is better or worse for information storage compared to

hard-bound plasticity. In the case of discrete synapses it has been

suggested that soft-bounds fundamentally limit memory lifetime

[23]. Analysis of soft-bound plasticity is complicated by the fact

that when plasticity depends on the synaptic weight, it will depend

on the history of the synapse. Here we study a plasticity process

that is continually on-going and which has started a long time ago,

so that the distribution of synaptic weights has reached an

equilibrium. We introduce an information measure for such on-

line learning schemes. We show that soft-bound plasticity leads to

a 18% higher information capacity and find strong evidence that

soft-bound plasticity optimizes storage capacity. Moreover, the
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memory lifetime of soft-bound plasticity is longer than for hard-

bound plasticity. Thus, soft-bound plasticity not only helps to

constrain plasticity, but it also increases capacity.

Results

To understand how different plasticity rules determine infor-

mation capacity, we consider a simple, single neuron learning

paradigm. The setup is shown in Fig. 1A. The neuron receives N

synaptic inputs. Each input has a plastic synaptic weight wi. Every

time-step we present a different synaptic input pattern. The

pattern’s elements xi, are uncorrelated binary variables, with +1

and 21 occurring with 50% probability (see below for variations).

The neuron’s output equals the weighted sum of the inputs,

h~
PN

i~1 wixi. The plasticity rule depresses synapse i with an

amount w{ (with w{v0) when its input is low, so that

wi(tz1)~wi(t)zDw{,, and a high input potentiates the synapse,

wi(tz1)~wi(t)zDwz. These updates are independent of post-

synaptic activity (but see below). As a result the next time the same

pattern is encountered the response of the neuron will be higher.

The task of the neuron is to recognize the patterns that it has

encountered previously. To measure the performance we period-

ically interrupt the learning and test the neuron with both

previously presented patterns (labeled p) and lures (labeled l) that

were not presented before. Based on the output it has to be

decided whether the pattern has been seen before or not. This very

simplest of tasks can straightforwardly be extended to a supervised

associative learning scheme in which some patterns are associated

to a high output and others to a low output. Hereto patterns that

should give a high output follow the above scheme, while patterns

that should give a low output, potentiate synapses with low inputs

and depress synapses with high inputs [24,25].

The model is agnostic about the precise timescale and brain

area involved - cortex and hippocampus come to mind. It is also

possible to adopt a variant in which only a fraction of all presented

patterns is learned. For instance, the synaptic plasticity might only

occur with a certain probability, or plasticity might occur only if

some additional signal (for instance signalling reward or

relevance), lifts the postsynaptic activity above a certain plasticity

threshold. Either mechanism would slow down the learning and

forgetting equally, but would not otherwise change our analysis

[26,27].

Because the neuron sums many inputs, the output distribution is

well approximated with a Gaussian distribution. This holds

independently of the weight distribution (by the law of large

numbers, even with a uniform weight distribution the output

distribution will still tend to a Gaussian). Indeed, simulations with

and without this Gaussian assumption gave virtually identical

results. Using the Gaussian approximation, a signal to noise ratio

(SNR) can be used to characterize the difference in the response

between patterns and lures. With S(t) we denote the SNR of a

pattern presented t time-steps ago, Fig. 1B,

S(t)~2
½Shp(t)T{ShlT�2

Sdh2
p(t)TzSdh2

l T
ð1Þ

where Shp(t)T and Sdh2
p(t)T denote the mean and the variance of

the output in response to a pattern learned t time-steps ago; ShlT

Figure 1. Diagram of the single neuron recognition task. A) A neuron receives binary pattern inputs. At each time-step a new pattern is
presented and the weights are updated according to the input value. The neuron’s output equals the weighted sum of the inputs. B) The neuron has
to remember the presented patterns. When tested, learned patterns lead to a larger output (solid curve) than lures (dashed curve). As the memory of
the pattern ages and is overwritten by new patterns, the output of the neuron in response to the pattern becomes less distinct and the signal-to-
noise ratio decays. The performance is measured by the signal-to-noise ratio, a measure of the distance between the two output distributions. C) The
decay of the signal-to-noise ratio for soft-bound and hard-bound plasticity rules as a function of the age of the pattern. The synaptic updates were set
so that both rules led to an initial SNR of 100 right after the pattern was presented (a~0:1, N~1000). For both plasticity rules the SNR decays, but it
decays slower for soft-bound plasticity.
doi:10.1371/journal.pcbi.1002836.g001

Author Summary

It is generally believed that our memories are stored in the
synaptic connections between neurons. Numerous exper-
imental studies have therefore examined when and how
the synaptic connections change. In parallel, many
computational studies have examined the properties of
memory and synaptic plasticity, aiming to better under-
stand human memory and allow for neural network
models of the brain. However, the plasticity rules used in
most studies are highly simplified and do not take into
account the rich behaviour found in experiments. For
instance, it has been observed in experiments that it is
hard to make strong synapses even stronger. Here we
show that this saturation of plasticity enhances the
number of memories that can be stored and introduce a
general framework to calculate information storage in
online learning paradigms.

Soft-bound Plasticity Increases Storage Capacity
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and Sdh2
l T denote the mean and variance of the output in response

to a lure.

In many storage capacity studies weights are initialized to zero,

the number of items to be learned is fixed and learning stops after

all the items have been presented, or once the task as been learned

[1,28,29]. In such schemes the memory for each item is typically

equally strong. Thus a single number characterizes the perfor-

mance, and plasticity rules can be designed to optimize it [30,31].

