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Abstract

In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR)
is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-
threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus
identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed
as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-
protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility
gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target
associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from
identifying the CIA causal genes we identified several novel candidate genes which could be responsible for
agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite
enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of
drugs’ perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore
the molecular basis of an adverse event or the new uses for old drugs.
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Introduction

Clozapine (CLZ) provides one of the most effective therapeutic

treatments for schizophrenia [1]. It is classified as an atypical

antipsychotic drug because of its binding to serotonergic and

dopamine receptors. However, its usage is limited due to potential

life-threatening adverse drug reaction, mainly agranulocytosis

[2,3,4]. FDA therefore requires blood testing for patients taking

CLZ, complicating the clinical use of the drug. A recent high

impact clinical study demonstrated the necessity of moving CLZ

from a 3rd line drug to a 1st line drug based on its overall benefit/

risk ratio [1]. Thus the identification of the biomarkers for

clozapine induced agranulocytosis (CIA) could greatly broaden the

usage of this drug. Organizations such as the severe adverse event

consortium (SAEC) and Duke University are collaborating on

identifying genetic risk factors for CIA via genetic association

studies (http://www.genomeweb.com/dxpgx/saec-duke-collabo-

rate-rare-variants-adverse-events-research). However, due to the

rarity of suitable patients, such an approach requires global

collaboration. Even if some statistically significant SNPs are

identified by using genome wide association studies [5,6],

identifying the causal mechanism of such SNPs and using them

in prediction models still presents a challenge. Instead of the

traditional association study, we proposed an alternative compu-

tational methodology to identify the genetic risk factors for CIA,

by identifying the known risk genes, explaining the relevant

mechanism by observing chemical-protein interactions and

providing a ‘‘most likely’’ candidate list [7] for pharmacogenetic

and pharmacogenomic studies [8].

Drug-induced agranulocytosis is a form of idiosyncratic drug

reaction (IDR). It is dose independent and is a form of serious

adverse drug reaction [9,10,11]. One of the major causes of IDR is

unexpected drug-protein interactions in human proteins

[12,13,14,15,16,17,18]. Olanzapine (OLZ) is a CLZ analog, but
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has inferior efficacy in treating schizophrenia. It is reported to

cause much less agranulocytosis compared with CLZ [19,20,21], a

fact that is also confirmed in our statistical test (Fisher’s exact test

p = 8.2E-21, Table 1). Differences in their interaction profile

towards human proteins (off-targets) might explain the etiology of

CIA. Hence we hypothesized that if a human protein tends to be

targeted by CLZ but not OLZ, the protein should be regarded as

the candidate mediator of CIA, and the genes sharing a biological

function with the off-targets (off-system, short for ‘off-target

associated system’) should also display expression perturbation in

cell lines treated by the drug. For example, we identified from a

410 protein target set retrospectively that Hsp70 protein as the off-

target of CLZ but not OLZ, and that genes sharing the biological

function with HSPA1A (Hsp70’s gene) or acting as neighbors in

Human Protein Reference Database (HPRD), a protein-protein

interaction (PPI) database, with HSPA1A were found up-regulated

in cell lines treated by CLZ. Another hypothesis is that if a protein

target is preferably targeted by all drugs causing agranulocytosis

(case) but not targeted by the agranulocytosis- drugs (control), the

protein is a candidate mediator of the agranulocytosis. Using this

hypothesis, we identified NQO2 gene as the candidate gene of

agranulocytosis.

Results

Preparing proteins and chemicals for chemical-protein
interactome

To identify unexpected drug-protein interactions, we utilized

chemical-protein interactome (CPI) [13,22,23], which gives a

score array generated by docking a panel of drug molecules across

a set of human proteins. A CPI delivers two types of information,

the binding conformation and the binding strength (Fig. 1a). It can

be constructed via wet lab techniques [24,25,26,27], but the most

convenient way is to generate an in silico CPI. We used the DOCK

[28] program to evaluate the chemical-protein interaction strength

because it is an open-source software and had been widely used

along with its success in identifying the unexpected chemical-

protein interactions.

To prepare an unbiased protein set, we utilized a pocket set

comprising 410 human protein pockets (381 unique proteins,

Table S1), representing all the available human protein structure

models from third-party target structural databases. The ligand

binding pockets on each protein were then processed manually for

docking preparation (see Methods).

We then mined from literature and the FDA adverse event

reporting system (AERS) the drugs that were reported to cause

agranulocytosis (case) or not cause agranulocytosis (control, Fig.

S1a), aiming at identifying proteins tend to be targeted by case but

not control drugs (red dashed rectangle in Fig. S1b). According to

our criteria (Methods), there were 39 case and 15 control drug

molecules selected for agranulocytosis, including the parent drug

and their major metabolites and isomers. The control drugs did

not share significant 2D structure similarity (Fig. S2), their

indications covering a broad therapeutic categories (covering nine

1st level of ATC codes). To generate a comprehensive distribution

of docking scores for each protein across many drug molecules, we

also incorporated other drug molecules. Although for effective

performance and classification, a larger data set should be used

[22], e.g., all the FDA approved drugs), we restricted our analysis

to drug molecules from our former studies because of the CPU

time for array docking. Thus, a total of 255 drug molecules,

including the CLZ and OLZ, were selected for docking (Table S2).

