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Abstract

Genetic variation on the non-recombining portion of the Y chromosome contains information about the ancestry of male
lineages. Because of their low rate of mutation, single nucleotide polymorphisms (SNPs) are the markers of choice for
unambiguously classifying Y chromosomes into related sets of lineages known as haplogroups, which tend to show
geographic structure in many parts of the world. However, performing the large number of SNP genotyping tests needed to
properly infer haplogroup status is expensive and time consuming. A novel alternative for assigning a sampled Y
chromosome to a haplogroup is presented here. We show that by applying modern machine-learning algorithms we can
infer with high accuracy the proper Y chromosome haplogroup of a sample by scoring a relatively small number of Y-linked
short tandem repeats (STRs). Learning is based on a diverse ground-truth data set comprising pairs of SNP test results
(haplogroup) and corresponding STR scores. We apply several independent machine-learning methods in tandem to learn
formal classification functions. The result is an integrated high-throughput analysis system that automatically classifies large
numbers of samples into haplogroups in a cost-effective and accurate manner.
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Introduction

Genetic variation on the non-recombining portion of the Y

chromosome (NRY) has become the target of many recent studies

with applications in a variety of disciplines, including DNA

forensics [1,2], medical genetics [3], genealogical reconstruction

[4], molecular archeology [5], non-human primate genetics [6],

and human evolutionary studies [7–9]. Two extremely useful

classes of marker on the NRY include microsatellites or short

tandem repeats (STRs) and single nucleotide polymorphism

(SNPs) [7]. STRs consist of variable numbers of tandem repeat

units ranging from 1 to 6-bp in length and mutate via a stepwise

mutation mechanism, which favors very small (usually one repeat

unit) changes in array length. Because high mutation rates

(estimated to be 0.23%/STR/generation) in human pedigrees

[10,11] often lead to situations where two alleles with the same

repeat number are not identical by descent, STRs are not the

marker of choice for constructing trees or for inferring relation-

ships among divergent human populations. Rather, the high

heterozygosity of STRs makes them useful for forensic and

paternity analysis, and for inferring affinities among closely related

populations.

Reconstructing relationships among globally dispersed popula-

tions or divergent male lineages requires polymorphisms with

lower probabilities of back and parallel mutation (i.e., lower levels

of homoplasy) and systems for which the ancestral state can be

determined. SNPs and small indels, with mutation rates on the

order of 2-461028/site/generation, are best suited for these

purposes. Because SNPs and indels are likely to have only two

allelic classes segregating in human populations, they are

sometimes referred to as binary markers (we refer to both classes

of marker as SNPs). The combination of allelic states at many

SNPs on a given Y chromosome is known as a haplogroup. A

binary tree of NRY haplogroups with a standard nomenclature

system (Figure S1) has been published and widely accepted among

workers in the Y chromosome field [12,13]. This Y chromosome

tree is characterized by a hierarchically arranged set of 18

arbitrarily defined clusters of lineages (clades A–R), each with

several sub-clades. By typing informative sets of SNPs, it is possible

to assign samples to particular clades or subclades [9,14].

One of the challenges for geneticists is the cost and time

typically needed to genotype an appropriate number of SNPs to

assign a given Y chromosome to a haplogroup. Multiplex

strategies to type SNPs are also difficult and require a substantial

initial investment to implement [15]. STRs on the NRY (Y-STRs)

offer an alternative method for inferring the haplogroup of a

sample. It has been recognized for some time that STR variability

is partitioned to a greater extent by differences among

haplogroups than by differences among populations [16,17]. This

suggests that Y-STRs contain information about the haplogroup

status of a given Y chromosome. Because many Y-STRs can be

genotyped in multiplex assays, typing appropriate sets of Y-STRs

could represent a cost effective strategy for classifying Y

chromosomes into haplogroups. In this paper, we assess this

possibility from a computational perspective and show how a suite

of modern machine learning algorithms can automatically classify
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and predict haplogroups based on allelic data from a suite of Y-

STRs. We adapt three types of classifiers based on both generative

and discriminative models to this problem. When all the methods

agree in tandem, we combine the classifications from each into a

haplogroup assignment. This enables an automatic, high through-

put analysis pipeline for determining the haplogroup of a large

number of samples in a cost effective and accurate manner.

Results and Discussion

We obtained a data set collected by the Hammer laboratory

that contains 8,414 globally diverse Y chromosome samples

genotyped at 15 Y-STRs. The same samples were also typed with

a battery of SNPs to identify the haplogroup of each sample. The

SNPs typed and the resulting haplogroup tree are given in Figure

S1, and the frequency of haplogroups in our data set is shown in

Figure 1.