In contrast, we consider an on-line learning scheme. In on-line

learning the plasticity never stops, which is arguably more relevant

biologically. Old patterns are continuously forgotten as new ones

are learned, known as the ‘palimpsest’ property [32]. The

definition of memory capacity requires more care for on-line

learning. The quality of a memory, expressed by the signal-to-

noise ratio of the neuron’s output, decays with age of the pattern.

Fig. 1B shows the probability distribution of the output of the

neuron. As the memory of the pattern ages and gets overwritten,

the output of the neuron becomes indistinguishable from the

response to a lure, Fig. 1C.

Soft-bound versus hard-bound plasticity
The central question we address is which plasticity rules lead to

the best performance. We focus on the effect of the weight

dependence and restrict ourselves to plasticity rules that are local

(only dependent on the pre- and post-synaptic activity at that

synapse) and incremental (have no access to the patterns presented

earlier). We implemented first two plasticity rules, a hard-bound

and a soft-bound one.

For the hard-bound plasticity rule, potentiation occurs when the

input xi is high and when the input is low, the synapse depresses:

For the hard-bound rule we use

Dwz~a

Dw{~{b
ð2Þ

For these plasticity rules hard-bounds on the synaptic weight need

to be imposed to prevent unlimited growth; these were set at 0 and

+1. The results do not depend on the choice of boundaries, as long

as there is feedforward inhibition tuned to the mean weight (see

below). The magnitude of a and b determines how much the

weight is updated per potentiation or depression event. We

balance potentiation and depression, i.e. we set a~b, which is

optimal in our scenario (see below for unbalanced parameters). In

this case, the weight distribution is uniform. We can include

dependence of the plasticity on the level of post-synaptic activity,

which, dependent on parameters, can lead to a bi-modal weight

distribution, as in STDP [13]. This bi-modality is weak as the

inputs are uncorrelated in our setup. Performance is decreased

when such dependence on post-synaptic activity is included (not

shown).

Secondly, we implement a soft-bound plasticity rule. Here the

absolute amount of potentiation is weight independent, while the

depression is proportional to the weight,

Dwz~a

Dw{~{bw
ð3Þ

This mimics experimental data [4,6,7]. Note that in experimental

studies the relative amount of plasticity is typically reported. It was

found that relative amount of depression is approximately constant

(Dw=w&b) and potentiation is inversely proportional to weight

(Dw=w&a=w). This leads to the above plasticity rule for the

absolute amounts. No bounds need to be imposed with the soft-

bound rule, the plasticity is intrinsically bounded. For small

updates (a,b%1) the soft-bound plasticity yields a Gaussian weight

distribution, centered around a mean weight w~a=b, and a

variance a2=b.

The decay of the SNR for both hard- and soft-bound plasticity

rules is shown in Fig. 1C. Here the plasticity parameters were set

such that the signal-to-noise at time 0, i.e. the initial strength of the

memory tested immediately after presentation, was 100 in both

cases. For soft-bound plasticity the decay is exactly exponential,

S(t)~NS0 exp ({t=t), where the time-constant t is the memory’s

decay time, and S0 is the initial memory strength per synapse and

N is the number of synapses. For hard-bound plasticity rules, the

decay is not exactly exponential (see Models for the exact

expression), although an exponential fit can still be used to

characterize performance. Importantly, the soft-bound plasticity

decays more slowly and thus retains the memory longer.

Ideally one has a slow forgetting and a strong initial memory,

however this is impossible to achieve. High plasticity rates (large

a,b) lead to a strong memory of recent patterns (large S0) but also

rapid forgetting (short t), as old memories are overwritten by new

ones. On the contrary, small plasticity rates will extend the

memory time but will also lead to a reduced strength of the

memory. Thus, in online learning, these two competing quantities

characterize the memory performance and there is a trade-off

between them. Here we will use two different approaches to solve

this trade-off and express memory capacity as a single number,

thus enabling quantitative comparison between hard-bound and

soft-bound plasticity. First, we use information theory to calculate

the information per synapse and, second, we use a more

traditional signal-to-noise argument to calculate the memory

lifetime.

Information theory
The first way to resolve the trade-off uses mutual information.

The mutual information expresses how many bits of information

are gained about the novelty of a pattern by inspecting the output

of the neuron when it is tested by lures and learned patterns. We

pass the output of the neuron through a threshold with value h.

This thresholded response, r, equals zero when the summed input

is less than the threshold hƒh, and r~1 when hwh. The mutual

information between the response and the pattern is given by

I~
X

x[fp,lg

X
r~0,1

P(x)P(rDx) log2

P(rDx)

P(r)
ð4Þ

where P(x)~1=2 is the probability for a pattern of either class:

previously presented (p) or lure (l). P(r) is the probability for a

certain response, and P(rDx) is the conditional probability for a

given response on a given pattern class. Concretely, the expression

contains the probabilities that a learned pattern is correctly

recognized P(r~1Dx~p), that a lure pattern is correctly identified

P(r~0Dx~l) and the two error probabilities P(r~0Dx~p) and

P(r~1Dx~l). To obtain the total information stored per synapse,

we sum the information over all presented patterns and normalize

it by the number of synapses. We call this the information per

synapse, termed IS . Thus, when a neuron with N synapses would

be able to perfectly recognize M patterns, the information per

synapse would be IS~M=N.

Using the Gaussian distribution of h (denoted ) and the fact

that the variances for lures and patterns become identical for small

updates, the probabilities are calculated as a function of the Signal-

to-Noise ratio. For instance, P(1Dl)~
Ð?

h (ShlT,Sdh2T)~
1

2
erfc

Soft-bound Plasticity Increases Storage Capacity
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ShlT{hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sdh2T

p
 !