Constructing the chemical-protein interactome
Here 255 chemicals were docked into the 410 human proteins

using DOCK, generating a docking score matrix of 2556410

elements. A 2-directional Z-transformation (2DIZ) [23] was then

applied to transform the raw docking score into a Z9-score,

extending the multiple active site corrections concept [29]. The

docking scores were normalized by each drug and then by each

protein (Fig. 1b), thus the ‘‘endogenous’’ variance among proteins,

such as the free energy variation across the binding pockets, has

been normalized and contribute almost zero to the variance of the

Z9-scores (Table S3). The major contributions of the variance are

from the chemical effects and the chemical-protein interactive

effects after the 2DIZ, which means that each chemical can ‘fish’

its targets only based on Z9-score without noises from the

‘‘endogenous’’ variance among proteins.

Binomial antithesis CPI between CLZ and OLZ
A basic assumption in using antithesis binding profile from CPI

between CLZ and OLZ is that, 1) the two drugs are broadly similar

in their effects, except for some side-effects, such as agranulocytosis,

and that therefore, apart from some minor differences, their overall

protein binding profile should be similar; 2) these minor differences

in protein binding profile are highly likely to be associated with CIA.

To verify the comparability between CLZ and OLZ, we calculated

Table 1. Test for the difference of the agranulocytosis report
rate between clozapine and olanzapine in the FDA adverse
event reporting system (AERS).

Clozapine Olanzapine

Agranulocytosis Reports 185 16

Total Reports 16813 11304

Ratio of Agranulocytosis Report (%) 1.1 0.14

pCLZ-OLZ* 8.2E-21

*Chi-square test for the equal rate of agranulocytosis between CLZ and OLZ.
AERS records were updated in September, 2009.
doi:10.1371/journal.pcbi.1002016.t001

Author Summary

Idiosyncratic drug reactions (IDR) generally cannot be
identified until after a drug is taken by a large population,
but usually result in restricted use or withdrawal. Clozapine
provides the most effective treatment for schizophrenia
but its use is limited because of a life-threatening IDR, i.e.,
the agranulocytosis. A high impact clinical study demon-
strated the necessity of moving clozapine from 3rd line to
1st line drug; therefore, intensive research has aimed at
identifying genes responsible for clozapine-induced agran-
ulocytosis (CIA). Olanzapine, an analog of clozapine, has
much lower incidence of agranulocytosis. Based on this
phenomenon, we proposed an in silico methodology
termed as antithesis chemical-protein interactome (CPI),
which mimics the differences in the drug-protein interac-
tions of the two drugs across a panel of human proteins.
e.g., HSPA1A was identified to be targeted by clozapine not
olanzapine. Furthermore, the gene expression of the
HSPA1A-related gene system was also found up-regulated
after clozapine treatment. This approach can examine the
system’s perturbation in terms of both the off-target and
the off-system’s interaction with the drug, providing
theoretical basis for decoding the adverse drug reactions
or the new uses for old drugs.

Off-Target/Off-System Clozapine Adverse Reaction
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the Pearson’s correlation coefficients (PCC) between Z9-score

vectors of CLZ and OLZ across all 410 human proteins (with

missing values removed). All four CLZ-OLZ pairs (2 CLZ

ionization states62 OLZ ionization states) obtained high positive

PCC values (Fig. S3a). Their mean PCC value was distinctly higher

(p = 0.0009 for permutation test in Fig. S3b). The high correlated

Figure 1. Workflow of construction and mining of the binomial antithesis chemical-protein interactome (CPI). (a) Binding
conformations and raw docking scores were derived from the CPI with each column representing the drug molecule and each row representing the
protein. (b) The 2DIZ transformation was applied to the CPI comprising 255 drugs and 410 protein pockets. (c) The OLZ and CLZ columns were
extracted from the CPI where their Z9 score differences for each protein were measured by A-scores. The p values for each achieved A-score were
calculated by simulating a random background. (d) Proteins were ranked according to their p values. In this case, Hsp70 was selected, proteins
belonging to the same biological function (anti-apoptosis system or Hsp70’s neighbor in HPRD network) were selected and then their expression
changes in CLZ treatment were investigated (green bars indicated the rankings of the Hsp70 related genes when ordered by the change after CLZ
treatment) and tested for significance by randomly selecting the same probe number in the genome background for permutation.
doi:10.1371/journal.pcbi.1002016.g001

Off-Target/Off-System Clozapine Adverse Reaction
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protein binding profiles of CLZ and OLZ underlined their

structural and pharmacological similarity, which also indicated

the structural variability of all 255 drug molecules in the

construction of the CPI. We therefore hypothesized that the

proteins exhibiting different binding affinity against CLZ and OLZ

might account for the agranulocytosis risk of these two analogs.

In order to identify the minor distinctions, we defined the

antithesis score (A-score) for protein i as the Z9-score difference

between CLZ and OLZ towards protein i,

Aclz,olz
i ~Z0i,clz{Z0i,olz:

We also calculated the probability of an A-score less than Aclz,olz
i

between two randomly selected drug molecules among 255

molecules at protein i (Fig. 1c), which could be expressed as,

pi~P(A
j,k
i vAclz,olz

i ) (j,k [ ½0,255�, j=k):

We performed permutations for each target by randomly

selecting drug-pairs and calculating their A-scores 10,000 times.

Here the p value was the one-tailed probability when the A-score of

the drug-pair was less than that of the CLZ-OLZ pair. Targets with

p value less than the 0.05 cutoff are shown in Table 2. For the four

CLZ-OLZ pairs, we chose only the pair that recalled most known

CIA related genes reported in the genetic association studies.

