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Abstract

MicroRNAs are endogenous non-coding RNAs which negatively regulate the expression of protein-coding genes in plants
and animals. They are known to play an important role in several biological processes and, together with transcription
factors, form a complex and highly interconnected regulatory network. Looking at the structure of this network, it is
possible to recognize a few overrepresented motifs which are expected to perform important elementary regulatory
functions. Among them, a special role is played by the microRNA-mediated feedforward loop in which a master
transcription factor regulates a microRNA and, together with it, a set of target genes. In this paper we show analytically and
through simulations that the incoherent version of this motif can couple the fine-tuning of a target protein level with an
efficient noise control, thus conferring precision and stability to the overall gene expression program, especially in the
presence of fluctuations in upstream regulators. Among the other results, a nontrivial prediction of our model is that the
optimal attenuation of fluctuations coincides with a modest repression of the target expression. This feature is coherent
with the expected fine-tuning function and in agreement with experimental observations of the actual impact of a wide
class of microRNAs on the protein output of their targets. Finally, we describe the impact on noise-buffering efficiency of the
cross-talk between microRNA targets that can naturally arise if the microRNA-mediated circuit is not considered as isolated,
but embedded in a larger network of regulations.
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Introduction

MicroRNAs (miRNAs) are endogenous small non-coding RNAs

which negatively regulate the protein production of their targets in

metazoans and plants. They are expected to target a substantial

portion of the human genome [1] and have been shown to play

key roles in several biological processes ranging from development

and metabolism to apoptosis and signaling pathways [2–6].

Moreover their profiles are altered in several human diseases

[7,8], making miRNAs a major focus of research in nowadays

molecular biology.

Recent work, reviewed in [9], has shown that the actions of

miRNAs and transcription factors (TFs) are often highly

coordinated, suggesting that the transcriptional and post-

transcriptional layers of regulation are strongly correlated and

that miRNA functions can be fully understood only by addressing

TF and miRNA regulatory interactions together in a single

‘‘mixed’’ network. As in the case of purely transcriptional

networks [10], in this mixed network several recurrent wiring

patterns can be detected, called network motifs [11–14]. The

common lore is that network motifs were selected by evolution

(and are thus overrepresented in the network) to perform

elementary regulatory functions. Among these motifs one of the

most interesting is the miRNA-mediated feedforward loop (FFL)

in which a master TF regulates a miRNA and, together with it, a

set of target genes (see Figure 1). This motif, which shall be the

main interest of our paper, was recently discussed in [11–13]. In

all these papers, despite the fact that the authors used very

different computational approaches, the FFL was shown to be

remarkably overrepresented in the network, thus supporting the

idea that it should play an important regulatory role. Depending

on the sign of the transcriptional regulations, FFLs can be divided

into two classes: coherent and incoherent [11,13,15]. In the

coherent FFLs both pathways from the TF to the target have the

same effect (both repressing or activating target expression), while

in the incoherent ones the two pathways have opposite effects.

Correspondingly one finds different expression patterns in the

two cases: coexpression of miRNA and its target for incoherent

FFLs and mutually exclusive expression for the coherent ones

(Figure 1). This dual picture allows to better understand the

complex patterns of correlated expression of miRNAs and their

targets observed in experiments [1,13,16]. In many cases the

targets show low expression in miRNA-expressing cells, suggest-

ing coherent regulation. On the other hand, several other cases

present an opposite trend, showing that miRNA repression can

act in opposition to transcriptional regulation. Indeed, different

degrees of expression overlap, due to different regulatory

circuitries, have been related to different miRNA functions in

several recent papers [1,3,4,15,17]. For example, in a coherent

FFL as the one in Figure 1D, the miRNA expression is induced
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by an upstream TF that at the same time represses the target

transcription, with the effect of enforcing mutually exclusive

domains of expression as the ones observed in the fruit fly [18] or

for miR-196 and its target Hoxb8 in mouse [19] and chicken

[20]. In this cases the miRNA can help the transcriptional

repression of a target protein that should not be expressed in a

particular cell type, acting as a post-transcriptional failsafe

control. Instead, an incoherent FFL (Figure 1C) can promote

high target expression in miRNA-expressing cells, suggesting that

miRNAs may have in this case a fine-tuning function, keeping the

protein level in the correct functional range. A typical example is

the regulation of the atrophin gene by the miRNA miR-8 in

Drosophila. It was shown [21] that both a too high and a too low

level of expression of the atrophin gene could be detrimental for

the organism and that miR-8 is mandatory to keep the expression

level exactly in the correct range.

It is by now well understood that gene espression is inherently a

stochastic process [22–24]. This has particularly relevant effects

when the number of proteins and/or messenger RNAs (mRNAs)

involved is small and stochastic fluctuations may give sizeable

deviations from the mean value of the final protein product.

Thus, the question that naturally arises is how the cell can

reconcile the fine-tuning function described above with these

fluctuations. If there is only a relatively narrow protein level

which is optimal, the tuning regulation must also prevent protein

fluctuations outside the functional range. In fact, it has been

conjectured that the incoherent FFLs that enable tuning

interaction, can also have a role in buffering noise in the target

expression [13,15,25].

The main goal of our paper is to introduce and solve

analytically a stochastic model describing these incoherent FFLs

in order to give a proof to this conjecture. Our results show that

Author Summary

The expression of protein-coding genes is controlled by a
complex network of regulatory interactions. It is becoming
increasingly appreciated that the post-transcriptional
repression by microRNAs, a class of small non-coding
RNAs, is a key layer of regulation in several biological
processes. Since gene expression is a fundamentally
stochastic process, the mixed network (comprising tran-
scriptional and microRNA-mediated regulations) has to
reliably perform its functions in the presence of noise. In
this paper we investigate the function of one of the
recurrent architectures of this network, the microRNA-
mediated feedforward loops, using a detailed analytical
model and simulations. With this approach we show that
these regulatory circuits are appropriately designed so as
to control noise, giving a rigorous mathematical proof of a
previously proposed biological intuition. Moreover the
theoretical framework introduced in this paper allows us to
make nontrivial predictions that are presently in agree-
ment with observed features of microRNA regulation and
that could be more specifically tested experimentally in
the future.

Figure 1. Overview of the connections between miRNA-target expression, miRNA function and regulatory circuitry. (A) MiRNAs and
corresponding targets can present different degrees of coexpression between the two extremes of concurrent expression (high correlation) and
exclusive domains (high anticorrelation). These two opposite situations are expected to correspond to different functional roles (B) for the miRNA
repression. A peculiar expression pattern, evidence of a functional aim, is a consequence of the network structure in which miRNAs are embedded. A
high miRNA-target correlation can be achieved through the incoherent FFL (C), where the miRNA repression is opposite to the TF action. Whereas a
failsafe control can be performed by a coherent FFL (D), in which the miRNA reinforces the TF action leading to mutually exclusive domains of miRNA-
target expression.
doi:10.1371/journal.pcbi.1001101.g001

Incoherent MiRNA-Mediated FFLs and Noise Buffering

PLoS Computational Biology | www.ploscompbiol.org 2 March 2011 | Volume 7 | Issue 3 | e1001101



with respect to the simple gene activation by a TF, the

introduction of a miRNA-mediated repressing pathway can

significantly dampen fluctuations in the target protein output for

essentially all the choices of input parameters and initial

conditions. As a test of our analysis we also performed extensive

numerical simulations which nicely agree with our analytical

results. It is important to stress (and we shall discuss this issue in

detail in the following) that this noise buffering function is

actually a precise consequence of the peculiar topolgy of the

FFL. In fact, in order to fine-tune the level of a target protein

one would not necessarily need a FFL topology. The same

result could well be obtained with an independent miRNA (not

under the control of the master TF which activates the target),

but this choice would lead to strong fluctuations in the target

expression. In the same theoretical framework we can show that

the construction of an optimal noise filter does not necessarily

imply a strong repression, in agreement with the observation

that the miRNA down-regulation of a target is often modest

[26,27].