. For the optimal threshold h, halfway between the

Gaussians, one has for the probability of either mis-classification

P(1Dl)~P(0Dp)~e(S), where the error rate equals

e(S)~
1

2
erfc(

ffiffiffiffiffiffiffiffi
S=8

p
) with S the signal-to-noise ratio, Eq.(1).

The probability for correct responses is P(1Dp)~P(0Dl)~1{e(S).
This yields the information as function of the SNR as

I~1ze(S) log2 e(S)z½1{e(S)� log2½1{e(S)�: ð5Þ

This relation is plotted in Fig. 2(middle). If the output distributions

totally overlap, the SNR is zero and the information is zero as well.

For small SNR (S 1), the information is linear in the SNR. Taylor

expansion of Eq.(5) yields I&S=(4p ln 2). Importantly, the informa-

tion is a saturating function of the SNR. For very high SNR, the two

output distributions are almost perfectly separated, but because a

pattern is either a learned pattern or a lure, there is maximally one bit

of information per pattern. For example, doubling an already high

SNR, only brings slightly more information.

The saturation has an important consequence when one wants

to maximize information, illustrated in Fig. 2. The SNR decay is

shown for two soft-bound learning settings, one with large updates,

one with small updates. The total information is the sum of the

information about all patterns; each pattern has a different age

and hence SNR and information associated to it. Although the

integral under the SNR curves is identical, the integral under the

information curves, corresponding to the total information stored,

is clearly smaller for the large updates. In other words, a high SNR

wastes synaptic information capacity that otherwise could have

been used to store more patterns. As an example, an initial SNR of

10 will achieve only 78% of maximal capacity (assuming

exponential decay). The information capacity is maximized when

this saturation is avoided and many patterns are stored with a low

SNR, that is, when the synaptic updates are small.

This setup in principle requires a threshold precisely between

the average output to pattern and lure, i.e.

h~Shp(t)T=2zShlT=2. Hence the threshold should depend on

the age of test pattern, but it would be difficult to imagine how this

could be implemented. In the limit of small SNR, however, the

information becomes independent of the precise threshold setting,

and instead the threshold can be fixed, at say, h~ShlT.

Soft and hard bound information capacity
Both soft-bound information capacity ISB

S and hard-bound

information capacity IHB
S are calculated exactly in the limit of

small updates in the Models section. We find

ISB
S ~0:1148 bits

IHB
S ~0:0968 bits

Thus the soft-bound plasticity can store more information. The

improvement in performance is moderate though, some 18%.

Fig. 3A shows the outcome of simulations that confirm these

theoretical results, the soft-bound rule outperforms the hard-

bound rule. These results raise the question whether other

plasticity rules could increase capacity even further. That does

not appear to be the case as we argue next.

Alternative soft-bound plasticity rules
We simulated two additional soft-bound plasticity rules. The

first comes from the empirical observation that the synaptic weight

distribution can be fitted to a log-normal distribution [15]. Also the

distribution of spine volumes, which correlates strongly with the

synaptic strength, follows a log-normal distribution [16]. One way

to obtain a log-normal distribution as a stationary weight

distribution is to use an exponentiated Ornstein-Uhlenbeck

process, where a decay term continuously pulls the weights back

to the mean value [16]. Such a mechanism is difficult to reconcile

with our setup. Instead we use that for small synaptic updates the

soft-bound rule above yields a normal distribution. Exponentiation

of the soft-bound plasticity rules yields

Dwz~aw

Dw{~{bw½log (w)z1�
ð6Þ

For small updates this yields a log-normally distributed weight,

with a mean equal to exp (a=b{1).

The second rule is a polynomial plasticity rule [17,33], which

can be viewed as an interpolation between hard-and soft-bound.

Dwz~a(1{w)m

Dw{~{bwm
ð7Þ

If the exponent m equals 1, one retrieves a soft-bound rule very

similar to the soft-bound rule above (although not identical). The

case m~0 leads to Eq.(2) if hard bounds are imposed at 0 and 1.

The performance of this rule improves gradually from hard-bound

and soft-bound as m increases from m~0 to m~1, interpolating

from the hard- to soft-bound case. To examine if this rule can

Figure 2. Relation between the information and the SNR. Top:
The SNR decay curves versus pattern age for soft-bound plasticity with
a large synaptic update (thin curve), and soft-bound plasticity with a
small update (thick curve). Although the rules trade off between slow
decay and the high initial SNR differently, the area under the curve is
identical. Middle: The relation between SNR and Information, Eq.(5).
Bottom: The Information versus pattern age calculated from the top
and middle graph. The total information stored, equal to the area under
the curve, is clearly larger when using small updates (thick curve) than
when using large updates.
doi:10.1371/journal.pcbi.1002836.g002

Soft-bound Plasticity Increases Storage Capacity
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outperform the earlier soft-bound rule, we choose a value outside

this range, m~10.

Both the log-normal and polynomial rule perform as well as the

original soft-bound rule, but neither did better, Fig. 3A. In the

Model section we show that a large class of soft-bound rules indeed

have the same capacity and that this does not depend on the

precise parameter values, as long as the updates are small. To

further corroborate the optimality of soft-bound plasticity, we

numerically optimized plasticity rules for which both potentiation

and depression are general second order polynomials in w

Dwz~c0zc1wzc2w2

Dw{~d0zd1wzd2w2
ð8Þ

To examine if the soft-bound plasticity could be outperformed, the

coefficients ck and dk were varied to find numerically their best

values. For numerical performance, the weight wa discretized in

200 bins and the number of synapses was limited to 100 so that

there was no saturation from discretization [25]. The information

capacity was identical to the soft-bound rules, but no improvement

could be achieved by allowing these polynomial update rules.