Multiple antitheses CPI between case and control drugs
A chemical-protein interaction with a Z9-score less or greater than

20.48 was defined as interactive or not interactive, respectively. As

indicated in our previous training set [22], Z9-scores above such cutoff

captured 70% of the true bindings and were enriched more than

three-fold as compared with the false binding. For protein i, ai, bi, ci,

and di, denoting the number of interactive (ai or bi) and not interactive

(ci or di) by case or control drug molecules, respectively, were counted

and the relative ratio (RR) was calculated as follows,

RRi~
ai

aizbi

� �
cizdi

ci

� �
:

To identify proteins preferentially interacting with the case

drugs, we performed Fisher’s exact tests for each protein. The

significance (one-sided) for each of the protein pockets with RR

value exceeding one were computed and were used as a measure

to prioritize the potential protein mediating agranulocytosis.

Table 3 shows protein targets with p values less than 0.05.

Table 2. Candidate off-targets/-systems prioritized from binomial antithesis CPI between CLZ and OLZ.

PDB ID# Target Name Gene Name Z9 (CLZ)* Z9 (OLZ) A-score
p value
for CPI Role

Sys.
Regulation

p value for Sys.
perturbation

1CBS Cellular retinoic acid-binding
protein 2

CRABP2 20.922 1.653 22.575 0.000

1D1T Alcohol dehydrogenase class
4 mu/sigma chain

ADH7 21.191 1.525 22.716 0.000 OR

1IHI_1 Aldo-keto reductase family 1
member C2

AKR1C2 20.781 2.545 23.326 0.000 OR

1IHI_2 Aldo-keto reductase family 1
member C2

AKR1C2 21.605 1.023 22.628 0.000 OR

1OIZ Alpha-tocopherol transfer protein TTPA 21.269 1.171 22.440 0.000

2E8A Heat shock 70 kDa protein 1 HSPA1A/HSPA1B 21.381 0.150 21.531 0.001 up 0.0289

1D2V Myeloperoxidase MPO 22.753 20.646 22.107 0.005 OR

1DB1 Vitamin D3 receptor VDR 20.660 0.748 21.409 0.012 up 0.0139

1MRQ_2 Aldo-keto reductase family 1
member C1

AKR1C1 22.034 0.123 22.158 0.016 OR

1MRQ_1 Aldo-keto reductase family 1
member C1

AKR1C1 21.036 0.601 21.637 0.021 OR

1DHT Estradiol 17-beta-dehydrogenase 1 HSD17B1 21.822 0.158 21.980 0.021 OR

1MUO Serine/threonine-protein kinase 6 AURKA 21.136 0.529 21.665 0.027 up 0.0749

1VJ5 Epoxide hydrolase 2 EPHX2 21.088 0.228 21.315 0.027

4GTU Glutathione S-transferase Mu 4 GSTM4 20.749 1.060 21.809 0.036 GT down 0.2758

1HDR Dihydropteridine reductase QDPR 21.469 0.561 22.030 0.038 OR

1YB5 Quinone oxidoreductase CRYZ 21.212 0.284 21.496 0.039 OR

1CM8 Mitogen-activated protein kinase 12 MAPK12 21.202 0.301 21.503 0.039 up 0.1238

1XF0_2 Aldo-keto reductase family 1
member C3

AKR1C3 20.865 0.441 21.306 0.041 OR up 0.0113

1HMR Fatty acid-binding protein, heart FABP3 20.826 0.270 21.095 0.046 down 0.1968

#An entry name that ends with a number represents the pocket number of its PDB structure.
*The smaller Z9-score represents a higher theoretical interaction strength.
In the ‘‘Role’’ column, OR and GT indicate oxidoreductases and gluthathione metabolism related proteins, respectively.
doi:10.1371/journal.pcbi.1002016.t002

Off-Target/Off-System Clozapine Adverse Reaction
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Table 3. Targets selected from multiple antitheses CPI between case and control drugs with p value less than 0.05.

PDB IDa Target Name Gene Name a b c d RR p value Role

1I10 L-lactate dehydrogenase A chain LDHA 21 1 18 14 1.697 0.002 OR

2HGS_2 Glutathione synthetase GSS 24 2 15 13 1.723 0.002 GT

2HRB Carbonyl reductase NADPH 3 CBR3 17 0 22 15 1.682 0.002 OR

1KBQ NAD(P)H dehydrogenase quinone 1 NQO1 16 0 23 15 1.652 0.002 OR

1EEM Glutathione S-transferase omega-1 GSTO1 19 1 20 14 1.615 0.004 GT

1SG0_2 Ribosyldihydronicotinamide dehydrogenase quinone NQO2 14 0 22 15 1.682 0.005 OR

1G0X Leukocyte immunoglobulin-like receptor subfamily
B member 1

LILRB1 15 0 24 15 1.625 0.005

2AHE Chloride intracellular channel protein 4 CLIC4 14 0 24 15 1.625 0.005

1DIA Formyltetrahydrofolate synthetase MTHFD1 14 0 25 15 1.600 0.006 OR

11GS Glutathione S-transferase P GSTP1 18 1 21 14 1.579 0.009 GT

1FIE Coagulation factor XIII A chain F13A1 12 0 23 15 1.652 0.010

1Q4O Serine/threonine-protein kinase PLK1 PLK1 13 0 25 15 1.600 0.011

1LJR Glutathione S-transferase theta-2 GSTT2B 8 0 12 14 2.167 0.011 GT

1FPR Tyrosine-protein phosphatase non-receptor type 6 PTPN6 13 0 26 15 1.577 0.011