Since each sample of STR scores in our data is labeled with a

haplogroup, we formalized the problem of classifying a new

sample with a haplogroup as a supervised learning task and used

our data set of 8,414 samples as a ground-truth set for training. In

order to provide high classification accuracy, we combined the

results of three disparate types of classifiers: decision trees,

generative Bayesian models, and support vector machines. As we

describe in Materials and Methods, each algorithm has a unique

method of learning haplogroup classification from training data;

none commit exactly the same type of error and combining their

output yields a more robust decision [18]. Indeed, our results show

that combining the classification output from these methods yields

very accurate haplogroup assignment.

We compared our classification results to an informal nearest

neighbor heuristic that labels STR samples with a haplogroup

based on the stepwise mutation model [19]. We show that its

results are not as effective as our tandem of machine learning

techniques.

Classifier Evaluation
We evaluated the performance of each classifier individually

and in tandem using cross-validation on our 8,414 sample ground-

truth training set, and compared the results with the nearest

neighbor heuristic previously mentioned. We also performed

cross-validation on publicly available data from other published

research with Y-STR and haplogroup data. Finally, we tested the

classification performance on the public data using our data for

training. In brief, the results show the classifiers perform very well

with a diverse training set and that the number of loci available in

the data set is an important determining factor in their

performance.

The cross-validation was accomplished by stochastically parti-

tioning the data sets into k equally sized subsets, iteratively holding

out each one while training on the remaining data, and then

testing on the held out subset. More formally, let the ground-truth

data set with N samples be DN . We create equally sized subsets

Ai5DN for 1#i#k that form a partition of DN , i.e.,

|
k

i~1
Ai~DN , ð1Þ

\k
i~1

Ai~1: ð2Þ

We held out each subset Ai of the partition and trained the

classifiers on the set DN \Ai. A classification test was then

performed on the held out set. In practice, the subset sizes may

differ by one if N/k is not integral. For our experiments we chose

to use k = 5 folds. The cross-validation was repeated 10 iterations,

each time generating a random, equal partition of the data. The

performance results were finally compiled with the mean and

standard error statistics.

We combined the classification output for a sample from the

decision trees (J48 and PART), Bayesian models, and support

  

Figure 1. Frequency of 30 haplogroups determined by SNP-typing a geographically diverse sample of 8,414 chromosomes. This set
of chromosomes, typed at 15 Y-linked STRs, was used as a ground-truth training set (see text for explanation). Haplogroups are named according to
the mutation-based nomenclature [12], which retains the major haplogroup information (i.e., 18 capital letters) followed by the name of the terminal
mutation that the sample is positive for (see Figure S1).
doi:10.1371/journal.pcbi.1000093.g001

Author Summary

The Y chromosome is passed on from father to son as a
nearly identical copy. Occasionally, small random changes
occur in the Y DNA sequences that are passed forward to
the next generation. There are two kinds of changes that
may occur, and they both provide vital information for the
study of human ancestry. Of the two kinds, one is a single
letter change, and the other is a change in the number of
short tandemly repeating sequences. The single-letter
changes can be laborious to test, but they provide
information on deep ancestry. Measuring the number of
sequence repeats at multiple places in the genome
simultaneously is efficient, and provides information about
recent history at a modest cost. We present the novel
approach of training a collection of modern machine-
learning algorithms with these sequence repeats to infer
the single-letter changes, thus assigning the samples to
deep ancestry lineages.

Machine-Learning Approaches for Classifying Y-STR
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vector machines into a tandem decision. The output haplogroups

from each of the classifiers were compared together, and if they

were in agreement, accepted, or assigned, the classification;

otherwise the sample was left unassigned if they disagree and held-

out for further analysis. Since the classifications may not always be

at the same depth in the haplogroup hierarchy, Figure S1, we

compared the results up to the common level in the tree and

accepted the classification if it was in agreement.

In practice, an unassigned sample for the tandem approach is

selected for manual, expert analysis. Experienced personnel

examine the haplogroup assignment from the individual classifiers

for familiar patterns. The confidence values from the classifiers

may also be analyzed to resolve frequently seen disagreements. If

the ambiguity cannot be resolved at this stage, SNP testing is done

to ensure a correct haplogroup label. The result of the SNP test is

then added to the training set to continually improve the classifiers.

For the nearest neighbor heuristic we used the L1-norm distance

metric combined with the following rules. If the sum of allele value

differences between a novel sample and one in the training set was

zero, it was an exact match and the novel sample was labeled with

the matching sample’s haplogroup. If the allele values differed by

only one or two, and the samples by which it differed were all in

the same haplogroup, it was considered a match resulting from a

stepwise mutation and again labeled with the matching samples’

haplogroup. Otherwise, the sample was left unassigned.

Table 1 shows the average overall performance of the classifiers,

including tandem agreement and the nearest neighbor heuristic,

for ten iterations of the 5 fold cross-validation on our ground-truth

training set. The support vector machine was the best performing

individual classifier with 95% accuracy. The performance of the

Bayesian classifier and the decision trees was very comparable.

The results for the tandem strategy show that of all the samples we

attempted to classify, 86% were in agreement, and that almost

99% of those predictions were correct. Furthermore, the 14%

unassignment rate of the tandem approach was much lower than

the 26% of the nearest neighbor heuristic.