Finally, the result matches the maximum information capacity of

discrete synapses for which a more exhaustive optimization is

possible [25]. Together these results suggest that for this class of

learning rules, soft-bound plasticity performs optimally.

Memory lifetime
Although the use of small synaptic updates maximizes

information capacity, in practice there are issues with using small

updates. First, the low SNR of each memory renders the pattern/

lure discrimination sensitive to noise, such as noise from synaptic

variability or other inputs to the neuron. Secondly, in recurrent

networks, such as the Hopfield network, errors made by a single

neuron can be amplified by the network. Moreover, experimental

evidence suggests that synaptic plasticity protocols can induce

substantial changes in a synapse. Finally, soft-bound plasticity with

small updates leads to narrow weight distributions (i.e. with a small

variance), while the observed synaptic weight distributions are

relatively broad, consistent with larger updates.

We therefore define a second storage measure to compare hard

and soft-bounds. We use the same single neuron paradigm used

above but define the memory lifetime as the number of recent

patterns that the neuron stores with SNR above a predefined

threshold [34]. Similar measures have been defined for networks

[35]. For instance, in the Hopfield network, the single neuron

error rate should stay below *0.36% to prevent an avalanche of

errors in the recurrent activity [1]. This error rate corresponds to a

SNR of about 30, and corresponds to a regime where the synaptic

updates are no longer small. A full analysis of capacity of recurrent

networks is rather more involved [36,37], but the current

approach is sufficient for our purposes.

Because the SNR decays exponentially with soft-bound

plasticity (Models), S(t)~b exp ({bt), the number of memories

stored above threshold is easily calculated. To find the maximum

lifetime the plasticity parameters have to be optimized, as with too

small updates the SNR might never become high enough, while

too large updates would lead to rapid over-writing. One finds the

optimal b to be eT=N, leading to a life-time

tSB
mem~

N

eT

where T is the imposed threshold and e~2:718::: is Euler’s

number. The memory lifetime increases linearly with the number

of synapses and decreases with SNR threshold.

The lifetime in the hard-bound case can be approximated by

taking only the lowest order term in the expression for the SNR

decay (see Models), yielding

tHB
mem~

768

p6
tSB
mem&0:80tSB

mem

Thus again soft-bound plasticity is superior to hard-bound

plasticity, on this measure by some 20%.

The theory is confirmed by the simulations in which we

numerically maximized the lifetime by changing the synaptic

update. Too small updates would lead to none or few patterns

above the threshold, while too large updates speed up the decay.

The lifetime is plotted normalized by the number of synapses. The

Figure 3. Comparison of hard-bound to soft-bound plasticity. A) The information capacity per synapse in the recognition task for a variety of
plasticity rules. Up to numerical error, the soft-bound, log-normal and Gutig rule perform identically. B) Simulation of the lifetime of a memory for
various plasticity rules. The lifetime was defined as the number of memories stored with a SNR above 30. Again soft-bound plasticity outperforms
hard-bounds. C) The trade-off between memory decay time and initial memory strength for soft- and hard-bound plasticity. The amount of synaptic
update was varied and the resulting fitted decay time-constant and the initial SNR was plotted. Ideally initial strength is high and memory decay time
is long (top-right corner), but increasing one decreases the other. Soft-bound plasticity always leads to a superior trade-off.
doi:10.1371/journal.pcbi.1002836.g003

Soft-bound Plasticity Increases Storage Capacity
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soft-bound plasticity, as well as the other soft-bound variants,

outperform hard-bound, Fig. 3B.

As indicated, the SNR decay leads to a trade-off between initial

SNR and memory decay time. The current performance measure

sets a somewhat arbitrary threshold to resolve this. However, the

result is independent of the precise threshold setting. Fig. 3C shows

the initial SNR versus the forgetting time, as we parametrically

vary the size of the synaptic update. For both hard and soft-bound

plasticity, SNR and decay time are inversely proportional over a

large range. The soft-bound plasticity is superior, as it always gives

a longer lifetime for the same initial SNR, no matter what the

preferred trade-off between memory strength and retention time.

Note that the information capacity analyzed in the previous

section is reflected in Fig. 3C as well. Apart from a constant, the

information capacity approximately equals the product of decay-

time and initial SNR in the limit of small SNR, i.e. in the right

region of the graph.

Feed-forward inhibition and sparse codes
In the simulations and the analysis we made two assumptions.

First, the input patterns take positive and negative values, but in

biological systems it would seem more natural to assume that the

inputs are spikes, that is, 1s and 0s. Secondly, we tacitly used fixed

feedforward inhibition to balance the excitatory inputs and ensure

that the effective synaptic weight has zero mean. Without these

assumptions the SNR, and hence the information capacity, for

both hard- and soft-bound plasticity decreases significantly.

The reason for the decreased SNR is easiest seen by analyzing

the variance in the output in response to a lure pattern. Because a

lure pattern will be completely uncorrelated to the weights, the

variance can be written as

Sdh2
l T=N~Sdw2TSdx2TzSdw2TSxT2zSdx2TSwT2 ð9Þ

The higher this quantity, the smaller the SNR, the worse the

performance of both the information measure and the memory

lifetime. We now examine the second and third term in detail.

In the above results the second term in Eq.(9) was zero, because

we used +1 inputs with a coding density of 1/2 (equal probability

of high and low input) so that mean input SxT was zero. When

using 0/1 inputs this term is no longer zero. This strongly reduces

the capacity at high coding density, Fig. 4A. However, when

coding is sparse so that most inputs are zero and only a small

fraction are one, the mean input SxT is again close to zero and the

information capacity approaches the theoretical maximum,

Fig. 4A. This is also the case for the memory lifetime, Fig. 4D.