1HSO Alcohol dehydrogenase 1A ADH1A 13 0 26 15 1.577 0.011 OR

1IHI_1 Aldo-keto reductase family 1 member C2 AKR1C2 20 2 19 13 1.531 0.014 OR

1SG0_1 Ribosyldihydronicotinamide dehydrogenase quinone NQO2 16 1 22 14 1.540 0.020 OR

1IHI_2 Aldo-keto reductase family 1 member C2 AKR1C2 16 1 23 14 1.514 0.021 OR

1D5R Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase
and dual-specificity protein phosphatase PTEN

PTEN 11 0 26 15 1.577 0.022

1XWK Glutathione S-transferase Mu 1 GSTM1 11 0 26 15 1.577 0.022 GT

1TDI Glutathione S-transferase A3 GSTA3 11 0 27 15 1.556 0.023 GT

5GAL Galectin-7 LGALS7 | LGALS7B 11 0 27 15 1.556 0.023

1W7N Kynurenine–oxoglutarate transaminase 1 CCBL1 11 0 28 15 1.536 0.024

2AB6 Glutathione S-transferase Mu 2 GSTM2 11 0 28 15 1.536 0.024 GT

1MQ0 Cytidine deaminase CDA 15 1 24 14 1.484 0.024

1OAT Ornithine aminotransferase, mitochondrial OAT 15 1 24 14 1.484 0.024

1ANG Angiogenin ANG 12 0 27 15 1.556 0.024

1J8F NAD-dependent deacetylase sirtuin-2 SIRT2 12 0 27 15 1.556 0.024

2J0D Cytochrome P450 3A4 CYP3A4 12 0 27 15 1.556 0.024 OR

1XF0_1 Aldo-keto reductase family 1 member C3 AKR1C3 19 2 19 13 1.524 0.027 OR

1I0Z L-lactate dehydrogenase B chain LDHB 19 2 20 13 1.493 0.028 OR

2BX8_3 Serum albumin ALB 17 2 19 13 1.507 0.028

1GOS_2 Amine oxidase flavin-containing B MAOB 20 3 16 12 1.522 0.030 OR

1UKI Mitogen-activated protein kinase 8 MAPK8 18 2 21 13 1.457 0.031

2BXF Serum albumin ALB 18 2 21 13 1.457 0.031

5P21 GTPase HRas HRAS 14 1 24 14 1.478 0.041

1PIN Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 PIN1 9 0 24 15 1.625 0.041

1H0C Serine–pyruvate aminotransferase AGXT 14 1 25 14 1.456 0.043

1A5Y Tyrosine-protein phosphatase non-receptor type 1 PTPN1 14 1 24 13 1.439 0.043

1QMV Peroxiredoxin-2 PRDX2 9 0 27 15 1.556 0.044 OR

1BJ4 Serine hydroxymethyltransferase, cytosolic SHMT1 10 0 29 15 1.517 0.046

2CYK Interleukin-4 IL4 10 0 29 15 1.517 0.046

3DYD Tyrosine aminotransferase TAT 10 0 29 15 1.517 0.046

1HE5_2 Flavin reductase BLVRB 9 0 30 15 1.500 0.049 OR

aAn entry name that ends with a number represents the pocket number of its PDB structure.
In the last column, OR and GT indicate oxidoreductases and gluthathione metabolism related proteins, respectively.
doi:10.1371/journal.pcbi.1002016.t003

Off-Target/Off-System Clozapine Adverse Reaction
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Retrospective study of the genetic risk factors of CIA
Besides human leucocytes antigen (HLA) markers, three CIA

susceptible genes have been identified in genetic association studies

[30], namely HSPA1A [31], TNF [32] and NQO2 [33]. None of the

HLA proteins were included in our pocket set since they did not

meet our criteria of choosing protein pockets. Proteins coded by

these three susceptibility genes all happen to be included in our

pocket set comprising third party targetable protein databases

(Table S1).

HSPA1A codes the heat shock 70 kD protein 1 (Hsp70 protein,

PDB ID: 2E8A) and has been reported in a high profile journal to

be associated with CIA with its causality in CIA discussed [31]. It

is also well known for its druggability in antitumor drugs [34],

which in general, cause the death of the cell. The gene was

prioritized in our binomial antithesis CPI (Table 2). Significant

binding strength differences between CLZ and OLZ towards

Hsp70 were identified with the binding conformations visualized

in Fig. 2. The CLZ molecule fits deeply into the Hsp70 pocket

(Fig. 2b). By contrast, the methyl group of OLZ was difficult to

accommodate in the narrow pocket using the similar binding pose

as CLZ (Fig. 2c).

We further performed the site-moiety map analysis [35] of the

Hsp70 pocket by examining the moiety preferences of the docked

ligands and the physicochemical properties of the pocket. One van

der Waals-interacting anchor site was identified with three

essential residues (R272, R342 and G339, Fig. 3a). Among the

docked drug molecules, most used the aromatic moiety or

conjugated bonds to interact with this center (Fig. 3b). Theoret-

ically, both CLZ (Fig. 3c) and OLZ (Fig. 3d) should have been

capable of insertion into this pocket, however, the methyl on the

OLZ molecule made it difficult to hold the same binding direction

as that of the CLZ (see molecule structures in Fig. 3c, d). The CLZ

molecule was inserted deep into the pocket and used most of its

conjugated ring system to interact with the R272 and R342 via p-

p interaction. Compared with CLZ, OLZ could not use the

majority of its conjugated system due to steric hindrance caused by

his methyl group. The above findings add evidence to the

hypothesis that the Hsp70 protein was the off-target of CLZ but

not of OLZ.