Results

The theoretical framework
Here we focus on the incoherent FFL in Figure 2A to present

our modeling strategy. For each gene in the circuit we take into

account the essential features of transcription, translation,

degradation and interactions between genes in the regulatory

network (detailed scheme in Figure 2A9). Accordingly, the state of

the system is described by five variables (w,q,s,r,p) representing: w
the number of mRNAs transcribed from the TF gene, q the

number of TF molecules, s the number of miRNAs, r the number

of mRNAs transcribed from the target gene and p the number of

target proteins. We want to explore the mean (vxiw) and the

standard deviation (sxi
) of each molecular species xi[(w,q,s,r,p)

and we will show that these quantities can be obtained analitically

at the steady-state. The noise strength of the species xi will be

expressed by the coefficient of variation defined as CVxi
~

sxi
=vxiw. As usual in this type of models, transcriptional

activation is introduced by choosing the rate of transcription of the

Figure 2. Representation of the incoherent FFL and the two circuits used for comparison. (A) A miRNA-mediated incoherent FFL that can
be responsible for miRNA-target coexpression; (B) a gene activated by a TF; (C) an open circuit that leads to the same mean concentrations of the
molecular species of the FFL in scheme A. (A9)(B9)(C9) Detailed representation of the modelization of the corresponding circuits. Rectangles represent
DNA-genes, from which RNAs (w,s,r) are transcribed and eventually degraded (broken lines). RNAs can be translated into proteins (q is the TF while p
is the target protein) symbolized by circles, and proteins can be degraded (broken circles). Rates of each process (transcription, translation or
degradation) are depicted along the corresponding black arrows. Regulations are represented in red, with arrows in the case of activation by TFs
while rounded end lines in the case of miRNA repression. TF regulations act on rates of transcription that become functions of the amount of
regulators. MiRNA regulation makes the rate of translation of the target a function of miRNA concentration.
doi:10.1371/journal.pcbi.1001101.g002
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regulated gene (ks(q),kr(q) in our case) as a nonlinear increasing

function of the number of TFs (q) present in the cell [28–31]:

kr(q)~
krq

c

hc
rzqc

ks(q)~
ksq

c

hc
szqc

,

ð1Þ

where hr and hs are dissociation constants, specifying the amount

of TFs at which the transcription rate is half of its maximum value

(kr and ks respectively). c is the Hill coefficient and fixes the

steepness of the activation curve.

The miRNA action can direct translational repression or

destabilization of target mRNAs [32], i.e. it decreases the rate of

translation or increases the rate of degradation of target mRNAs.

We choose to model the effect of miRNA regulation by taking the

translation rate of the target (kp(s)) to be a repressive Hill function

of the number of miRNAs (s):

kp(s)~
kp

1z(
s

h
)
c : ð2Þ

The parameter h specifies the quantity of miRNAs that

determines a rate of translation kp=2, and c is again the Hill

coefficient. For simplicity we use the same Hill coefficient c for

each Hill function, but the analysis can be straigthforwardly

generalized to the case of different steepnesses.

The alternative choice of a degradation rate of mRNAs as a

function of miRNA concentration does not yield significantly

different results, as reported in Text S1. The use of Hill functions

to model regulations by miRNAs is coherent with their established

catalytic action in animals [33]. A stoichiometric model has been

studied in the context of sRNA regulation in bacteria [34–36], in

which each sRNA can pair with one messenger and drive its

sequestration or degradation in an irreversible fashion. A

comparison with a possible stoichiometric action is shown in

Text S1.

The probability of finding in our cell exactly (w,q,s,r,p)
molecules at time t satisfies the master equation:

LtPw,q,s,r,p~kw(Pw{1,q,s,r,p{Pw,q,s,r,p)zkqw(Pw,q{1,s,r,p{Pw,q,s,r,p)

zkr(q)(Pw,q,s,r{1,p{Pw,q,s,r,p)zks(q)(Pw,q,s{1,r,p{Pw,q,s,r,p)

zkp(s)r(Pw,q,s,r,p{1{Pw,q,s,r,p)zgw½(wz1)(Pwz1,q,s,r,p{wPw,q,s,r,p�

zgq½(qz1)Pw,qz1,s,r,p{qPw,q,s,r,p�zgr½(rz1)Pw,q,s,rz1,p{rPw,q,s,r,p�

zgs½(sz1)Pw,q,sz1,r,p{sPw,q,s,r,p�zgp½(pz1)Pw,q,s,r,pz1{pPw,q,s,r,p�,

ð3Þ

where kw,kr(q),ks(q) are transcription rates, kq,kp(s) are transla-

tion rates, and gxi
represents the degradation rate of the species xi.

In order to solve the master equation for vxiw and sxi
for all

xi[(w,q,s,r,p) at the steady state we have to linearize Hill

functions. This is by now a standard procedure [29,30]. The idea

is that at the steady state the distributions of regulators (TFs or

miRNAs) have a finite width and sample only small regions of the

domains of the corresponding Hill functions. We may therefore

approximate Hill functions by their linearizations around the

mean values of the regulators q or s (see Text S1 for details of the

linearization), ending up with:

kr(q)*k0
r zk1

r q

ks(q)*k0
s zk1

s q

kp(s)*k0
p{k1

ps:

ð4Þ

We would like to emphasize that linearizing the Hill functions

does not mean to linearize the model. In fact, even with a

linearized dependence on the miRNA copy number, our model

keeps a nonlinear contribution in the term encoding the target

translation (due to the fact that it depends on both the number of

miRNAs and mRNAs). As we will see later, this nonlinearity leads

to non trivial consequences.

Despite this nonlinearity, the moment generating function

approach [29,30,37] can be succesfully used. By defining the

generating function:

F (z1,z2,z3,z4,z5)~
X

w,q,s,r,p

zw
1 z

q
2zs

3zr
4z

p
5Pw,q,s,r,p, ð5Þ

and using the linearization in equation 4 we can convert equation

3 into a second-order partial differential equation:

LtF~kw(z1F{F )zkqz1(z2Lz1
F{Lz1

F )zk0
r (z4F{F )

zk1
r z2(z4Lz2

F{Lz2
F )zk0

s (z3F{F )zk1
s z2(z3Lz2

F{Lz2
F )

zk0
pz4(z5Lz4

F{Lz4
F ){k1

pz3z4(z5Lz3,z4
F{Lz3,z4

F )

zgw(Lz1
F{z1Lz1

F )zgq(Lz2
F{z2Lz2

F )zgs(Lz3
F{z3Lz3

F )

zgr(Lz4
F{z4Lz4

F )zgp(Lz5
F{z5Lz5

F ):

ð6Þ

We now use the following properties of the moment generating

function: F j1~1; Lzi
F~vxiw; L2

zi
F~vx2

i w{vxiw where j1
means evaluation of F at xi~1 for all i. At the steady state

(LtF~0) differentiation of equation 6 generates equations for

successively higher moments. In particular, we are interested in

vpw and sp and differentiating up to the fourth moments leads

to their analytical expressions (see Text S1 for details of the

calculation).