Note that in simulations with sparse codes, we scale the plasticity

such that the balance between depression and potentiation is

maintained. For instance, for the hard-bound plasticity, we use

Dwz~2a(1{p), Dw{~{2bp, where p denotes the probability

for a high input. Not doing so, would decrease capacity.

The third term in Eq. (9) is proportional to the mean weight

SwT and reflects changes in the output due to changes in the

number of active inputs. When only excitatory inputs are used and

hence the mean weight is non-zero, the capacity is reduced,

Fig. 4B. In the simulations zero mean weight was effectively

achieved by implementing feed-forward inhibition. Hereto we

introduced an inhibitory partner neuron that receives the same

inputs as the original neuron and that calculates the un-weighted

sum
P

i xi. This neuron then inhibits the output neuron with an

inhibitory weight winh, Fig. 4C. The total output of the neuron is

h~
P

i wixi{winh

P
i xi~

P
i (wi{winh)xi. If the inhibitory

weight is adjusted to balance the mean excitatory weight

(winh~
1

N

X
wi), optimal capacity is obtained, Fig. 4B. Similar

arguments have been made in a variety of memory models [38–

40].

In this idealized setup, feed-forward inhibition is mathematically

equivalent to making the mean weight zero by allowing negative

weights and adjusting the plasticity rules. For instance, for the

hard-bound plasticity, this is achieved by just moving the lower

weights bound to 21; for soft-bound plasticity, the depression rule

is redefined to Dw{~{b(wz1). Indeed, the information per

synapse is identical, Fig. 4B. This same argument applies again to

the memory lifetime and thus it behaves in parallel, Fig. 4E.

Imbalanced potentiation and depression
A further potential problem with hard-bound plasticity is that

highest capacity is only attained when potentiation and depression

are exactly balanced [23]. In contrast imbalance in soft-bound

plasticity shift the mean weight but do not affect the capacity or

the lifetime. Our theory allows for an exact analysis of imbalance

(see Models). We set the potentiation strength to a~(1zm)a0 and

the depression to b~{(1{m)a0, so that m~0 recovers the

balanced case. Capacity is indeed diminished if the amount of the

potentiation event does not exactly balance the depression event.

Simulation and theory are shown in Fig. 5A and reveal an

interesting stupa-like shape: The information is maximal in the

balanced case (m~0). For small imbalances favouring either LTD

or LTP, the information decreases rapidly, following the theory

(black curve, see Models). However, for larger imbalance the

decrease in information is moderate. In this region, the weight

distribution approaches a narrow exponential. The fast decay of

the signal caused by the imbalance is counter-acted by the

reduction of the variance of the weight distribution as DmD
increases. Due to this effect, the initial SNR increases but the

information saturates unavoidably, even for small updates. This is

reflected in the fact that the simulations deviate from the theory

and show progressively less information per synapse as the total

number of synapses of the neuron increases.

The width of the peak around m~0 is given by the condition

DmD 3a0. Thus the peak can be widened by increasing the event

size a0 (an example is shown with the dashed line). However, a

larger event size also increases saturation when m&0. Thus unlike

the balanced case, where a small update always maximized mutual

information, the optimal synaptic update in the imbalanced case is

dependent on the imbalance parameter and the number of

synapses. In parallel, the memory lifetime decreases when

potentiation and depression are imbalanced, Fig. 5B.

Discussion

We have studied plasticity rules that include the experimental

observation that plasticity depends on the synaptic weight itself.

Namely, the relative amount of potentiation decreases as the

synapse gets stronger, while the relative amount of depression

shows no such dependence. This means that the synaptic weight is

automatically bounded. Using an information theoretic framework

we have compared these plasticity rules to hard-bound plasticity in

an online learning setting. We found that the information storage

is higher for soft-bound plasticity rules. Contrasting the prototyp-

ical soft-bound and hard-bound plasticity rules, the improvement

can be calculated analytically. In addition, a wide class of soft-

bound plasticity rules lead to the same increased capacity and we

suggest that soft-bound rules in fact maximize the synaptic

capacity. Furthermore, we examined an alternative capacity

measure that determines how many patterns can be stored above

Soft-bound Plasticity Increases Storage Capacity
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Figure 4. Effect of coding density and inhibition on performance. A. The synaptic information capacity versus the coding density for soft-
bound (solid line) and hard-bound (dashed line) plasticity, when taking 0s and 1s as inputs. When coding density is 1/2, the capacity is approximately
half of what it is when using +1 as inputs. However, low coding density improves the synaptic information capacity and in the limit of very sparse
codes (utmost left in the graph) the capacity reaches that of Figure 3A. B. Effect of feed-forward inhibition on capacity under soft-bound plasticity.
Using excitatory synapses (wi§0) without inhibition, capacity is strongly reduced (‘No inhibition’). Adding feed-forward inhibition maximizes
information capacity (‘Feedforward inhibition’). Equivalently, high capacity is achieved when the plasticity rules are defined such as to allow for
negative weights (‘Unrestricted’). C. Possible circuit to implement feed-forward inhibition. D+E. Effects of coding density and inhibition on the
information (panel A+B) on the information are mirrored by the effects on the memory lifetime.
doi:10.1371/journal.pcbi.1002836.g004

Figure 5. The effect of imbalance between potentiation and depression on the capacity measures for hard-bound plasticity. A. The
Information capacity showing the theory (black) as well as simulations for 10, 100, 1000, and 10000 synapses for a0~0:01 (blue, violet and magenta).
In contrast to the balanced case (m~0) the capacity depends on the number of synapses. A larger synaptic update always decreases capacity in the
balanced case, but can improve capacity in the imbalanced case (dashed curve, N~100, a0~0:1). B. Memory lifetime decreases when potentiation
and depression are imbalanced. The memory lifetime was optimized w.r.t a0 for every setting of m and N .
doi:10.1371/journal.pcbi.1002836.g005
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a certain threshold. This memory lifetime measure also improved

for soft-bound plasticity.

