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Abstract

ChIP sequencing (ChIP-seq) is a new method for genomewide mapping of protein binding sites on DNA. It has generated
much excitement in functional genomics. To score data and determine adequate sequencing depth, both the genomic
background and the binding sites must be properly modeled. To develop a computational foundation to tackle these
issues, we first performed a study to characterize the observed statistical nature of this new type of high-throughput data.
By linking sequence tags into clusters, we show that there are two components to the distribution of tag counts observed in
a number of recent experiments: an initial power-law distribution and a subsequent long right tail. Then we develop in silico
ChIP-seq, a computational method to simulate the experimental outcome by placing tags onto the genome according to
particular assumed distributions for the actual binding sites and for the background genomic sequence. In contrast to
current assumptions, our results show that both the background and the binding sites need to have a markedly nonuniform
distribution in order to correctly model the observed ChIP-seq data, with, for instance, the background tag counts modeled
by a gamma distribution. On the basis of these results, we extend an existing scoring approach by using a more realistic
genomic-background model. This enables us to identify transcription-factor binding sites in ChIP-seq data in a statistically
rigorous fashion.
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Introduction

Gene expression is carefully regulated in all living cells. Only a

fraction of the genes in a genome are expressed to various degrees

under a given condition or in a particular cell type. The main

control of such regulation occurs at the transcription level: the

RNA polymerases transcribe genes following binding of trans-

acting transcription factors to cis-acting regulatory DNA sequenc-

es within genes or in their vicinities. To determine the biological

functions of transcription factors, it is imperative to identify their

binding sites and target genes in the genome.

Currently the most commonly used high-throughput method for

identifying transcription factor binding sites (TFBSs) is chromatin

immunoprecipitation followed by microarray hybridization (ChIP-

chip) [1–3]. In this method, the transcription factors are cross-linked

to DNA under the test condition. After the genomic DNA is isolated

and fragmented by sonication, an antibody specific to the

transcription factor of interest is used to isolate the transcription

factor and the DNA fragments which it binds. Following chromatin

immunoprecipitation, the protein–DNA crosslink is reversed and

the DNA fragments are hybridized to a tiling microarray. After the

signal quantification, the DNA fragments enriched by the binding of

the transcription factor are identified—in terms of both genomic

sequence and location—by the oligonucleotide tiles that give

significantly high relative signals on the microarray [4].

Instead of using microarrays to identify the sequences of the

immunoprecipitated DNA fragments, new methods have recently

been developed to take advantage of the fast-maturing next-

generation massively parallel sequencing technologies. In one such

method, ChIP-PET [5], paired-end ditags (PETs) derived from

both ends of the immunoprecipitated DNA fragments are

sequenced and mapped to the genome. In a newer method,

ChIP-seq [6,7], immunoprecipitated DNA fragments are directly

sequenced at one end for ,30 bp, and the short sequence reads

are then mapped to the reference genome. The apt combination of

ChIP and next-generation sequencing technology has generated

much excitement in the field of functional genomics. Comparing

with ChIP-chip, whose usability for large mammalian genomes is

limited by serious cross-hybridization at high genomic resolution,

these sequencing-based methods offer not only direct whole-

genome coverage but also low analytical complexity, high signal-

to-noise ratio, and sensitivity that increases with sequencing depth.

The current trend in high-throughput molecular biology labora-

tories is to migrate from ChIP-chip to ChIP sequencing to identify

transcription factor binding sites in vivo.

Proper computational modeling of ChIP-seq process is needed for

both data scoring and determination of adequate sequencing depth,

as it provides the computational foundation for analyzing ChIP-seq

data. Here we show the characteristics of ChIP-seq data and present

in silico ChIP sequencing, a computational method to simulate the

experimental outcome. Our simulation results reveal that both the

genomic background and the binding sites are not uniform. Such

nonuniformity in the background will have important implications in

ChIP-seq data analysis and binding sites identification.
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Model

Characterization of ChIP-seq Data
ChIP-seq data are generated in a straight-forward manner,

by high-throughput sequencing and subsequent sequence

alignment. Because Illumina/Solexa 1G Genome Analyzer

generates a very large number of short sequence reads, ChIP

sequencing is currently done mainly with this sequencing

platform. This could change in the future, however, as other

high-throughput sequencing technologies may become better

suited. Here we briefly describe the procedure of ChIP

sequencing with the Solexa platform. The immunoprecipitated

DNA fragments are sequenced from one end for approximately

30 bp. These short sequence reads are aligned to the human

reference genome, and only uniquely mapped reads (typically

60–80% of all sequence reads) are retained for the downstream

analysis. Based on size selection after gel electrophoresis prior

to sequencing, the retained reads are elongated into longer tags

by directional extension to the mean length of the size selected

DNA fragments and then transformed into profiles of the

number of overlapped DNA fragments at each nucleotide in the

reference genome [6].