Noise in protein expression is originated by the combination of

two types of fluctuations: intrinsic and extrinsic ones. Intrinsic

fluctuations are essentially due to the stochasticity of the gene

expression process. Extrinsic ones, instead, are due to the

environment. In the latter case a prominent role is played by the

noise transmitted by upstream genes [38,39]. As a matter of fact

there is a certain degree of arbitrariness in the definition of

extrinsic and intrinsic noise [40]. Since we focus on the target

production we define ‘‘intrinsic’’ the noise derived from the

stochastic steps of its expression (transcription, translation and

degradation) and ‘‘extrinsic’’ the noise propagating from its

regulators (s,q) that makes the parameters (kr(q),kp(s)) fluctuate

through the Hill functions. Therefore in our model we do not have

to include extrinsic noise with an arbitrary distribution as it

naturally arises from the stochastic steps of production of

regulators and propagates to the target gene.

Comparison with a TF transcriptional control
To show the noise buffering role of the miRNA-mediated

incoherent FFL (Figure 2A) we first compare it to a simpler

process: a gene activated by a TF (Figure 2B), without any post-

transcriptional regulation. The strategy used to model this linear

ð3Þ

ð6Þ
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network is equivalent to the one explained in the previous section

for the FFL (see Text S1 for more details) and it is presented

schematically in Figure 2B9. Starting from a gene activated by a

TF, in principle the gain of a new regulator implies also a new

source of extrinsic noise for the target, given that the fluctuations

in the number of regulators propagate to downstream genes and,

as discussed in [41], the addition of extrinsic fluctuations generally

increases the noise of a system. However, the peculiar structure of

the FFL can overcome this problem, actually reducing noise, as

was previously shown in the case of negative transcriptional auto-

regulation [42]. Given that the two circuits lead to different mean

values, the comparison of noise strengths in target protein will be

done in terms of the coefficient of variation (CVp~sp=vpw).

With the parameter choice explained in the caption of Figure 3,

the predicted CVp are 0.147 and 0.1 for the TF-gene cascade and

the FFL respectively. Therefore the introduction of the miRNA

Figure 3. Noise properties of the FFL compared with a TF-gene linear circuit. (A) An example of simulation results for the FFL (scheme on
the right or more detailed in Figure 2A9). The normalized trajectory of each molecular species is shown as a function of time after reaching the steady
state. The rate of transcription of the TF is kw~0:06s{1 and of translation kq~0:04s{1 . Proteins degrade with a rate gq~gp~0:002s{1 , while mRNAs
and miRNAs with gw~gr~gs~0:006s{1. The parameters in the Hill functions of regulation (equations 1,2) are the following: the maximum rate of
transcription for mRNAs is kr~0:8s{1 , while for miRNAs is ks~0:5s{1 ; the maximum rate of translation of the target is kp~0:04s{1; dissociation
constants are hs~200,hr~200,h~60; Hill coefficients are all c~2, as typical biological values range from 1 (hyperbolic control) to 30 (sharp
switching)[30]. (B) Time evolution in a simulation for the molecular players in the linear TF-gene cascade (scheme on the right or more detailed in
Figure 2B9). Compared to the FFL case, the p evolution is more sensitive to TF fluctuations. (C) The probability distribution of protein number for the
two circuits. Histograms are the result of Gillespie simulations while continuous lines are empirical distributions (gaussian for the FFL and gamma for
the TF-gene) with mean and variance predicted by the analytical model.
doi:10.1371/journal.pcbi.1001101.g003
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pathway not only controls the mean value but also reduces the

relative fluctuations. This effect can be clearly seen looking at the

shape of the probability distributions in Figure 3C. It is rather easy

to understand the origin of this noise buffering effect: any

fluctuation in the concentration of TFs affects the rate of mRNA

transcription, driving consequently the target protein away from

its steady state, but mRNA and miRNA concentrations tend to

vary in the same direction in the FFL. In this way, miRNAs can

always tune the protein production against TF fluctuations. As can

be seen in Figure 3A and B, there is a certain degree of correlation

in the time evolution of q,r,p due to noise propagation, despite the

overimposed higher-frequency intrinsic noise of each molecular

species, but in the case of the FFL the p trajectory is less sensitive

to q fluctuations thanks to the action of miRNAs (s). It is important

to stress that this result is not affected by the Hill function

linearization discussed above. In fact, the predictions of the model

are in good agreement with Gillespie simulations (which keep into

account the full nonlinear repressing and activating Hill functions).

Moreover our results turn out to be robust with respect to

parameter choice, showing a rather stable noise reduction

essentially for any choice of expression and degradation constants

(see Text S1 for details).

Comparison with an open regulatory circuit
The same fine-tuning of the mean target concentration

achieved with a FFL could be equally obtained with an open

circuit like the one in Figure 2C, where the miRNA gene is

controlled by an independent TF. If the two TFs, activating the

miRNA and target gene expression, have the same rate of

transcription, translation and degradation of the single master

TF in the FFL -as well as the other model parameters as in

Figure 2A9 and C9- the stationary mean levels of the various

molecular species are the same in both circuits. In particular, the

mean concentration of the target protein can be fine-tuned to

the same desired value by both circuits. However, while the

deterministic description at the steady state is the same in the

two cases (see Text S1 for details) the behaviour of fluctuations

is completely different. As we shall see below, the open circuit

leads to much larger fluctuations in the final product than the

FFL. It is well possible that this is the reason for which FFLs

have been positively selected by evolution and are presently

overrepresented in the mixed TF-miRNA regulatory network. In

fact, fine-tuning can be implemented advantageously only

together with a fluctuation control: a precise setting of the

mean value of a target protein is useless without a simultaneous

damping of the stochastic fluctuations. To assess this result we

used the same strategy discussed above: we solved analitically for

both circuits the master equation and tested our results with a

set of Gillespie simulations. Our results are shown in Figure 4:

the lack of correlation between the miRNA and mRNA

trajectories in the open circuit (Figure 4B) leads to much larger

deviations from the mean number of proteins with respect to the

FFL case. Using the same parameter values of Figure 3, the

predicted CVp for the open circuit is CVp~0:175, to be

compared with the value CVp~0:1 of the FFL. Different cell-to-

cell variability can be clearly seen comparing the distributions of

the number of target proteins for the two circuits (Figure 4C).

Note that a target embedded in an open circuit has an even

more noisy expression than a gene simply regulated by a TF, for

which CVp~0:147.