The improvement in performance is moderate for both capacity

measures, some 18%. However, it should be stressed that a priori

there was no reason to assume that weight dependence would

actually improve capacity, it could have led to a lower capacity.

Moreover, naively one might have guessed, errorneously, that the

uniform weight distribution associated with hard-bound plasticity

would be optimal. The difference in capacity means that for hard-

bound plasticity to perform as well as the soft-bound one, 18%

more synapses would be required. This is a significant space and

metabolic cost for the nervous system as synapses consume about

60% of the brain’s energy [41].

Given that the difference between hard and soft-bound is only

quantitative, it is difficult to point to the cause for the difference,

besides our mathematical derivation. Our intuition is that the

hard-bounds lead to a deformation of the weight distribution. As a

result, the decay back to equilibrium is a sum of exponentials. This

means that the decay is always somewhat faster than for the soft-

bound case for identical initial SNR, Fig. 1c.

Our study reveals the following criteria to optimize synaptic

storage capacity: 1) use soft-bound rules, 2) ensure that the mean

input is close to zero, for instance by using sparse codes, 3) ensure

that the mean weight is close to zero, for instance by implementing

balanced feed-forward inhibition, and finally, if one wants to

maximize the mutual information, 4) update the synapse in small

amounts.

There have recently been a number of studies on information

storage and forgetting in synapses with a discrete number of states.

The continuous synapses studied here have an equal or superior

capacity, as they can always effectively act as discrete ones. An

earlier study of discrete synapses argued that balanced hard-bound

rules are superior to soft-bound rules when long memory lifetime is

required [23]. These concerns don’t apply to continuous synapses,

and we believe that our performance measure based on Shannon

information is a more fundamental one. That said, the precise

biological objectives and constraints for synaptic plasticity are

unknown. Furthermore it should be noted that, as for any

optimization argument, another criterion would likely yield a

different optimal rule. For instance, one-shot learning would

require large updates and thus yields low information, while

sensitivity to input correlations has been shown to require a rule

intrapolating between hard and soft-bound [17].

The results do not depend on the precise form of the soft-bound

plasticity rules. Biophysically, numerous mechanisms with any

kind of saturation, could lead to soft-bound plasticity. At the level

of a single synapse one could even argue that weight-independent

plasticity would be difficult to achieve bio-physically, as many

biophysical signals such as Ca influx and AMPA insertion are

likely affected by the synaptic weight itself. Interestingly, the spine

volume grows substantially as the synapse undergoes potentiation

[42]. At first glance this suggests that the spine readies itself for

potential further strengthening, but it has been suggested that

actually the increase in spine volume reduces the calcium

transients, limiting further potentiation, and therefore giving rise

to soft-bound plasticity [43,44].

Apart from the increased capacity, weight dependence has other

important consequences for plasticity. First, the weight depen-

dence leads to central weight distributions, consistent with data,

both measured electro-physiologically and microscopically. Sec-

ond, competition between synapses is weaker for soft-bound rules

because depressed synapses never completely disappear. Finally, in

soft-bound plasticity the mean weight remains sensitive to

correlations [19], in line with recent evidence in [20].

In an earlier study we reported that soft-bound STDP plasticity

leads to shorter retention times than hard-bound plasticity in both

single neurons and networks [21]. In that study the update size was

not optimized as done here, but instead the average synaptic

update per pre-post spike pairing was set the same for hard-bound

and soft-bound plasticity. Fully consistent with the results in the

Models section, for the same update soft-bound plasticity leads to

quicker decay (proportional to the update size) than hard-bound

(proportional to the update size squared) [23]. Because of the

difference in the setup, the SNR measure used there can not

directly be compared with the one derived here. Characterization

of the information storage was not carried out in that setting, but

we see no reason why the current results would not hold for STDP

learning.

Soft-bound plasticity is certainly not the only way to prevent

run-away plasticity. Apart from hard-bounds, BCM theory [45],

and normalization models [11] are some of the best known

alternatives. Soft-bound plasticity however provides one of the

easiest solutions to run away plasticity, as it does not require a

running average of activity (needed for BCM) or knowledge of the

other synapses onto the neuron (as needed in normalization

models). Yet, soft-bound plasticity can co-exist with those

mechanisms, as well as with homeostatic processes, and thus can

be part of a larger set of mechanisms to keep neural activity and

plasticity in check. This study suggests that this can be done

without losing any storage capacity, but instead gaining some.

Models

Calculation of information capacity
In this section we calculate the capacity of soft and hard-bound

plasticity analytically. To calculate the capacity we concentrate on

one single synapse, as the Signal-to-Noise scales linearly with the

number of synapses. We artificially distinguish the pattern that is

to be learned from all the other patterns that are presented

subsequently and erase the memory of this pattern, although of

course, no pattern stands above the others; the same plasticity rules

underlie both the storage and the forgetting processes. Throughout

we assume that the synaptic updates are small. This prevents

saturation in the relation between SNR and Information, Fig. 2B,

ensuring maximal information.