The average accuracy for each of the classifiers per haplogroup

is shown in the top panel of Figure 2, and the haplogroup

frequency of the training data is below it in the bottom panel. It is

clear from the figure that the accuracy of classification for a

particular haplogroup is dependent on its frequency in the data.

We also observe that the support vector machines perform the

best, particularly in cases where training data for a haplogroup is

most sparse. We believe that more training data from sparse

groups, such as A, B, C, D, H, and N would improve the results to

similar levels of more well represented haplogroups such as I, J,

and R.

The classification accuracy under the tandem approach was

very high. Figure 3 shows the performance for each haplogroup

when all the classifiers agreed. While not all of the classifiers

agreed in their output in all cases, we observe from the results in

Figure 3 and Table 2 that the rate of agreement was very low

mostly in haplogroups with low representation in the data. Again,

as we continue to increase the size and diversity of the training set,

we expect that the level of agreement in the tandem approach will

continue to improve.

In addition to testing the performance of the classifiers on our

15-locus data set, we also tested them on published STR data

collected from West, South and East Asian populations [20,21].

The combined public data sets have 1,527 samples of 9 loci at

DYS394, DYS388, DYS389-I, DYS389-II, DYS390, DYS391,

DYS392, DYS393, and DYS439. Figure 4 shows the frequencies

of Y chromosome haplogroups in this sample. We performed two

types of experiments with this data. We first looked at performance

using the public data both for training and testing with a 5 fold

cross-validation. We then used our ground-truth data set restricted

to the 9 applicable loci as training data, and tested the

performance on the entire public data set.

As before when testing the classifiers on our ground-truth data,

we ran 10 iterations of five fold cross-validation on the public data.

Table 3 gives the averaged results. In order to provide a

meaningful comparison across the two data sets, the table also

shows cross-validation results on the 9-locus subset of our data; six

of the loci are not shared by both sets and may affect

discriminative abilities of the classifiers. We observe that the

classification accuracy between the two data sets is comparable.

Indeed, the cross-validation on the public data has slightly better

results. Figure 5 and Figure 6 show the average per haplogroup

classification accuracy for cross-validation on the public data.

Compared with the earlier cross-validation results on our

ground-truth data (Table 1), the 9 Y-STR subset has a much lower

performance than the original 15 Y-STR set. This implies that the

6 excluded markers contribute to a non-negligible increase in

performance. Thus, if the public data set had these additional

markers, we expect that its accuracy under cross-validation would

also improve.

We tested haplogroup classification for the public STR data

using classifiers trained with the 9-locus subset of our data set. The

classification accuracy results are reported in Table 4. Figures S2

and S3 show the average per haplogroup performance. Although

the tandem approach still out-performed the nearest neighbor

method, the overall performance shows a decrease in accuracy.

We believe the performance is lower for two reasons: as we have

already shown, training with 9 versus 15 Y-STRs substantially

reduces the accuracy of classification (an almost 7 point reduction

for the tandem approach when contrasting Table 1 with the lower

panel of Table 3); and the origins of the samples in the public data

sets are from populations that are not as well represented in our

data set.

Conclusion
In this paper we have shown that by using machine learning

algorithms and data derived only from a set of Y-linked STRs, it is

possible to assign Y chromosome haplogroups to individual

samples with a high degree of accuracy. We note that the number

Table 1. Average classifier performance for cross-validation
on our 8,414 sample ground-truth training set (see text for
experiment details).

Percent
Correct of
Assigned Correct Incorrect Unassigned

Mean SE Mean SE Mean SE Mean SE

Tandem 98.8 0.1 1426.1 1.8 17.9 0.7 238.8 1.9

SVM 95.0 0.1 1598.5 1.2 84.3 1.2

J48 92.7 0.1 1559.5 1.5 123.3 1.5

PART 92.5 0.1 1556.8 1.6 126.0 1.6

Bayes 91.5 0.1 1540.2 1.5 142.6 1.5

Nearest 98.3 0.2 1227.3 2.5 21.6 0.5 433.9 2.6

Support vector machines has the highest individual accuracy. J48 and PART are
decision tree classifiers. Combining the classifiers together into the tandem
strategy boosts the performance to a very high accuracy while maintaining a
much lower unassignment rate than the nearest neighbor heuristic.
doi:10.1371/journal.pcbi.1000093.t001

Machine-Learning Approaches for Classifying Y-STR
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of Y-STRs used has a significant impact on the accuracy of

haplogroup classification.

Our classification software provides a single turnkey interface to

a tandem of machine learning algorithms. It is extensible in that

other high-performing classification algorithms can be added to it

when they are developed. We have made the software freely

available to use for non-commercial purposes and posted it online

at http://bcf.arl.arizona.edu/haplo.

Future work could focus on identifying an optimal set of Y-

STRs to obtain the highest accuracy of haplogroup classification.