Deviant effects. Stochastic equations are the natural

formalism to describe a set of biochemical reactions when the

number of molecules involved is small and thus fluctuations are

important. As the number of molecules increases, the stochastic

description smoothly converges, at least for linear systems, toward

a deterministic one and stochastic equations can be substituited by

ordinary differential equations (ODE). It is usually expected that

even in the regime in which fluctuations cannot be neglected one

could use ODE if interested only in the time evolution of the mean

values. This approximation can be thought as a sort of ‘‘mean

field’’ approach (by analogy with statistical mechanics where the

mean field approximation is implemented by neglecting

fluctuations). However, similarly to what happens in statistical

mechanics in the proximity of a critical point, it may happen that,

even at the level of mean values, the ODE description does not

coincide with the (more rigorous) stochastic one. These

breakdowns between the two descriptions are known as ‘‘deviant

effects’’ [43] and are typically a consequence of nonlinear terms in

the equations or of strong extrinsic fluctuations [41,44]. In some

cases these deviant effects can have relevant phenomenological

consequences. This is the case of our system: although the FFL

(Figure 2A,A9) and the open circuit (Figure 2C,C9) have the same

deterministic description at the steady state (see Text S1 for

details), the master equation approach gives a mean value of the

target protein systematically lower in the FFL circuit, with respect

to the same quantity in the open circuit. This is a non trivial

consequence of the correlated fluctuations in the number of

mRNAs and miRNAs in the FFL. This correlation between

fluctuations obviously cannot be taken into account in the

deterministic description and as a consequence the ODE

analysis correctly describes the steady state mean number of

target proteins only for the open circuit. This result can be

understood by looking at the analytical expression of the mean

value of p:

vpw~k0
pvrw{k1

pvrsw: ð7Þ

In a FFL, fluctuations of r and s are highly correlated

(Figure 3A), because the transcription rates of messengers and

miRNAs depend on a shared TF. The result is that in this case

vrswwvrwvsw. On the other hand, the production of s and

r is independently regulated in an open circuit, implying that

vrsw*vrwvsw. A deterministic description does not take

into account fluctuations so correctly describes vpw only when

uncorrelated noise is averaged out without affecting mean values.

In conclusion, the correlation in fluctuations introduced by the

FFL topology affects the target protein mean value, establishing a

systematic decrease with respect to the deterministic description.

This deviant effect can be substantial and underlines the necessity

of a stochastic nonlinear modeling. A fully linearized description,

as for example the one proposed by [29] for post-transcriptional

regulation, would not be able to show this type of effects.

The incoherent feedforward loop is effective in reducing
extrinsic fluctuations

In the previous sections we compared different regulatory

circuits keeping the same amount of input noise, i.e. the same

amount of fluctuations in the copy number of master TFs. Since

the topology of a regulatory motif can have stronger effects on

extrinsic rather than intrinsic noise [41], it would be very

interesting to study how the mixed incoherent FFL behaves as a

function of such extrinsic noise. As a matter of fact extrinsic and

intrinsic fluctuations are generally coupled in a non-trivial way in

biochemical networks [45], but we developed a strategy to control

fluctuations in upstream TF expression, known to be one of the

major sources of extrinsic noise in eukaryotes [39], without

Incoherent MiRNA-Mediated FFLs and Noise Buffering
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affecting the copy number of the molecular species in the circuit.

From equation 6 we can calculate vqw (which denotes the mean

number of TFs) and its noise strength CVq:

vqw ~
kqkw

gqgw

CVq~
1

vqw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vqw

gqzgwzkq

gqzgw

s
,

ð8Þ

where, as above, the parameters kw and kq denote the rate of

transcription and translation of the TF respectively, and gw and gq

the corresponding degradation constants.

Setting the rates of degradation (kq and kw) and the product

kwkq to constant values, we end up with: vqw*constant and

CVq*
ffiffiffiffiffi
kq

p
. This is a well known result: fluctuations in the

protein level are stronger when the rate of translation is higher

[23] and can be tuned (while keeping the mean value vqw

fixed) by changing the ratio kw=kq with kwkq~constant. This

represents a perfect theoretical setting to test the dependence of

Figure 4. Noise properties of the FFL compared with an analogous open circuit. (A) An example of simulation results for the FFL (scheme
on the right or more detailed in Figure 2A9). The parameter values are the same of Figure 3. (B) Time evolution in a simulation for the molecular
players in the open circuit (scheme on the right or more detailed in Figure 2C9). The correlation between the s and r trajectories that is present in the
FFL (A) is completely lost in the open circuit. As a consequence while the mean value of p is approximately the same, its fluctuations are appreciably
greater in the open circuit case. (C) The probability distribution of protein number for the two circuits. Histograms are the result of Gillespie
simulations while continuous lines are empirical distributions (gaussian for the FFL and gamma for the open circuit) with mean and variance
predicted by the analytical model.
doi:10.1371/journal.pcbi.1001101.g004
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the target noise CVp on the input noise CVq, while maintaining

unchanged the mean value of all the molecular species involved

in the circuit.

We report in Figure 5 the results of such analysis for the

three circuits discussed in the previous sections. While extrinsic

fluctuations increase, so does the FFL’s performance in filtering

out noise, compared to the other circuits. Once again it is easy

to understand the reason of this behaviour: the FFL architecture

channels fluctuations of an upstream factor into parameters with

opposite effect on the target protein, forcing them to combine

destructively. Therefore the specific FFL topology seems

effective in the maintenance of gene expression robustness

despite noisy upstream regulators. The introduction of a

miRNA pathway, building a FFL from a TF-gene cascade,

really makes the difference in situations of strong upstream

noise. This feature can explain why miRNAs can often be

deleted without observable consequences [25], since experiments

usually do not measure fluctuations and are typically performed

in controlled environments, where noise is kept at minimal

levels.

Noise filtering optimization
The efficiency of the FFL in controlling the fluctuations of the

target protein is a function of three main parameters: the number

of master TFs (which in turn is a function of kw and kq), the

number of miRNA copies (function of ks and hs) and the strength

of miRNA repression (defined as 1=h). In this section we shall

study the efficiency of the FFL in buffering noise as a function of

each one of these three quantities, changing a corresponding

parameter while keeping fixed all others. As we shall see, in all

three cases the noise reduction with respect to a simple TF-target

interaction (i.e. without the miRNA) shows a U-shaped profile

with a well defined minimum which allows us to identify the values

of the parameters which optimize the noise reduction property of

the FFL. This pattern is rather robust, and only marginally

depends on the way the variable of interest is tuned (for instance,

by changing ks or hs in the case of miRNA concentration). It is

important to stress that in all three cases optimal noise filtering

does not imply strong repression, a result which well agrees with

the observation that miRNAs embedded in an incoherent FFL

usually have a fine-tuning effect on the targets instead of switching

Figure 5. The effect of fluctuations in an upstream TF. We maintain constant the number of TFs vqw, while we vary its relative fluctuations
CVq , tuning the relative contribution of transcription (rate kw) and translation (rate kq). All the other parameters have the values reported in caption
of Figure 3. The incoherent FFL makes the target less sensitive to fluctuations in the upstream TF. The extent of the noise reduction, with respect to
the other circuits, depends on the magnitude of the TF noise, pointing out that the FFL topology is particularly effective in filtering out extrinsic
fluctuations. Dots are the result of Gillespie simulations with the full nonlinear dynamics while continuous lines are analytical predictions.
doi:10.1371/journal.pcbi.1001101.g005
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them off completely. It is exactly in the intermediate region of the

parameters, in which fine-tuning occurs, that we also have optimal

noise reduction.