Ribosyldihydronicotinamide quinone dehydrogenase (coded by

NQO2; PDB ID: 1SG0), the known risk gene for CIA, was

prioritized from the multiple antitheses CPI (Table 3), together

with other 44 proteins with p value less than 0.05. The protein was

preferably targeted by the case but not the control drugs. The

Kolmogorov-Smirnov test of the Z9-scores between cases and

controls showed significant differences on two pockets (p = 0.002

and p = 0.004 for pocket 1 and 2, respectively). As for the binomial

antithesis CPI, NQO2 protein ranked 37th among the 410 proteins

(top 9%) when ordered by p value. Although the p value did not

exceed the 0.05 threshold, the A-score was 21.18, indicating that

there were still differences between the interaction strength of CLZ

and OLZ towards this protein.

Myeloperoxidase and NADPH-oxidase are functionally in-

volved in the pathogenesis of the drug-induced agranulocytosis

[36,37]. Myeloperoxidase (PDB ID: 1D2V) was found in Table 2

whereas two oxidoreductases using NADPH as the co-enzyme,

namely Carbonyl reductase NADPH 3 (2HRB) and NAD(P)H

dehydrogenase quinone 1 (1KBQ) were found in Table 3.

We also investigated the genetic polymorphisms of genes coding

Hsp70, NQO2 protein, Myeloperoxidase and NADPH-oxidase.

Some nonsynonymous single nucleotide polymorphisms (SNPs)

were identified but none of these was found to affect the ligand

binding pockets.

Clozapine perturbation on the Hsp70-associated system
Besides bindings between chemicals and proteins, the drug-

target relationship may also be reflected in the expression changes

of genes related to the off-target associated system [38] after

chemical treatment. If the mRNA expression of a set of genes

related to off-target X is significantly changed after drug treatment,

Figure 2. Structural comparison of clozapine and olanzapine towards HSP70 protein. (a) The structural difference between CLA and OLZ.
(b, c) Binding conformation of CLZ and OLZ towards the Hsp70 ligand binding pocket. The whole molecule of CLZ binds deep into the pocket,
leaving the chlorine atom at the surface. However, the major part of the OLZ molecule is not accommodated in the deep pocket due to the steric
hindrance of the methyl on the heterocycle of OLZ. The figures were drawn using PyMOL.
doi:10.1371/journal.pcbi.1002016.g002

Off-Target/Off-System Clozapine Adverse Reaction
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both target X and the associated system X could corroborate each

other for their roles in the adverse reaction. Since Hsp70 was

identified as the putative off-target of CLZ, we sought to

investigate whether the CLZ treatment resulted in perturbation

of Hsp70 and the related gene system. We analyzed the data from

Connectivity Map (cMAP) [39], a collection of gene expression

data from drug-treated human cell lines on Affymetrix U133A

microarrays. Cells were treated by particular drug and vehicle

respectively to measure the change of gene expression. One such

drug-vehicle pair was defined as an instance. For all 6,100

instances, 22,283 probes were ranked by fold-change values with

higher fold-change ranked at the top (close to rank 1), forming a

2228366100 matrix. We recruited all four instances (instance

1170, 1289, 2689 and 6188) performed on the human promyelo-

cytic leukemia (HL60) cell line to specifically address the drug

effect of CLZ on the leukocytes. Instances performed on other cell

lines were also investigated.

We then manually extracted genes related to HSPA1A in Gene

Ontology (GO) (Fig. 1d) [40]. HSPA1A was associated with 7 GO

terms in the biological process. As agranulocytosis is basically

the death of neutrophil and is known to be correlated to

apoptosis pathways [41], we choose the term ‘‘anti-apoptosis’’

(GO:0006916) to characterize the role of HSPA1A in CIA. We

selected all human genes linked to this term that collectively

represented the Hsp70 off-system. These genes were mirrored to

probes on microarray (439 probes corresponding to 235 genes).

For each probe, we calculated the average rank of the probe across

four CLZ instances (R9 rank), with higher R9 (closer to rank 1)

indicating generally up regulated status and lower R9 down

regulated status. We compared the R9 of the Hsp70 system and

other genes on the U133A probe set. The anti-apoptosis system

exhibits an R9 distribution quite distinct from that of the genome

background (Fig. 4a), with significantly higher mean R9 than the

random 235 gene set (258 out of 10000 sets showed higher R9,

p = 0.0258 for permutation test, Fig. 4b). The general up

regulation of Hsp70 related genes indicates that CLZ treatment

clearly changes the bioactivity of the Hsp70 system in human

HL60 promyelocytic leukemia cells. The Hsp70 off-system’s

perturbation was further confirmed using HSP1A1’s ‘neighbor’ in

HPRD [42] network) following the same procedure as for

investigating the anti-apoptosis system (Fig. 4c,d). Both GO

term-based off-system and the PPI-based off-system corroborate

the important role of Hsp70 in CIA. The cMAP also contains

breast cancer cell line MCF7 and human prostate cancer cell line

Figure 3. Site-moiety map analysis of the Hsp70 pocket. (a) The van der Waals-interacting anchor site with three essential residues (R272, R342
and G339). (b) Percentages of the functional group among all docked drug molecules. The binding conformation of CLZ (c) and OLZ (d) towards this
site. The molecule directions are also indicated in the 2D molecule structures at the top right corner of (c, d). Bottom left of (d) shows the direction of
the OLZ as if it wants to interact using the same pattern as CLZ but significant steric hindrance makes insertion into the pocket in this way difficult.
doi:10.1371/journal.pcbi.1002016.g003
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PC3, however, none of the perturbation of the Hsp70 system could

be detected in these two cell lines. The significant perturbation

could not be detected on other six GO terms of HSP1A1.