Our preliminary results (data not shown) suggest that different Y-

STRs are informative for different haplogroups. Additional work

should help to better understand the properties that make different

Y-STRs more or less informative for proper haplogroup

assignment.

We have assumed in our Bayesian model that the Y-STR loci

are statistically independent given the haplogroup. While we have

observed good performance for this model, it most likely does not

reflect the true relationship among loci. As more information

about loci linkage becomes available and our ground-truth data set

continues to expand, we could relax this assumption and begin to

include such dependencies.

Our Bayesian model assumes that Y-STRs are statistically

independent conditioned on the haplogroup. While we observe

good performance using this model, this assumption is not realistic

given the lack of crossing over among the Y-linked STRs used in

our analysis. On the other hand, Y-STRs mutate independently in

a stepwise fashion, which may cause particular Y-STRs to be

effectively unlinked on some haplogroup backgrounds. As more

information about linkage becomes available and our ground-

truth data set continues to expand, we may be able to include such

information to improve our model.

The software system can be effectively used to construct high

throughput SNP test panels, particularly in the case of platforms

that restrict the number of SNPs accommodated per panel. Given

a corpus of STR data, the classifiers can identify a collection of

candidate SNP sites to be placed on the panel to provide

maximum coverage over potential haplogroups in a population. In

Figure 2. Average accuracy of each classifier per haplogroup for cross-validation on the ground-truth training set. Standard error bars
are shown for each point. The lower panel shows the frequency of the 8,414 samples among haplogroups. Support vector machines has the best
overall performance, especially in the case of haplogroups with a smaller number of samples in the training data.
doi:10.1371/journal.pcbi.1000093.g002

Machine-Learning Approaches for Classifying Y-STR
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this way the software provides a cost-effective first step in a multi-

level process for deep haplogroup identification by facilitating

targeted SNP testing.

Materials and Methods

The 15 Y chromosome STR loci used in this study are:

DYS393, DYS390, DYS394 (both copies when duplicated),

DYS391, DYS385a, DYS385b, DYS426, DYS388, DYS439,

DYS389 I, DYS389 II, DYS392, DYS438, DYS457. These loci

are commonly used in the fields of population genetics, forensic

science, and commercial genealogical testing [22]. The STR loci

were amplified in two multiplex PCR reactions. The products of

these reactions were mixed and analyzed on an Applied

Biosystems 3730 capillary electrophoresis instrument.

The SNP and STR data for samples utilized to construct the

training data set and models for this study were acquired and

analyzed over an extended period of time by the Hammer

laboratory. The SNPs were identified using a variety of techniques

including: DNA sequencing, allele specific PCR scored by agarose

electrophoresis, PCR and restriction digest, and TaqMan assays. A

test panel comprising the SNPs in Figure 1 was developed and

validated for use on a Beckman Coulter SNPStream instrument

[23]. This instrument permits simultaneous testing for all SNPs

represented on the panel for a given sample. Novel samples

utilized for testing and validation of the models were STR tested

and processed on the SNPStream instrument to verify the

predicted SNP assignments.

What follows is a brief description of the classifiers we used and

how each was adapted and extended to the haplogroup

assignment problem. We first introduce some notation shared

among all classifier descriptions. Let L be the number of analyzed

Figure 3. Average accuracy of the tandem approach for cross-validation on the ground-truth training set. The average proportion of
samples with agreement for all four classification methods is also shown. The haplogroups with the highest rate of tandem disagreement have a low
representation in the training data.
doi:10.1371/journal.pcbi.1000093.g003

Table 2. Average haplogroup assignment accuracy after
cross-validation of the ground-truth training data for the
tandem approach when all classifiers agree.

Haplogroup Correct Incorrect Unassigned

Mean SE Mean SE Mean SE

A- P97 3.1 0.2 0.1 0.0 2.4 0.2

B- M60 1.2 0.1 0.0 0.0 2.3 0.3

C- M130,M216 1.6 0.1 0.0 0.0 6.7 0.4

D- M174 0.7 0.1 0.2 0.1 2.5 0.2

E- M96,SRY4064 111.4 1.3 0.9 0.1 31.9 0.8

G- M201 114.9 1.2 2.4 0.2 39.3 0.9

H- M69 4.0 0.3 0.1 0.0 5.7 0.3

I- M170,P19 335.7 2.2 4.7 0.4 59.4 1.1

J- M267 125.4 1.5 2.0 0.2 9.3 0.4

J- M172 128.4 1.5 2.3 0.2 18.0 0.7

K- M70 62.9 1.0 0.9 0.1 3.8 0.3

L- M20 6.2 0.3 1.3 0.2 2.9 0.3

N- M231 0.6 0.1 0.9 0.2 3.0 0.2

O- M175 24.0 0.6 0.4 0.1 22.7 0.6

Q- P36,M242 40.5 0.8 0.4 0.1 7.3 0.4

R- SRY10831.2 100.0 1.3 0.1 0.0 5.7 0.3

R- M343 346.7 1.7 0.6 0.1 15.5 0.6

The far right column gives the number of samples with an unassigned tandem
classification—all four methods did not agree.
doi:10.1371/journal.pcbi.1000093.t002

Machine-Learning Approaches for Classifying Y-STR
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Y-STRs and G be number of haplogroups under consideration.