Optimal repression strength. The repression strength is

defined as 1=h (inverse of the dissociation constant in the Hill

function of equation 2). As it can be seen in Figure 6A, the FFL

exhibits a noise profile with a typical U-shape and reaches an

optimal value of noise reduction (measured as the difference in the

noise strength CVp with respect to the simple TF-gene circuit) for

intermediate values of repression strength. The open circuit,

constrained to give the same mean value vpw, always introduces

larger target fluctuations. As mentioned above, optimal noise

filtering is reached for intermediate values of the repression

strength and does not require strong target repression. For

instance with the choice of parameter values of Figure 6,

optimal noise reduction is obtained for a mean value of the

target protein which is about 66% of the value obtained without

the miRNA, i.e. with a simple TF-target interaction. This

prediction could be experimentally tested via manipulation of

the repression strength, in analogy to the work of [46] on the

transcriptional autoregulatory motif. It is instructive to notice the

analogies between the behaviour of the mixed FFL and that of the

negative transcriptional autoregulation loop. This purely trans-

criptional network motif occurs ubiquitously in transcriptional

regulatory networks and was recently studied in great detail

[41,47]. Also in this case, optimal noise filtering is obtained for a

well defined value of the repression stength. It is easy to

understand the reason of this behaviour. In a negative

transcriptional autoregulation, the protein expressed from a gene

inhibits its own transcription by increasing expression when

protein numbers are low, while decreasing expression when

protein numbers are high. Increasing the repression strength

improves the circuit potential to reduce stochasticity, but at the

same time decreases the copy number of mRNAs and proteins,

with a rise in intrinsic fluctuations that can overcome any

attenuation. Consistently, experiments show a well defined range

of repression strength for which noise minimization is optimal

[46].

Optimal miRNA concentration. Another variable which

can be tuned in order to achieve optimal noise reduction is the

Figure 6. How an optimal noise filter can be built. (A) The coefficient of variation of the target protein CVp as a function of the repression
strength 1=h. The Figure shows the presence of an optimal repression strength for which the introduction of a miRNA regulation in a FFL minimizes
noise. (B) CVp as a function of the mean number of miRNAs vsw. In this case vsw is changed through the maximum rate of transcription ks (see
equation 1). (C) CVp as a function of vsw, varying the dissociation constant hs . In both cases (B and C) is evident a U-shaped profile, implying an
optimal noise buffering for intermediate miRNA concentrations. (D) CVp as a function of the mean number of TFs vqw. The number of TFs depends
on the rate of their transcription kw and of their translation kq . The Figure is obtained manipulating kq , but the alternative choice of kw leads to
equivalent results (see Text S1). For intermediate concentration of the TF, the noise control by the FFL outperforms the one of the other circuits. In
each plot, dots are the result of Gillespie simulations while continuous lines are analytical predictions. The values of parameters kept constant are the
same of Figure 3, however the results are quite robust with respect to their choice (see Text S1 for details).
doi:10.1371/journal.pcbi.1001101.g006
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miRNA concentration. If we keep the number of TFs constant

then the miRNA concentration vsw can only depend on the

maximum rate of transcription of the miRNA gene (ks) and on the

affinity of its promoter to the TF (proportional to 1=hs, where hs is

the dissociation constant in equation 1). In Figures 6B and 6C we

analyze the noise strength CVp of the target protein in the FFL for

different miRNA concentrations and compare it to the CVp

obtained with the simple TF-gene interaction and with the open

circuit. Changing the miRNA concentration by varying ks

(Figure 6B) or hs (Figure 6C) we find very similar U-shaped

profiles for CVp. As for the previous analysis, also in this case it is

possible to find an optimal miRNA concentration, and again it is

such that the effect on the protein target is only a modest reduction

(in this case *60% of the value obtained without the miRNA).

Apart from the conserved U-shaped profile, there are rather deep

differences in the noise behaviour depending on the choice of the

tuning parameter. In fact, while an increase of ks always induces

an increase of vsw, this quantity becomes insensitive to hs above

a certain threshold. Since the number of TFs is constant in this

analysis, it is clear that increasing 1=hs (Figure 6C) the system can

reach at best the value of vsw consistent with the maximum rate

of transcription. At the same time a large value of 1=hs means that

very few TFs are enough to support the maximum transcription

rate for the miRNA gene, so fluctuations in the number of TFs

become irrelevant despite the topology of the circuit. As a

consequence the CVp curves for the FFL and the open circuit

converge to a commom value (Figure 6C). A refined experimental

control of miRNA concentration through graded miRNA

overexpression or silencing would permit a test of the U-shaped

profile of CVp in a FFL.

Optimal TF concentration. The last case that we consider

in this section is the effect of different TF concentrations on the

noise buffering properties of the FFL. It is expected that for high

TF concentrations (i.e. high values of vqw) the activation

functions in equations 1 reach the saturation point, making the

system insensitive to variations in TF concentration. As long as the

number of TFs does not fluctuates below the saturation point, the

miRNA and the target gene are maximally transcribed, with no

reference to the exact number of TFs. Accordingly, CVp becomes

asymptotically constant for large vqw for each circuit topology

(Figure 6D). The gap between the asymptotic values of the direct

TF regulation and the two other circuits is due to the fact that the

former does not suffer for the additional external noise due to the

fluctuations in the miRNA number. On the other hand, for small

values of vqw also the number of target proteins is very small as

its expression is hardly activated regardless of the circuit type, with

a consequent increase of the noise strength (Figure 6D). The

central region is the most interesting one: this is the region in

which the system is maximally sensitive to changes in TF

concentration. In this regime the FFL outperforms both the

simple direct regulation and the open circuit in buffering noise.

Also in this case the optimal TF concentration is placed in a region

corresponding to a modest reduction of vpw, despite the miRNA

repression.

Exploring the parameter space. To give a more

comprehensive insight into the relation between noise control

and target repression, we finally evaluate the buffering of

fluctuations (CVp=CVp0
) for each average number of TFs vqw

and each degree of target suppression (vpw=vp0w), where

vp0w and CVp0
represent here the constitutive mean expression

and fluctuations in absence of miRNA regulation. Results of this

analysis are reported in Figure 7A. As discussed above, noise

reduction can be implemented successfully in the parameter region

where the target activation function (in Figure 7B) is not saturated,

since this is the region where the target is sensitive to changes in

TF concentration and therefore also to its fluctuations, regardless

of the presence or absence of miRNA regulation. It is exactly in

this region that noise buffering can be observed (compare

Figures 7A and B). In particular, for each TF concentration the

best noise reduction appears for a target level around 60% of its

constitutive expression. In the optimal setting, noise can be

remarkably reduced to about one half of its constitutive value, but

the reduction remains substantial also for weaker repressions,

further confirming that a strong miRNA repression is not required

for noise control.

We consider the characterization of the optimal setting of

miRNA-mediated incoherent FFLs for noise buffering, and the

resulting U-shaped profile predicted for the noise reduction factor,

as one of the major results of our analysis which, we expect, should

be amenable of direct experimental validation. The fact that an

optimal noise filtering is obtained with a rather modest reduction

in the amount of the target protein also agrees with the recent

experimental observation that miRNA down-regulation of targets

is often modest [26,27] and apparently dispensable from a

functional point of view. In this respect it is tempting to conjecture

that, at least for some targets of incoherent FFLs, the down-

regulation could only be the side effect of an evolutionary design

aiming instead to optimize noise reduction.