Two-dimensional elucidation of the off-targets and the
off-systems after clozapine treatment

The drug-(off) targets interaction and the gene expression

change are the molecular events at two different dimensions after

drug treatment. To get an overview of the systems perturbation of

the off-targets prioritized in Table 2, we investigated the PPI-based

off-systems for them. We did not choose the GO term-based off-

systems because each gene was related to multiple GO terms, and

it was difficult to objectively choose the appropriate GO terms

related to agranulocytosis. Furthermore, using PPI-based off-

systems to study the drug’s perturbation on the biosystems has

been proved to be applicable [43]. Among 17 off-systems, three

were found to be significant perturbed with a permutation p value

less than 0.05 (Table 2), including Hsp70 off-system.

The PPI-based off-systems were then visualized in Fig. 5, where

the gene expression perturbation ‘landscape’ of the off-systems was

shown. These off-systems were found to be connected by several

hub nodes, such as apoptosis associated gene (TP53), the gene

coding Bcl-2-binding protein (BAG1) and the transcriptional

regulator of vitamin D3 receptor (TRIM24) et al. Interestingly,

NQO2 was also found to be involved in HSPA1A off-system and

significantly up-regulated after CLZ treatment. Besides preferably

inhibited by CLZ, most of the oxidoreductases were found down-

regulated or remain unchanged after CLZ treatment. The whole

picture demonstrated that the impact of CLZ on the HL60 cell

line is reflected on the up-regulation of the anti-apoptosis systems

and the inhibition or the down-regulation of the oxidoreductases.

Perspective investigation of the predicted genetic risk
factors of CIA

Interestingly, oxidoreductases were found to be significantly

enriched in prioritized proteins. For example, quinone oxidore-

ductase (PDB ID: 1YB5), an isozyme of the NQO2 protein, also

appears in Table 2. Seventy out of 410 protein pockets (17%) were

oxidoreductases (Table S1). However, as Table 2 shows,

oxidoreductases were significantly enriched (10 out of 19, 53%,

Fisher’s exact test p = 6.6E-4). Among targets prioritized by

multiple antitheses CPI (Table 3), 15 out of 44 pockets (34%)

belonged to oxidoreductases (p = 7.9E-3). In addition, only 12 out

of 410 protein pockets (3%) were related to glutathione metabolite,

which plays key role in antioxidation. However, as Table 3 shows,

7 out of 45 (16%) were significantly enriched (p = 1.2E-3).

Figure 4. Clozapine disturbance effect towards the Hsp70 systems. Compared with the genome background, genes related to anti-
apoptosis (a) or Hsp70’s neighbor in HPRD network (c) were generally up regulated in CLZ treated HL60 cell lines, in terms of higher R9 value. The
mean R9 of anti-apoptosis (b) or Hsp70’s neighbor in HPRD network (d) related gene system was significantly higher than randomly selected genes in
the genome background simulated by permutation test.
doi:10.1371/journal.pcbi.1002016.g004
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Discussion

Identification of off-targets has potential application in drug

repurposing [44,45] and personalized medicine [13,46]. Com-

pared with the similarity ensemble approach [47] and the naive

Bayesian classifiers approach [48] to off-target identification, both

of which build new drug-protein connections within the space of

the known therapeutic target, the chemical-protein interactome

approach is a step towards analyzing the entire human proteome,

although the available human protein structrome is limited.

Several of the pocket comparison algorithms have also tried to

explore the off-target spaces facing the entire human proteome

[15,17], or tried to map the off-targets onto the pathways [49] or

the metabolic network [50], but our study is the first one

examining the system’s perturbation in terms of both the off-target

identification and the off-system’s gene expression change,

providing candidates for pharmacogenetic and pharmacogenomic

studies, respectively. Further work may combine the off-target and

the off-system in elucidating and predicting adverse drug reactions.

In the retrospective studies, the antitheses CPI recalled the

accredited susceptible genes for CIA. As a complement to genetic

association studies [6], the CPI reveals the possible mechanism of

the CIA based on the drug-protein interaction, the primary step in

drug reaction. The difference between the interaction conforma-

tion and the interaction strength of CLZ and OLZ towards the off-

targets could account for the difference in patients’ susceptibility to

agranulocytosis. Since none of the nonsynonymous SNPs was

found around the ligand binding pocket of the four proteins

reported to be involved in CIA, we deduced that individual

differences in CIA susceptibility could be explained by a variation

in the expression level of the protein. In fact, NQO2 was found to

have lower expression levels in CIA susceptible patients [33]. The

lower expression level in this detoxification enzyme could make

the patient more sensitive to the drug. It is also reasonable to

expect subsequent discoveries (e.g. some genotypes correlated to

Hsp70 or NQO2 expression level) supporting the CLZ off-target

hypothesis, which could lead to biomarker development at

genotype and gene expression level [51] in CLZ therapy.