Denote the ground-truth data set of N samples by DN . Each

sample in the set comprises a tuple of haplogroup index and STR

alleles g,xð Þ[DN , where 1#g#G and x = (x1,…,xL). Where

applicable, let X = (X1,…,XL) be random variables taking alleles

from the L loci on the Y chromosome.

Decision Trees
In a decision tree classifier, we learn a set of rules for separating

samples into hierarchical classification groups according to locus

and allele values. The internal nodes of the tree are comprised of

locus tests for specific allele values and the terminal nodes

represent haplogroup classification. The set of tests from the root

node in the tree to a terminal node is the classification rule for a

haplogroup. The tree is constructed from a set of training data DN

using the C4.5 algorithm [24], which hierarchically selects loci that

best differentiate the training data into haplogroups.

The locus tests are constructed using a measure of information

gain, which is based on information entropy [25]. The entropy of a

random variable quantifies its randomness or uncertainty. In the

case of haplogroups, entropy indicates how much diversity there is

in the sample set.

Let ng be the number of samples in haplogroup g. The entropy

for G haplogroups over the data set DN is defined as

H DN½ �~{
XG

g~1

p gð Þlog p gð Þ, ð3Þ

where p(g) = ng/N is the probability of the gth haplogroup in the

data set. Thus, higher entropy suggests higher diversity and a more

uniform frequency of haplogroup representation in the sample set.

Knowing the allele value of a locus may affect the entropy of the

data; additional information either does not change or decreases

the entropy. When a particular allele at the ith locus is known, the

conditional entropy is given by

H DN Xi~xj½ �~{
PG

g~1

pi g xjð Þlog pi g xjð Þ, ð4Þ

where pi(g|x) is the probability the gth haplogroup has allele x at

locus i. Let n
xð Þ

g,i be the number of samples with the latter

characteristic and N
xð Þ

i be the total number of samples in the data

with allele x at locus i. Then pi is defined as

pi g xjð Þ~
n

xð Þ
g,i

N
xð Þ

i

: ð5Þ

We obtain a general conditional entropy for each locus by

marginalizing out the allele values. This is equivalent to computing

a weighted average of Equation 4, where the weights are given by

  

Figure 4. Frequency of 30 Y chromosome haplogroups inferred from a previously published sample of 1,527 Asian Y
chromosomes. The samples were typed with 9 Y-STRs and a battery of Y-linked SNPs. Haplogroup frequencies are statistically significantly different
from those in our ground-truth training set (Figure 1). Haplogroups are named according to the mutation-based nomenclature [12], which retains the
major haplogroup information (i.e., 18 capital letters) followed by the name of the terminal mutation that the sample is positive for (see Figure S1).
doi:10.1371/journal.pcbi.1000093.g004

Table 3. Comparison of classifier performance across two
data sets.

9-Locus Public Data

Percent Correct of
Assigned Correct Incorrect Unassigned

Mean SE Mean SE Mean SE Mean SE

Tandem 95.6 0.5 208.6 1.1 9.5 0.3 87.3 1.1

SVM 87.1 0.2 265.9 0.7 39.5 0.7

PART 84.3 0.3 257.6 0.8 47.8 0.8

J48 84.3 0.3 257.5 0.8 47.9 0.8

Bayes 79.0 0.3 241.3 0.9 64.1 0.9

Nearest 92.6 0.4 212.8 1.0 17.0 0.6 75.6 0.8

9-Locus Ground-Truth Data

Percent Correct
of Assigned Correct Incorrect Unassigned

Mean SE Mean SE Mean SE Mean SE

Tandem 92.4 0.2 1,100.2 2.4 90.0 1.1 616.7 2.4

SVM 82.4 0.1 1,386.1 1.9 296.7 1.9

PART 81.1 0.1 1,364.2 1.9 318.6 1.9

J48 81.2 0.1 1,366.5 1.9 316.3 1.9

Bayes 76.9 0.1 1,293.4 2.1 389.4 2.1

Nearest 91.8 0.4 618.6 2.9 55.6 1.1 1,008.7 3.3

The top table shows the average classifier performance for cross-validation on
the 9-locus public STR data. The bottom table is the performance for the same
test, but on a 9-locus subset of our ground-truth training data. While overall
performance is lower than the 15-locus cross-validation test on our ground-
truth data (Table 1), the two data sets perform similarly here, indicating that
increasing the number of markers in the data set can significantly improve
performance.
doi:10.1371/journal.pcbi.1000093.t003

Machine-Learning Approaches for Classifying Y-STR
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the probability of each allele.