Comparison with purely transcriptional incoherent
feedforward loops

The capability of incoherent FFLs to reduce fluctuations was

previously studied with simulations in the contest of purely

transcriptional networks [41]. In this section we present a

comparison of the noise properties of microRNA-mediated FFLs

(scheme in Figure 1A9) and purely transcriptional ones (detailed

scheme of reactions in Figure 8A), where the miRNA is replaced

by a protein that inhibits transcription (rather than translation, as

miRNAs do). The transcriptional FFL can be modeled with the

same strategy explained previously for the miRNA-mediated

version and analogously mean values and standard deviations of

the various molecular species can be calculated analytically with

the moment generating function method (see Text S1 for more

details on calculations and model assumptions). In order to make

an unbiased comparison of the noise properties of these two

circuits, the corresponding models must be constrained to produce

the same amount of target proteins. Although there is no

unambiguous way to put this constraint, due to the presence of

more free parameters (kj and gj ) in the purely transcriptional case,

a reasonable choice is to keep the shared parameters to same

values (i.e repression/activation efficiencies and production/

degradation rates) and choose the two additional ones to make

the amount of repressor proteins j in the transcriptional case equal

to the amount of miRNAs s in the mixed circuit. With this choice

we can evaluate the target noise CVp as a function of the

repression strength (1=h) for both circuits (Figure 8B). Even though

the transcriptional version can potentially reduce target fluctu-

tions, buffering efficiency appears clearly increased by the use of

miRNAs as regulators. Furthermore, a comparison of Figure 8C

and Figure 7B points out that a miRNA-mediated FFL can buffer

fluctuations over a wider range of conditions as well as to a greater

extent. This is mainly due to the additional step of translation

required for the production of proteins j which unavoidably adds

noise to the system. We would like to emphasize that the shown

efficiency in noise reduction, achieved with the transcriptional

FFL, should be considered as an upper bound. In fact, the

constraints imposed on kj and gj limit the translational burst size,

i.e. the average number of proteins produced from a single
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mRNA, and this parameter crucially influences the intrinsic

fluctuation amplitude of proteins j [22] (see Text S1 for details on

parameter constraints). With the parameter values used in Figure 8,

the translational burst size is *0:3, while in eukaryotes it is

expected to be larger (certainly larger than one) because of the

long average half-life of messenger RNAs compared to the time

required for one translation round [48]. Therefore the noise added

by the step of translation of proteins j should realistically be more

substantial than reported for this model setting, with harmful

consequences on the noise buffering efficiency of the purely

transcriptional circuit.

Moreover some peculiarities (not currently included in our

model) of the mixed-motif can further explain why it can be better

suited for noise buffering. Firstly, fluctuations in RNA polymerase

and ribosome abundance are possible sources of extrinsic noise in

gene expression [49]. These fluctuations are expected to influence

unspecifically the rate of transcription and translation respectively

of each gene. In a miRNA-mediated FFL the correlation between

target mRNA and miRNA production, which is crucial for noise

reduction, is robust to these additional sources of noise as mRNAs

and miRNAs are identically affected only by global RNA

polymerase fluctuations. On the other hand, in purely transcrip-

tional FFLs the number of repressor proteins j is exposed to the

independent fluctuations in ribosome concentration, so the

regulator-regulated correlation can be compromised with poten-

tially negative consequences on the circuit’s noise reduction

efficiency.

Secondly, delays in the action of regulators (miRNA or proteins)

in the indirect pathway from the master TF to the target can

damage the noise buffering function (see Text S1 for a more

detailed study of the impact of time delays on noise control).

However, the biogenesis of miRNAs is thougth to be faster than

the one of proteins, and thus miRNAs may affect the target

expression with a shorter delay with respect to factors regulating

Figure 7. Exploring the parameter space. (A) The target noise CVp , achieved with the FFL, is evaluated with respect to noise deriving from
constitutive expression CVp0

(i.e. in absence of miRNA regulation) for different mean levels of the TF vqw and different degrees of reduction of the
target protein level vpw=vp0w (where vp0w is the mean constitutive expression). The TF level is changed through its rate of translation kq

(equivalent results can be obtained changing the rate of transcription kw), while the target level is tuned varying the repression strength. All the other
parameters have the values reported in caption of Figure 3 except kw~0:01263 (lower than in Figure 3 to explore a more noisy situation). The region
where miRNA repression leads to larger fluctuations with respect to constitutive ones is shown in white. When a noise reduction is gained the value
of CVp=CVp0

is reported with the color code explained in the legend. The best noise control is achieved with a modest suppression of target
expression, around the 60% of its constitutive value. (B) The rate of transcription of the target mRNA as a function of the mean number of TFs. The
noise reduction shown in the above plot can be obtained outside the saturation regime (where the slope of the activation curve tends to zero).
doi:10.1371/journal.pcbi.1001101.g007
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nuclear events like a TF [50]. This feature should enable miRNAs

to produce rapid responses, as required to counteract fluctuations.

Finally, the presence of a nucleus makes the eukaryotic cell a

two-compartment system with stochastic transport channels, with

consequences on gene expression noise [51]. In fact, transcrip-

tional regulation requires an additional transport step with respect

to the post-transcriptional one. In a transcriptional FFL, the

repressor protein (replacing the miRNA) must return into the

nucleus to act on the target. This again potentially reduces the

correlation of its fluctuations with the target ones, affecting the

noise buffering ability.

Cross-talk between microRNA targets
A recent study pointed out that the action of a miRNA on a

specific target gene expression is affected by the total number of

miRNA targets and their mRNA abundance [52], a phenomenon

called ‘‘dilution effect’’. This is presumably a consequence of target

competition for a finite intracellular pool of miRNAs. In

particular, the degree of downregulation of an individual target

expression is generally reduced by the presence of other

transcribed target genes. A similar cross-talk between targets has

been previously shown for sRNA regulation in bacteria [34] both

theoretically and experimentally. Therefore, the functionality of a

genetic circuit that involves miRNA regulations, as the one studied

in this paper, can be influenced by the expression level of miRNA

targets not embedded in the circuit. To address this issue we

evaluate in this section the impact of an additional miRNA target

independently transcribed (a situation depicted in Figure 9A) on

the circuit ability in noise buffering.

Stoichiometric versus catalytic models of miRNA

action. The model used so far for miRNA regulation was

based on the hypothesis of perfectly catalytic action. The rate of

translation of target mRNAs was assumed to be a nonlinear

decreasing function of miRNA concentration, neglecting the

details of mRNA-miRNA physical coupling with the implicit

assumption that the downregulation process does not affect the

available miRNA pool. A perfectly catalytic action does not

predict any competition effect among multiple targets at

equilibrium, since each target can only sense the available

number of miRNAs without altering it. On the other hand, a

Figure 8. Comparison with a purely transcriptional incoherent FFL. (A) Detailed scheme of a purely transcriptional incoherent FFL. (B) The
coefficient of variation of the target protein CVp as a function of the repression strength 1=h for a miRNA-mediated FFL and for its transcriptional
counterpart. Thanks to the constraints imposed on parameters we can directly compare their noise-buffering efficiency with respect to a gene only
activated by a TF. Both circuitries lead to a CVp curve with a minimum for an intermediate repression strength, but the miRNA-mediated circuit
appears more efficient in filtering out fluctuations. The values of parameters kept constant are the same of Figure 3. Dots are the result of Gillespie
simulations with the full nonlinear dynamics while continuous lines are analytical predictions. Also in this case, analytical solutions fit nicely with
simulation results. (C) The noise reduction CVp=CVp0