The reactive oxygen hypothesis is one of the major hypotheses

of agranulocytosis etiology [37]. In our results, CLZ and other

drugs causing agranulocytosis tended to affect the oxidoreductases,

which play an important role in reactive oxygen clearance. For

example, NQO2 protein and myeloperoxidase are key enzymes in

the detoxification of active radicals thus protecting the cells from

drug-induced oxidative and electrophilic stress [52]. Furthermore,

alpha-tocopherol transfer protein is a prioritized target of

clozapine (Table 2). Blocking the transferring of tocopherol,

which is a strong endogenous antioxidant [53], may also explain

clozapine’s impact on the detoxification system. Clozapine can be

oxidized to reactive nitrenium ions [54], which preferably reacts

with sulfhydryl and is detoxified by glutathione. In our results,

glutathione related enzymes were significantly enriched in the

CPI, implying that the drug causing agranulocytosis not only

affected the detoxification system of oxidoreductases, but might

Figure 5. Off-targets and their off-systems’ perturbation after clozapine treatment. The off-targets, the genes involved in the PPI-based
off-systems and the hub genes are in diamond, circle and hexagon shape, respectively. The PPI information from HPRD contains binary PPI and
protein complex, and only the former information is visualized in this figure for brief. Red/green indicates the up-/down-regulation of the gene
expression after clozapine treatment. Oxidoreductases and gluthathione metabolism related protein are in yellow and purple edges, respectively. The
interaction between HSPA1A and NQO1 was highlighted in red line.
doi:10.1371/journal.pcbi.1002016.g005
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also interfered in the glutathione system, which is essential to the

detoxification of the major metabolites of CLZ.

Besides the unexpected drug-protein interactions, the expression

change of the off-system may explain CIA etiology. The

perturbation of anti-apoptosis genes by CLZ treatment reflects

the fact that CLZ disturbs cell death pathways by binding with

Hsp70, and the general up regulation of anti-apoptosis genes can

be explained as a feedback towards elevated apoptotic stress

mediated by Hsp70 and the anti-oxidation system, since the

inhibition of oxidoreductases and the perturbation of oxidoreduc-

tase system is a well known mediator of apoptosis [55]. By

breaking the balance of oxidation and reduction, CLZ can

stimulate apoptosis via Hsp70 inhibition and enhanced oxidative

stress. Along with the CPI results, biological effects of CLZ further

support the hypothesis that Hsp70 and oxidoreductases together

with their respective system serve as the off-targets(-systems) of

CLZ and potentially mediate CIA. Since HL60 is derived from

peripheral blood leukocytes, which is a representative cell model

for the immune system, the finding of the systems perturbation in

HL60 cells but not in MCF7 (breast cancer) and PC3 (prostate

cancer) cell lines strengthens the antiapoptosis and the oxidore-

ductases systems’ function in immune related events. In summary,

53% and 34% of prioritized proteins from the CPI are

oxidoreductases, and 16% of the proteins are related to

gluthathione metabolism. These findings suggest a much higher

participation of the detoxification/antioxidant systems in drug-

induced agranulocytosis than previously thought and the off-

targets/-systems identified in this study can represent candidates

for biomarker development in wet-lab experiments and pharma-

cogenetic/pharmacogenomic screening in the future.

However, the 410 binding pocket set is a limited representation

of the entire human proteome. For instance, it does not include

any HLA proteins according to our target preparation criteria,

which may be involved in agranulocytosis as a mediator of the

immune etiology. Drug-HLA interaction was reported to be an

important step determining the drug-HLA specificity in IDR [56].

In our previous study, we have built the abacavir-HLA-B*5701

interaction models for abacavir-induced hypersensitivity [13]. The

identification of the drug-HLA interaction at the F-pocket of HLA

molecules has been cited by several immunologists [57,58]. Since

HLAs have been identified as the key factors in IDRs [5,6,59,60],

the drug-HLA interactome will be systematically studied in future.

Identification of the related genes and the systems is the first step

towards understanding and more importantly, predicting the IDR.

The IDRs were regarded as unpredictable in response to

compounds [61]. In this study, we argue that the IDRs are

predictable, and the challenge of personalized medicine is not to

predict adverse reaction for a compound but for a patient. The

biomarkers could be either the genetic variations causing a binding

affinity change of the drug towards the off-targets [62,63], the

expression level alteration of one gene [33], or the off-systems’

perturbation. Our study demonstrates that beside polymorphisms

around the binding pocket that alter the drug efficacy via a change

in the binding affinity [64,65], the off-system expression change

could also determine individual variability towards the same drug,

suggesting a new way of identifying biomarkers or constructing a

prediction model for personalized medicine. Such an approach

could also be applied to personalized drug repurposing [66,67,68],

where the off-targets and the off-systems accounting for the new

therapeutic area could also be patient specific.

Adverse drug reaction and the new indication are two ‘off-

effects’ of the drug towards human being. So this study will also

illuminate the drug repositioning by, 1) helping explain the mode-

of-action of the serendipitous repositioned drugs via identifying

their off-targets/-systems; 2) predicting the new use for existing

drugs based on their interaction profiles with the off-targets and

their perturbations on the off-systems. For example, one can

recruit the case and the control molecular set for a particular

indication. After identifying the off-targets/-systems using the

methodology in this study, one can predict the indication of a new

compound based on its impact on these newly identified off-

targets/-systems.

Methods

Analysis of the adverse drug reaction report
The reports were downloaded from the FDA’s AERS (http://

www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/

Surveillance/AdverseDrugEffects/default.htm). This system tracks

adverse events that are voluntarily reported but only the records from

2004 were freely available. All reports bearing CLZ and OLZ as the

primary or secondary suspected drug were counted. The numbers of

agranulocytosis cases were then counted for each drug. We

performed Fisher’s exact test to examine the frequency difference.