H DN Xij½ �~{
X
x[Xi

XG

g~1

pi g,xð Þlog pi g xjð Þ ð6Þ

~{
X
x[Xi

pi xð Þ
XG

g~1

pi g xjð Þlog pi g xjð Þ ð7Þ

~
X
x[Xi

pi xð ÞH DN Xij ~x½ � ð8Þ

where pi(x) is the probability of allele x at the ith locus over all

samples in the data. It is given by

pi xð Þ~ N
xð Þ

i

N
: ð9Þ

The general conditional entropy in Equation 8 tells us how much

Y-STR allelic variation is associated with a given haplogroup. A

lower value indicates the allele values at the locus explain or

predict the haplogroup well. This leads to the concept of

information gain.

The difference in variation among haplogroups when a Y-STR

allele is both known and unknown is the information gain. It is a

measure of how well a locus explains haplogroup membership.

Formally, it is defined for the ith locus in the data as

IG DN ,Xið Þ~H DN½ �{H DN Xij½ �: ð10Þ

The information gain will always be non-negative, since

H DN½ �§H DN Xij½ � for all loci.

Given the data set DN , we trained a decision tree by

hierarchically computing the information gain for each Y-STR.

A branch in the tree is created from the locus yielding the

maximum gain. The branch is a test created using the selected

locus to divide the data set into subsets grouped by haplogroup

and (possibly shared) allele values. Tests at lower levels of the tree

are constructed from these subsets in a similar fashion. Once all

the samples in a subset are in the same haplogroup, a terminal leaf

Figure 5. Average accuracy of each classifier per haplogroup for cross-validation on the 9-locus public STR data. Standard error bars
are shown for each point. The lower panel shows the frequency of haplogroups in the 1,527 sample public data set.
doi:10.1371/journal.pcbi.1000093.g005
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on the tree is created, which represents a classification. Figure 7

illustrates this process. To classify a new sample, we begin at the

root and evaluate the locus tests down the tree with its allele values

until a terminal node, representing the classified haplogroup, is

reached.

The general decision tree approach has some limitations,

including overfitting by creating too many branches and locus

bias. The former can be handled by introducing thresholds or

other heuristics for the amount of information gain required to

create a branch. The latter is a more fundamental problem of the

approach; by definition, the information gain favors Y-STRs

taking many different allele values. We used the PART and J48

implementations [26] of the decision tree algorithm in order to

mitigate the effects of some of these limitations.

Bayesian Model
In the non-parametric Bayesian model, we define a posterior

distribution over the haplogroups conditioned on observed allele

values. The posterior is expressed as the normalized product of the

data likelihood and model prior. For a given sample of allele

values, the posterior gives a probability for each haplogroup it

could belong to. It is defined as

p g xjð Þ~c L x gjð Þ p gð Þ, ð11Þ

Table 4. Classification results for the 9-locus public Y-STR
data.

Percent CoA Correct Incorrect Unassigned

Tandem 83.9 732 140 655

SVM 67.2 1,026 501

PART 70.5 1,077 450

J48 70.5 1,076 451

Bayes 62.8 959 568

Nearest 81.9 398 88 1,041

A 9-locus subset of our ground-truth data was used to train the classifiers
(Percent CoA = % Correct of Assigned).
doi:10.1371/journal.pcbi.1000093.t004

Figure 7. Test creation process for decision trees. Samples from
four haplogroups in data set A are passed through locus-specific allele
test conditions at each branch of the decision tree. The test for locus Xi

is chosen so that i = arg maxl{IG(A, Xl)} and Xj so that j = arg maxl{ IG(B1,
Xl)}.
doi:10.1371/journal.pcbi.1000093.g007

Figure 6. Average accuracy and agreement of the tandem approach for cross-validation on the 9-locus public STR data.
doi:10.1371/journal.pcbi.1000093.g006
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where c is a normalization constant, and p(?)is the prior probability

over the haplogroups. The likelihood function, L :ð Þ, is a measure

of how likely it is that haplogroup g generated sample x.

The fundamental assumption of our naive Bayes model is the

independence of the Y-STRs X = (X1,…,XL), given the hap-

logroup g. A number of possible sources of dependency exist that

could weaken the validity of this assumption. For example, Y-

STRs are located on the same chromosome and physically linked,

which introduces co-inheritance and the possibility of statistical

linkage over short time scales. However, such statistical relation-

ships are not sufficiently understood to be easily incorporated.

Furthermore, attempting to exploit them through direct use of our

ground-truth training data is not feasible because the relatively

large number of dimensions [15] would require far more data. In

short, the simplifying conditional independence assumption makes

using our data tractable. Interestingly, the accuracy of naive Bayes

classifiers is not tightly linked to the validity of this assumption

[27,28], which directly affects the accuracy of the posterior

computation, but only indirectly affects the ability of the model to

distinguish between groups on real data. In practice, the naive

Bayes classier often performs well, and thus we chose to

empirically study it for haplogroup identification.