, achieved with a purely transcriptional incoherent FFL, evaluated for different mean levels of
the TF vqw and different degrees of reduction of the target protein level vpw=vp0w. The parameter values and the color code are the same of
Figure 7 so as to allow a direct comparison.
doi:10.1371/journal.pcbi.1001101.g008
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stoichiometric model has been proposed in the context of sRNA

regulation in bacteria [34–36], in which each sRNA can pair with

one messenger leading to mutual degradation. In this latter case

the expression of a secondary target can capture a significant

portion of the sRNAs, with a resulting decrease in the average

repression acting on the first target. The nature of miRNA

regulation is presumably somewhere in between these two extreme

possibilities, although usually generically referred to as catalytic. In

this view, in order to address the effect of target cross-talk on

miRNA-mediated FFLs, we consider a deterministic model

(introduced previously in [34]) that explicitely takes into account

the physical coupling of miRNAs and target mRNAs and the

catalytic/stoichiometric nature of this coupling. While the full

detailed model is presented in Text S1, the effective equations

describing the dynamics of the mean number of miRNAs vsw,

mRNAs vrw of the target in the FFL and mRNAs vr2w of the

secondary miRNA target are:

dvsw

dt
~ks(vqw){gsvsw{a(c1vrwvswzc2vr2wvsw)

dvrw

dt
~kr(vqw){grvrw{c1vrwvsw

dvr2w

dt
~kr2

{gr2
vr2w{c2vr2wvsw,

ð9Þ

where c1 and c2 describe the probability of miRNA-mRNA coupling

for the target in the FFL and the secondary target respectively, while a

is the probability (assumed equal for both targets) that a degradation

Figure 9. Effects of cross-talk between miRNA targets. (A) Scheme of a miRNA-mediated FFL with an additional independently transcribed
target gene (second target). (B) The degree of protein downregulation vpw=vp0w is depicted as a function of the ratio of effective transcription
rates of the secondary target (kr2

) and of the FFL joint target (kr(vqw)), for different values of a. Since the rate of transcription of the joint target is a
function of the TF concentration, we consider for this analysis the effective mean rate kr(vqw) as a reference (where vqw is constant as we are not
tuning the TF concentration). The transcription of the second target is modeled as an independent birth-death process with birth rate kr2

. In this plot
the coupling constants between targets and miRNAs are assumed equal (c1~c2~c) and for each a value the coupling constant c is chosen so as to
start with the same amount of target proteins (vpw) in absence of secondary targets (the complete set of parameters values is presented in Text S1).
In the limit of infinite out-of-circuit target expression, the joint target protein level approaches its constitutive value if aw0, while remains constant in
the ideal case of perfectly catalytic miRNA repression (red curve). Continuous lines are analytical solutions of the deterministic model (Equations 9),
while dots are the result of stochastic simulations. (C) With the parameter setting of Figure 9B, the noise reduction CVp=CVp0

is evaluated in the
same kr2

=kr(vqw) range. Dots are the result of Gillespie simulations while continuous lines come from trivial interpolations. (D) The noise reduction
is evaluated as a function of the out-of-circuit mRNA fluctuations CVr2

, relative to the joint target fluctuations CVr . The fluctuations of the second
target are modulated considering its rate of transcription as a function of an independent TF and changing the TF noise with the same strategy used
for Figure 5 (see Text S1 for more details). The concentrations of the TFs activating the two targets are constrained to be equal so as to study the
situation of two independent targets with the same effective transcription rate. Dots are the result of Gillespie simulations, simply interpolated with
continuous lines.
doi:10.1371/journal.pcbi.1001101.g009
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event of a mRNA, induced by a miRNA, is accompained by the

degradation of the miRNA itself. The limit a~1 describes a

stoichiometric mode of action, while the opposite situation of a~0

represents a perfectly catalytic mode in which the rate of mRNA

degradation is a linear function of the number of miRNAs.

The corresponding stochastic model, of which equations 9

describe the mean-field limit, cannot be solved analytically starting

from the master equation, therefore noise properties will be

examined in the following with simulations only.

Dilution effect. In the first place we evaluate the dependence

of the target protein downregulation on the expression rate of the

secondary target, starting from the model described by Equations

9. The dilution effect is shown in Figure 9B for different values of

a: the downregulation exerted on the FFL target depends on the

rate of expression of the secondary target, in line with the observed

inverse correlation between target abundance and mean

downregulation in higher eukaryotes [52] and in bacteria [34].

Similar results can be obtained by varying the coupling constant c2

with respect to c1 (as reported in [34]). Therefore, the noise

buffering function and the optimality criteria discussed in previous

sections could be compromised in the presence of many or highly

transcribed independent miRNA targets. This issue will be

addressed in details in the following section.

As expected, a perfectly catalytic mode does not feel the effect of

secondary mRNA targets (red line in Figure 9B), while the

stoichiometric mechanism is the most sensitive (green line in

Figure 9B). This result suggests that a catalytic mode (at least

approximately), like the miRNA one, can allow a larger

proliferation of the number of targets while limiting the effects

of their cross-talk.

Consequences of dilution effect and secondary target

fluctuations on noise buffering. Since a high level of

expression of secondary targets can determine a decrease of the

average downregulation, it can potentially reduce the FFL ability

in filtering out target fluctuations. In fact, also the noise reduction

CVp=CVp0
(where CVp0

is the constitutive noise in absence of

miRNA) is a function of the additional target expression, as shown

in Figure 9C. As the expression of the out-of-circuit target

increases, its messengers are able to capture more and more

miRNAs and the efficiency in noise reduction is gradually

compromised. Finally the FFL target fluctuations CVp approach

the constitutive ones CVp0
when the messengers of the FFL target

become a small fraction of the total miRNA targets. The

robustness of the circuit functioning with respect to the dilution

effect is again dependent on the repression mode (that changes

with a). Moreover, as discussed in Text S1, different modes

(stoichiometric/catalytic) of miRNA action have a different

potential in reducing fluctuations: even in absence of secondary

targets, where models with different a have been constrained to

produce the same amount of target protein, the noise buffering

efficiency decreases with a (Figure 9C). This observation highlights

that the level of miRNA ability to avoid mutual degradation while

targeting a mRNA can play a role in the optimization of

fluctuation counteracting, besides conferring stability with respect

to target cross-talk.