Preparing the target set
Protein targets were obtained from third-party protein structure

databases, including a drug adverse reaction target database [69],

a drug-induced toxicity related protein database [70], a therapeu-

tic target database [71] and a protein database for drug target

identification [72]. Every pocket was examined manually when

constructing the target set for DOCK according to the following

criteria. First, the species should be confined to Homo sapiens;

secondly, a co-crystallized ligand must be contained to indicate the

targetable state of the protein; thirdly, the pocket should not

contain missing residues. Spheres whose radii ranged from 1.1–

1.4 Å were generated to fill in the pocket. A grid box was

constructed 3–5 Å from the spheres. EC classifications of the

enzymes were taken from the annotations of UniProt [73]. Finally,

we achieved 410 protein pockets from 384 PDB entries, 74% of

which have the resolution less than 2.5 Å.

Choosing the cases and controls for multiple antitheses
CPI

Drugs reported in the PubMed literature (up to September,

2009) as being associated with agranulocytosis were chosen as

candidates and further examined in the AERS administered by the

FDA/Center for Drug Evaluation and Research (http://www.fda.

gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/

AdverseDrugEffects/default.htm). All AERS raw data were down-

loaded from the FDA website and then placed in a relational

database (MySQL 5.1). Accessible data were limited to the period

from Jan 2004 to March 2009. In any adverse event report, only

the primary or the secondary suspected drugs were regarded as

linked to agranulocytosis. The candidates were only included if

the number of reports exceeded 3. The candidates for control

drugs were collected from AERS data, on condition that there

were no reports of agranulocytosis. Candidates were then

confirmed as control drugs only if they had never been co-cited

with agranulocytosis in PubMed literature and the first 10 results

of a Google search (up to September, 2009; with drug name

AND ‘‘agranulocytosis’’ as query term). The major metabolites

and the isomers of the drugs were also included. In the end, 39

case and 15 control drug molecules were selected for agranulo-

cytosis endpoint. These 15 controls do not share significant 2D

structure similarities. The SMILES code of the drugs and their

derivatives was retrieved from PubChem. The 3D conformations

of chemicals were simulated using CORINA. Charges and
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hydrogens of proteins and chemicals were added using Chimera

[74].

Choosing the background drug molecules
The background drugs were chosen from the molecules

prepared in our previous studies, including anti-Alzheimer drugs

[22], drugs referred to in the study by Lamb et al [39] on using the

cMap, case and control drugs for rhabdomyolysis, cholestasis,

deafness and Stevens-Johnson syndrome and QT prolongation

[13]. A total of 255 drug molecules, including case and control

drugs for agranulocytosis, were involved in constructing the CPI.

Constructing the CPI
A CPI comprising 255 drugs towards 410 protein pockets was

constructed using the DOCK [28] program controlled by Bash

shell scripts. The parameters for docking corresponded to the

default settings. The 2DIZ transformation [23] was performed

where the docking score matrix was normalized first by one drug

towards the 410 proteins then by one protein pocket towards the

255 drugs. The empirical threshold 20.48 of the Z9-score was set

to distinguish binding and non-binding, based on the findings of

the previous studies [22,23].

Permutation test for the PCC of CLZ-OLZ pairs
To determine the significance level of similarity between four

CLZ-OLZ pairs (2 CLZ ionization states62 OLZ ionization

states) across their protein binding profile, we randomly recruited

10,000 sets with four drug pairs from all 255 drugs in the CPI, and

identified 9 pairs with mean PCC not lower than the mean PCC of

the four CLZ-OLZ pairs.

Microarray data analysis
Suppose there are n genes sharing a specific GO term or linked

to the same hub in the HPRD network. Each probe was

independently ranked according to expression change for each

instance in cMAP, with most up-regulated being at the top. For

the cMAP instance # 1170, 1289, 2689 and 6188, which were the

CLZ-treated instances, we calculated the mean rank R9 of each

probe as

R0~
R1170zR1289zR2689zR6188

4
,

where R1170, R1289, R2689 and R6188 indicate the rank in instance

1170, 1289, 2689 and 6188, respectively. For evaluation on the

perturbation status of a system, we randomly recruited 10,000 sets

with n genes, obtaining m sets with mean rank higher than the

object system. The p value was calculated as m/10000.

Locating the polymorphism onto the proteins
Polymorphism information for the genes was retrieved from

dbSNP [75] and UniProt [73]. The ‘coordinations’ of the amino

acid sequence in the PDB files were adjusted to match the

‘coordination’ of dbSNP. The distance between the polymorphism

site and the ligand binding pocket of the protein was visualized on

PyMOL.

Supporting Information

Figure S1 Workflow of construction and mining of the multiple

antithesis chemical-protein interactome (CPI). (a) Determining the

case (AGNL+) and control (AGNL2) drugs from FDA’s adverse

event reporting system and PubMed. (b) A visualization of the

chemical-protein interactome. Proteins that are preferably inter-

acted by case but not control drugs are highlighted in a red dashed

rectangle, these being regarded as the candidates mediating CIA.

(TIF)

Figure S2 Structures of the 15 control molecules.

(TIF)

Figure S3 Similarity of protein binding profile between

Clozapine and Olanzapine. (a). Ordered by positive PCC value,

the four CLZ-OLZ pairs ranked at the top 0.86, 2.51, 16.60 and

17.15 percentile of all possible pairs among 255 drug molecules,

respectively. (b) The background distribution of the mean PCC of

the four drug molecules were generated by randomly recruiting

10,000 sets with four drug pairs among all 255 drugs. CLZ and

OLZ have highly similar protein binding profiles in terms of

significantly high PCC of Z9-score vectors.

(TIF)

Table S1 The 410 protein pockets and their enzyme commission

number.

(DOC)

Table S2 Drug molecules involved in CPI.

(DOC)

Table S3 ANOVA of the chemical-protein interactive effect

before and after 2-directional Z-transformation.

(DOC)
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