Mathematically, the independence assumption leads to defining

the likelihood as a product over each Y-STR density function,

L x gjð Þ~P
i~1

L

fi xi gjð Þ: ð12Þ

We estimated the density functions fi(?)using histograms construct-

ed from the data. For each Y-STR and haplogroup, we created a

normalized histogram from the training data DN with bins

corresponding to the different allele values the Y-STRs can take.

For the ith locus under haplogroup g, the bins for allele value x are

given by

fi x gjð Þ~
n

xð Þ
g,i

Ng

: ð13Þ

As an example, a set of L densities for a haplogroup and how they

are evaluated for a given sample are shown in Figure 8.

The distribution Equation 11 is defined over all haplogroups,

but is not by itself a classifier. To make a decision, we choose the

maximum under the posterior (MAP)

arg max

g
p g xjð Þf g: ð14Þ

This minimizes our risk of an incorrect classification. A benefit of

the generative classifier is the ability to provide alternative

classifications and a real probability associated with each

decision.

Support Vector Machines
Support vector machines learn a hyperplane with maximal

margin of separation between two classes of data samples in a

feature space [29,30,31]. We trained SVMs for binary haplogroup

classification by treating locus alleles for a sample as L-dimensional

vectors in Euclidean space and learning a hyperplane to separate

them. A new sample is classified according to which side of the

hyperplane its allele values fall on. We first address the case of

deciding between two haplogroups to describe the standard

support vector machine approach. We then introduce a method to

combine binary classifiers into a multi-way classifier for all

haplogroups using evolutionary evidence for haplogroup relation-

ships.

For a sample xn of locus alleles, consider the task of deciding

between two haplogroups with labels {21,1}. If we assume the

locus allele values between the two haplogroups are linearly

separable in some feature space, we can use the classification

model

y xð Þ~wTw xð Þzb ð15Þ

where y(x) = 0 is a L-dimensional hyperplane separating the two

haplogroups; w(?) is any constant transformation of the allele values

into a feature space. Thus, for the nth sample, the haplogroup is

gn = 1 when y(xn).0 and gn = 21 when y(xn),0.

The goal of training a support vector machine is to find the

hyperplane, defined by w, b in Equation 15, giving the maximum

margin of separation between the data points in the two

haplogroups, Figure 9. The margin is defined as the smallest

perpendicular distance between the separating plane and any of

the data points in the sample.

By noting that the distance of a sample xn from the hyperplane

is |y(xn)|/||w||, and that gny(xn).0 for all samples in the training

data, then the maximum margin solution is described by the

optimization

arg max

w,b

1

wk kmin
n

gn(wTw xnð Þzb)
� �� �

: ð16Þ

Figure 8. Bayesian likelihood construction and evaluation. For
each haplogroup, the density functions f1,…fL are constructed as
normalized histograms from the training data DN . Given a sample
x = (x1,…xL), its likelihood under a haplogroup is the product of its
evaluated locus bin frequencies.
doi:10.1371/journal.pcbi.1000093.g008
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However, solving this optimization problem directly is difficult, so

we re-formulate it as follows.

Without loss of generality, we can rescale w, b so that the

sample(s) bxxn with allele values closest to the hyperplane satisfy

gn wTw x̂n

� �
zb

� �
~1, ð17Þ

as in Figure 9. Then the optimization problem Equation 16

reduces to maximizing ||w||21, which is equivalently re-

formulated for convenience as

arg min

w,b

1

2
wk k2, ð18Þ

with the constraint that gn(w
Tw(xn)+b)$1, for all 1#n#N. This can

be solved as a quadratic programming problem by introducing

Lagrange multipliers an$0 for each constraint, giving the function

L w,b,að Þ~ 1

2
wk k2

{
XN

n~1

an gn wTw x̂n

� �
zb

� �
{1

� �
: ð19Þ

By differentiating L(?)L(?) with respect to w and setting it equal to

zero, we see that

w~
XN

n~1

an gn w xnð Þ: ð20Þ

Substituting the above into the classification Equation 15, we

obtain

y xð Þ~
XN

n~1

an gn k xn,xð Þzb, ð21Þ

where the kernel function is defined as k(xn, x) = w(xn)
Tw(x).

Therefore, training the model amounts to solving the quadratic

programming problem to determine the Lagrange multipliers a
and the parameter b. This is typically done by solving for the dual

representation of the problem.

Transforming the problem into its dual shows that the

optimization exhibits the Karush-Kuhn-Tucker conditions that

an§0 ð22Þ

gn y xnð Þ{1§0 ð23Þ

an gn y xnð Þ{1f g~0 ð24Þ

Therefore, every sample in the training set will either have its

Lagrange multiplier an = 0, or gny(xn) = 1. The samples whose

multiplier is zero have no contribution to the sum in Equation 21,

so they do not impact the classification. The samples that have

non-zero multipliers are the support vectors and lie on the

maximum margin hyperplanes, as in Figure 9; they define the

sparse subset of data used to classify new samples.