While the corruption of the noise-buffering ability seems mainly

due to the increase in the mean level of secondary messengers,

there is another more subtle cause that gives a contribution: the

uncorrelated fluctuations of secondary messengers. Since the

secondary target is independently transcribed (not under the

control of the master TF activating the miRNA gene) its

fluctuations are expected to be completely uncorrelated with the

miRNA ones, implying a random sequestration of miRNAs. To

disentagle this contribution from the dilution effect, we studied the

case of a secondary target transcribed at the same effective rate of

the FFL target, but with different levels of fluctuations (see

Figure 9D). In the case of equal transcription rates the dilution

effect has a negligible impact on the noise buffering activity of the

circuit (see Figure 9C), nevertheless the level of noise reduction

(CVp=CVp0
) is progressively reduced as the second target

concentration becomes more and more noisy, as reported in

Figure 9D. This effect seems especially relevant for a hypothet-

ically stoichiometric miRNA repression. Therefore, the noise level

of additional targets is a variable that must be taken into account

in evaluating the cross-talk effect on the noise-buffering efficiency

of the circuit. Although the FFLs are overrepresented in the mixed

network [11–14], a single microRNAs can downregulate hundreds

of target genes and consequently not every target is expected to be

under the control of the same TF regulating the miRNA gene (see

Text S1 for a more detailed discussion). Therefore, even though

most motif function analysis are carried out looking at the motif

operating in isolation, we have shown that the presence of

additional miRNA targets in the network can alter the functioning

of a miRNA-mediated motif. In fact, the efficiency of miRNA-

mediated FFLs as noise controllers should be considered contest-

dependent. While this circuit seems properly designed to filter out

fluctuations when the miRNA-target interaction is specific or

secondary targets are poorly transcribed, cell types or conditions

that require a high expression of out-of-circuit miRNA targets can

significantly corrupt this circuit property. Besides the understand-

ing of the function of endogenous miRNA-mediated FFLs, this

analysis of target cross-talk effects can be a useful warning for the

growing field of synthetic biology [53]: the implementation of

genetic circuits incorporating small RNA regulations for specific

scopes must take into account the sRNA specificity and the level of

expression (and fluctuations) of eventual other targets.

Discussion

Experimental and bioinformatic evidences of the
relevance of miRNA mediated FFLs in gene regulation

Few cases of incoherent miRNA-mediated FFLs have been

experimentally verified until now: a case involving c-Myc/E2F1

regulation [54] and more recently a miR-7 mediated FFL in

Drosophila [50]. As a matter of fact, miR-7 has indeed been found

to be essential to buffer external fluctuations, providing robustness

to the eye developmental program. The fact that miR-7 is

interlocked in an incoherent FFL provides a first hint that our

model can be biologically relevant.

On the purely computational side, it is interesting to notice that

in [11] it was shown that the typical targets of these FFLs are not

randomly distributed but are instead remarkably enriched in TFs.

These are the typical genes for which a control of stochastic

fluctuations should be expected: the noise in a regulator expression

propagates to all its targets, affecting the reliability of signal

transmission in the downstream network.

Finally, a significant enrichment in oncogenes within the

components of the FFLs was also observed [11]. The mentioned

FFL containing c-Myc/E2F1 is just an example [8]. In view of the

emerging idea that non-genetic heterogenetity, due to stochastic

noise, contributes to tumor progression [55] and affects apoptotic

signal response [56], the role of miRNA-mediated FFLs in

reducing fluctuations can explain why they are often involved in

cancer-related pathways.

Concluding remarks
The type of regulatory action which a miRNA exerts on its

targets can be rather well understood looking at the degree of
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coexpression with the targets [1,3,4,15,17]. In particular, an

incoherent mixed-FFL implies a high level of miRNA-target

coexpression, so it is suitable to implement a fine-tuning

interaction. The target is not switched off by miRNA repression,

rather its mean level is adjusted post-transcriptionally to the

desired value. However, many cells can have a protein

concentration far from the finely controlled mean value, if strong

fluctuations are allowed. Hence, a noise buffering mechanism can

be crucial at the level of single cells, and a fine-tuning interaction

will be effective for a large part of the cell population only if

coupled with a noise control. Some authors proposed the

conjecture that the incoherent mixed-FFL can actually have a

role in noise buffering [13,15,25] and biological evidences that

miRNAs can effectively be used as expression-buffers have been

recently found [25,50]. From this point of view the miRNA-target

interactions classified as neutral [17], as the mean level of the

target only changes inside its functional range by the presence/

absence of miRNAs, actually could have been selected by

evolution to prevent potentially harmful fluctuations. In this paper

we demonstrated, through stochastic modeling and simulations,

that the incoherent mixed-FFL has the right characteristics to

reduce fluctuations, giving a proof to the previously proposed

intuitive conjecture and supplying the lacking quantitative

description. In particular, we showed that this circuit filters out

the noise that is propagating from the master TF, giving robustness

to the target gene expression in presence of noisy upstream factors.

Furthermore, our theoretical description led to the prediction that

there is a value of the miRNA repression strength for which the

noise filtering is optimal. A maximum of target-noise attenuation

appears likewise varying the miRNA concentration or the TF

concentration and this robust prediction could be tested

experimentally. In all cases the implementation of the best noise

filter does not imply a strong suppression of the target protein

expression, coherently with a fine-tuning function and in

agreement with the observation that the miRNA down-regulation

of a target is often modest [26,27].

Our paper presents the first model explicitly built on the mixed

version of the FFL. From a theoretical point of view, we addressed

the detailed master equation describing the system (without

neglecting the dynamics of mRNA), instead of the approximate

Langevin description, and we were able to apply the moment

generating function approach despite the presence of nonlinear

terms that can give rise to deviant effects. This approach allowed

us to take into account extrinsic fluctuations as the noise

propagating from upstream genes, without an arbitrary definition

of the extrinsic noise distribution. This strategy can be naturally

extended to other circuits in the mixed network to test their

potential role in the control of stochasticity.

Furthermore, we compared, in terms of noise buffering ability,

miRNA-mediated FFLs with their purely transcriptional counter-

parts, where the miRNA is replaced by a protein that inhibits

transcription rather than translation. This comparison shows that

a miRNA regulator can be better suited for the noise buffering

purpose.

Finally, we tryed to overcome the limitations in the analysis that

can arise from considering a genetic circuit as operating in

isolation. In this perspective, we evaluated the impact that the

recently discovered dilution effect [34,52] can have on the noise

buffering function of miRNA-mediated incoherent FFLs. More

specifically, we showed than an efficient noise control requires the

minimization of the number of miRNA target sites on out-of-

circuit genes, especially if highly expressed or strongly fluctuating

in the mRNA level.

The hypothesis of a role of miRNAs in noise buffering can shed

new light on peculiar characteristics of miRNA regulation. As

discussed in [25] and [50], it can explain why miRNAs are often

highly conserved, controlling key steps in development, but in many

cases they can be deleted with little phenotypic consequences. On the

evolutionary side, the origin of vertebrate complexity seems to

correspond to the huge expansion of non-coding RNA inventory

(including miRNAs) [57]. This can suggest a further reasoning: the

morphological complexity requires a high degree of signaling

precision, with a strict control of stochasticity, and miRNA regulation

can satisfy these requirements if embedded in an appropriate circuit,

as we showed for the ubiquitous miRNA-mediated FFL.

Methods

Simulations were implemented by using Gillespie’s first reaction

algorithm [58]. The reactions simulated were those presented in

schemes 2A9,B9,C9 and 8A. Reactions that depend on a regulator

were allowed to have as rates the corresponding full nonlinear Hill

functions. All the results are at steady state, which is assumed to be

reached when the deterministic evolution of the system in analysis

is at a distance from the steady state (its asymptotic value) smaller

than its 0.05% (see Text S1 for details). For the parameter set used

for Figures 3-9 the steady state was assumed at 5000 seconds,

around 14 times the protein half-life. Each data point or histogram

is the result of 100000 trials.

Supporting Information

Text S1 Details on the theoretical model, supplementary

analysis, and simulations.

Found at: doi:10.1371/journal.pcbi.1001101.s001 (0.75 MB PDF)
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