To calculate the information storage we need to study how the

synaptic weight decays after learning. As the weight updates are

small, a Fokker-Planck equation for the weight distribution describes

the decay of the synapse as it is subject to the learning of other

patterns. The synaptic weight distribution P(w,t) evolves as [13]

LP(w,t)

Lt
~{

L½A(w)P(w,t)�
Lw

z
1

2

L2½B(w)P(w,t)�
Lw2

where the drift is A(w)~
1

2
½Dwz(w)zDw{(w)�, the diffusion term

is B(w)~
1

2
½Dw2

z(w)zDw2
{(w)�, and where Dwz(w) and Dw{(w)

denote the weight change associated with potentiation and depres-

sion. We denote an average over many trials with angular brackets,

the variance is denoted Sdw2T, and the equilibrium mean weight is

denoted w~ limt?? Sw(t)T.

Soft-bound plasticity rule
We first calculate the information capacity for the soft-bound

rule. The solution Fokker-Planck is complicated, but when the

jumps are much smaller than the standard deviation of the

distribution, that is,
ffiffiffiffiffiffiffiffiffiffi
a2=b

p
%1, the diffusion term is approxi-
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mately constant B(w)&a2. In this limit, the equilibrium weight

distribution, defined by
LP?(w,t)

Lt
~0, becomes a narrow Gauss-

ian distribution P?(w)! exp½{b(w{w)2=(2a2)�, with mean w

and variance a2=b. Note, that validity of the Fokker-Planck

approximation itself only requires the weaker condition that the

updates themselves are small, a,b%1.

We consider what happens to a given synapse when a pattern is

learned. Suppose that at time zero, the synapse gets a high input

and is thus potentiated (the calculation in the case of depression is

analogous). Right after the potentiation event, the weight

distribution is displaced with an amount v(t~0)~a, where v(t)
denotes the displacement of the weight. For small updates one has

P(w,0)~P?(wzv(0))&P?(w)zv(0)P?
0(w).

After this event, the synaptic weight is subject to random

potentiation and depression events caused by the learning of

patterns presented subsequently. During this the perturbation of

the synaptic weight distribution will decay, until finally the

distribution equals the equilibrium again and the potentiation

event will have lost its trace. The perturbed distribution can be

plugged into the Fokker-Planck equation to study its decay back to

equilibrium. Because A(w)~
1

2
(a{bw) is linear in w and B(w) is

approximately constant, it can be shown that the probability

obeys

LP(w,t)

Lt
~{½A’(w)v(t)� LP(w,t)

Lw
:

This is a transport equation, which means that during the overwriting

of the synapse by the subsequent patterns the distribution shifts

back to its equilibrium value, but maintains its shape, Fig. 6A.

From this equation it follows that the mean weight obeys
LSwT(t)

Lt
~

ð
w

LP(w,t)

Lt
dw~

1

2
bv(t)

ð
w

LP(w,t)

Lw
dw~{

1

2
bv(t).

The mean weight decays back exponentially with a time-constant

t~2=b as Sw(t)T~wzv(t)~wza exp ({
1

2
bt).

The output signal is found by probing the synapse with a ‘1’

(high input). Assuming perfectly tuned feed-forward inhibition, the

mean output signal is Sh(t)T~1:½Sw(t)T{w�. As the variance of

the weight distribution and hence the variance of the output is to

first approximation not affected by the plasticity, the signal-to-

noise is S(t)~ b
a2 ½v(t)�2~be{bt. The information follows as

ISB
S ~

1

4p ln 2

X?
t~0

S(t)

~
1

4p ln 2

ð?
0

S(t)dt

~
1

4p ln 2
:1

&0:1148 bits,

which matches simulations.

In the simulations we found the same information for other

soft-bound plasticity rules. For small updates, a Taylor expansion

of the drift A(w) can always be made, yielding the linear term in

the drift, furthermore the diffusion term becomes independent of

w close enough to the center of the distribution. These

approximations become perfect in the limit of small update

updates. Therefore most soft-bound rules can be mapped to the

above one, yield a narrow Gaussian as equilibrium distribution

and have the same capacity. Finally, one can construct soft-

bound rules in which the linear term in the drift is absent [23].

However, also for those cases we numerically found the same

capacity.

Calculation of information capacity hard-bound rule
We repeat the calculation for hard-bound plasticity. We impose

hard-bounds at w~0 and w~1, that prevent the weights from

crossing minimal and maximal values. This corresponds to

imposing the boundary conditions J(w,t)Dw~0,1~0 to the Fokker-

Planck equation, where J(w,t)~A(w)P(w,t){
1

2

L
Lw
½B(w)P(w,t)� is

the probability flux. As shown below, the capacity is optimal when

potentiation and depression are matched. In this case,

A(w)~a{b~0 and B(w)~a2. The equilibrium distribution is

the uniform distribution P?(w)~1, with mean weight w~
1

2
. The

boundary conditions simplify to
LP(w,t)

Lw
Dw~0,1~0.

Figure 6. Illustration of decay of the weight distributions after a potentiation event. The distribution right after the potentiation is shown
by the magenta curve; as time progresses (indicated by the arrow) it decays back to the equilibrium distribution (thick black curve). A) With soft-
bound plasticity the distribution is displaced but maintains its shape. During the overwriting it shifts back to the equilibrium distribution. B) With
hard-bound plasticity, the distribution distorts after the potentiation due to the presence of the bounds. As it decays back to the equilibrium this
distortion flattens out.
doi:10.1371/journal.pcbi.1002836.g006
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At time t~0 the synapse is potentiated with a small amount a. The

average weight increases by an amount a. The weight distribution,

which expresses the probability to find the weight of a certain value, is

displaced, creating a bump at the upper boundary and a dip at the

lower boundary, Fig. 6B. The distribution becomes P(w)~0 for

wƒa, P(w)~2 for w§(1{a), and P(w)~1 otherwise. We

approximate this perturbation as P(w,0)~P?(w)z
ad(w{1){ad(w), where d is the Dirac-delta distribution.