A common and effective kernel to use for SVMs is the Gaussian,

which has the form

k xn,xð Þ~exp { xn{xk k2
.

2s2
h i

: ð25Þ

We chose to use this kernel and assume the haplogroups are

linearly separable in this transformed space over locus allele

values.

In order to make the SVM approach work on data that may not

be perfectly separable, we allow for some small amount of the

training data to be misclassified. Thus, rather than having infinite

error when incorrect (zero error when correct), we allow some of

the data points to be classified on the wrong side of the separating

hyperplane. To accomplish this, we follow the standard treatment

of introducing slack variables that act as a penalty with linearly

increasing value for the distance from the wrong side [30,31].

A slack variable jn$0 is defined for each training sample with

jn = 0 if the sample is on or inside the correct margin boundary

and jn = |gn2y(xn) if it is incorrect. So we now minimize

C
XN

n~1

jnz
1

2
wk k2, ð26Þ

where jn are the slack variables, one for each data point, and C.0

weights the significance of the slack variables to the margin in the

optimization.

The optimization process is similar to before, but the Lagrange

multipliers are now subject to the constraint 0#an#C. As before,

the samples whose multipliers are non-zero are the support

vectors. However, if an = C, then the sample may lie inside the

margin and be either correctly or incorrectly classified, depending

on the value of jn.

Since SVMs train a binary classifier and we have multiple

haplogroups to distinguish between, we trained an SVM for each

haplogroup in a one-vs-many fashion. In general, an SVM trained

as one-vs-many for a particular haplogroup uses samples in that

haplogroup as positive exemplars and samples in other hap-

logroups we wish to compare against as negative exemplars.

Figure 9. Maximum margin hyperplane used in support vector
machines. Example showing the hyperplane with maximal margin of
separation between samples from two different haplogroups. The
shaded points lying on the margin define the support vectors.
doi:10.1371/journal.pcbi.1000093.g009
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We organized the set of binary classifiers into a hierarchy based

on the currently known binary haplogroup lineage [12,13]. At

each level of the hierarchy, Figure 10, the one-vs-many classifiers

are trained using only samples with haplogroups at that level,

descendant levels, or ancestors; the samples at other branches are

not used. Classification down the tree is accomplished by choosing

the SVM result that has a positive classification. When there is

more than one positive classification (or all negative), we choose

the result with the closest distance to the support vectors. If the

haplogroup the sample is best associated with is not a leaf node, it

is further evaluated down the tree until a leaf is reached.

Implementation
In order to create a high throughput classification system, all

samples of STR data needing haplogroup prediction are batch

selected from a database at regular intervals and classified. Once

selected, our tandem classification software predicts the haplogroup

for each sample and updates its record in our laboratory information

management system (LIMS). Laboratory technicians and data

reviewers can then view the results in a web interface (Figure S4)

for the classified batch of samples. The LIMS displays which samples

need to be SNP tested for haplogroup verification (based on lack of

tandem agreement). Once verified, the tested samples are added to

the ground-truth set to improve future classifications.

The tandem classification software brings together a collection

of algorithms implementing naive Bayes, support vector machines,

and decision tree classifiers. Where available, we used standard

implementations of these algorithms that are open and available to

the public.

For support vector machines, we used the freely available

software package libSVM [32], which is written in C++. We added

a customized extension to the library to support multi-class

haplogroup prediction as previously described, where the set of

trained one-vs-many binary SVM classifiers are organized into a

hierarchy that follows Figure 10. In addition to providing training

and binary classification algorithms, the SVM library provides

tools to efficiently iterate over possible constants and kernel

parameters using cross-validation in order to find the best set to

use.

The decision tree classifiers J48 and PART were used as

components of the Weka machine learning software suite [26].

The software is written in Java and called from our tandem

classification software as an external program.

Supporting Information

Figure S1 NRY haplogroup SNP tree used to type each sample

in our ground-truth training set.

Found at: doi:10.1371/journal.pcbi.1000093.s001 (0.02 MB EPS)

Figure S2 Accuracy of each classifier per haplogroup of

predicting the public STR data set using the 9-locus subset of

our ground-truth data as training. The lower panel shows the

frequency of samples among haplogroups in the public data set.

Found at: doi:10.1371/journal.pcbi.1000093.s002 (1.06 MB EPS)

Figure S3 Tandem classification accuracy and agreement per

haplogroup on the public data set using the 9-locus subset of our

ground-truth data as training.

Found at: doi:10.1371/journal.pcbi.1000093.s003 (0.03 MB EPS)

Figure S4 Screen capture of the STR score review console from

the laboratory information management system. The red dashed

box contains STR loci names as headings for the columns of

collected loci score data. The pop-up window (in black) show the

quality assessment score for a selected sample. The yellow dashed

ellipse highlights our software’s haplogroup classification and

confidence value for each algorithm in the tandem approach.

Found at: doi:10.1371/journal.pcbi.1000093.s004 (0.44 MB EPS)
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