As above, the synaptic weight is subject to random potentiation

and depression events caused by the learning of patterns

presented subsequently. Solving the Fokker-Planck equation gives

that the perturbation of the synaptic weight distribution decays as

P(w,t)~P?(w)z2a
X?

k~{?

G(w,t; w0~1z2k){G(w,t; w0~2k)

where the Green’s function G(w,t; w0)~
1ffiffiffiffiffiffiffiffiffiffi

2pBt
p exp

½{(w{w0)2=(2Bt)� is the solution to the diffusion equation in

infinite space when all weights are initially concentrated at w0.

The sum over k represents the ‘mirror charges’, needed to satisfy

the boundary conditions, preventing the synaptic weight escaping

from the interval between 0 and 1; similar equations arise in neural

cable theory, e.g. [46].

The derivative of the mean weight follows from the Fokker-

Planck equation after integration by parts as

LSw(t)T
Lt

~

ðz1

0

w
LP(w,t)

Lt
dw

~
1

2
B½P(0,t){P(1,t)�

~{4a3
X?
k~0

e{lkBt

where lk~
1

2
½p(2kz1)�2. Integration gives that the weight decays

as Sw(t)T~wz4a
P

k e{lkBt=lk. Note that the inverse of the

slowest time-constant 1=t~p2a2=2 is proportional to the update

squared, in contrast to the soft-bound case were it is linearly

proportional to the synaptic update [23].

The variance in the output equals that of the uniform

distribution and is Sdw2T~1=12. Thus, assuming perfect feed-

forward inhibition, the signal-to-noise ratio is

S(t)~12½Sw(t)T{w�2~48a2
P

k,l

e{(lkzll )Bt

lkll

. Hence for small

plasticity events the information is

IHB
S ~

1

4p ln 2

X?
t~0

S(t)

~
12

4p ln 2

ð?
0

½SwT(t){w�2dt

~
48

p ln 2

X?
k,l~0

1

lkll(lkzll)

&0:096827 bits

where the sum was calculated numerically. For practical purposes

the sums over k and l can be truncated above k,lw3 as the

contributions to the sum rapidly diminish.

Imbalanced plasticity
For the soft-bound plasticity, the ratio between potentiation and

depression determines the mean synaptic weight, but the capacity

does not depend on it. For hard-bound plasticity, however, the

situation is more complicated. Imbalance between potentiation

and depression leads to a deformation of the steady state

distribution and speeds up the decay after perturbations, changing

the capacity.

We assume that the size of the potentiation event is a~a0(1zm),
and depression b~a0(1{m), where {1vmv1 parameterizes the

imbalance. To calculate the capacity one again needs to calculate

the reaction to a perturbation (potentiation or depression) away

from the equilibrium. But as now A(w)~a0m is no longer zero, the

mirror charges trick does not work. Instead using standard Sturm-

Liouville theory, the solution to the Fokker-Planck with boundary

conditions J(w,t)~0 can be written as a series expansion

P(w,t)~P?(w)z
X?
k~1

cke{B(w)lktfk(w) ð10Þ

where the steady state distribution is P?(w)~q½coth (q){1�e2qw

and where q~A(w)=B(w)~
1

a0

m

1zm2
is the re-scaled drift. The

eigenfunctions fk(w) are

fk(w)~eqw cos (kpw)z
q

kp
sin (kpw)

h i

with eigenvalues lk~
1

2
(q2zk2p2). The imbalance, expressed by

the factor q2, speeds up the decay to equilibrium. The coefficients ck

in Eq.10 follow from the initial condition. As above we first consider

a single potentiation event of size a. This will shift the weight

distribution as P(w,0)~P?(w{a)za½d(w{1){d(w)�; the coeffi-

cients ck (normalized to a) follow as

ck~
1

a

Ð 1

0
P(w,0)fk(w)e{2qwdwÐ 1

0
dw f 2

k (w)e{2qwdw

~
{2q½1{({1)keq�½coth (q){1�

1z( q
pk

)2

From this we calculate the evolution of the mean weight Sw(t)T
using Eq.10. Each eigenfunction contributes an amount

Dk:
Ð 1

0
w fk(w)dw~

1

2lk

½1{({1)keq� to the perturbation of the

mean weight. Averaging potentiation and depression events, the

Information becomes

IHB
S (q)~

1

4p ln 2

ð?
0

S(t)dt

~
1

4p ln 2

1

Sdw2T

X?
k,l~1

ckclDkDl

lkzll

This expression is plotted in Fig. 5A (black line) as a function of m.

Computer simulations
The computer code is made available on the first author’s

website. To examine the various plasticity rules, we presented

typically one million patterns to the neuron, one pattern at every

time-step. Every pattern led to an update of the synaptic weights
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according to the plasticity rules. After each time-step, the output of

the neuron in response to this pattern, to its predecessors, as well as

to lures was measured. The mean and the variance of the neuron’s

output were collected online as a function of the pattern’s age, that

is how many time-steps ago the pattern was presented. From this

the SNR and information was calculated at the end of the

simulation using Eq.(5) and (1).

Importantly, unlike the analysis above, the simulations are not

restricted to small synaptic updates. Furthermore, the Gaussian

assumption can be dropped in the simulations. In that case all the

neuron’s responses were stored, and the information was

calculated at the end of the simulation using the full response

distributions to patterns and lures. We found results were the

virtually identical. It required, however, much more computer

memory and time than the first method.

Unless indicated otherwise, for the figures we used N~10000
synapses for the lifetime calculations. For efficiency reasons we

used N~100 to calculate the information measure as the scaling

with the number of synapses is trivial.
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