For our analysis, we link overlapping tags into tag clusters

(Figure 1), each of which is characterized by y, the number of tags

it contains, and indexed by a and b, its start and end genomic

locations. Thus, by definition a tag cluster is a genomic site

continuously covered by one or more sequence tags can be

characterized in two different ways. One type of characterization

is to set a and b to the boundaries of the cluster and y to the

number of all tags in it, while the other is to identify the peak of the

overlap in the cluster first and then to set a and b to the start and

the end positions of the peak and y to the height of the cluster. We

term tag clusters characterized by these two methods as ‘outer

clusters’ and ‘inner clusters’ respectively and use ‘outer clusters’ in

our analysis. Suppose there are M tag clusters, ChIP-seq data after

preprocessing are defined by the matrix T, whose row m, (am, bm,

ym), characterizes tag cluster m (m = 1,…, M). The main goal of our

ChIP-seq data analysis is to identify tag clusters that are

transcription factor binding sites by determining a threshold on

the tag count to separate the DNA-binding signals from the

background noise.

Determination of the Threshold for TFBS Identification
To identify transcription factor binding sites in ChIP-seq data,

we assess the statistical significance of each tag cluster found in the

actual data by assigning it a P-value as the result of the test of the

null hypothesis that its tag count is generated by a null distribution,

which is the distribution of the tag count on the genomic

background alone. This null distribution is generated by

placement of sequence reads onto the genomic background in

the absence of binding sites. It is critical to simulate the correct

background, as the null distribution generated from it is used to

assign P-values to all actual tag clusters.

The simulation starts with the removal of sequence gaps and

repeats from the genomic region—the entire genome or a part of

it—under consideration. It is followed by the random placement of

n sequence tags, corresponding to the same number of uniquely-

mapped sequence reads from the experiment, onto the genomic

background, whose distribution of the sampling weight on the

nucleotide level could be either uniform or non-uniform. After

the tag placement, suppose that N tag clusters are identified in the

simulated data and the largest one contains C tags, thus the

null distribution of the cluster tag count is given by the number

of tag clusters on each tag count level, 1, 2, …, C:

k1, k2, . . . , kC ; N~
PC
i~1

ki

� �
.

Given this null distribution, for tag cluster m (m = 1, 2, …, M)

identified in the experimental data we calculate its associated P-

value, Pm, for the test of the null hypothesis that it is part of the

background as

Pm~

PC
i~ym

ki

N
,

in which ym is the tag count of tag cluster m from the experimental

data and kc is the number of tag clusters on tag count level c in the

simulated data. In essence this is a permutation test and Pm can be

calculated to arbitrary accuracy as the number of simulation

increases. To control the type I error in this set of M hypothesis

tests, we first adjust the P-values so that they directly reflect the

controlled false discovery rates [8], and then choose the lowest tag

count that gives a low FDR (e.g., less then 0.05) as the threshold.

Tag clusters with at least this tag count are identified as the

binding sites.

Simulation of the ChIP-seq Process
For our simulation of ChIP sequencing (Figure 2), we use the

lengths of human chromosomes as specified in the NCBI v36/

hg18 human genome assembly. We first remove all sequence gaps

as defined in the UCSC genome browser annotation database.

Because only uniquely mapped sequence reads are used in ChIP-

seq data analysis, we also remove positions covered by repetitive

sequences identified by RepeatMaster, and then randomly place

without overlap a chosen number of transcription factor binding

sites, each of which was assumed 500 bp long, onto the genome.

After the placement of binding sites, the genome (excluding

removed sequence gaps and repeats) is effectively partitioned into

the floating fixed foreground (binding sites) and the background.

The process of the chromosomal immunoprecipitation and the

subsequent unique mapping and extension of sequence reads can

be simulated by randomly placing uniquely mapped sequence tags

onto the chromosome, according to certain sampling weight at

each nucleotide position. Such weights are generated first for the

background nucleotide positions and then for those in the binding

Author Summary

ChIP-seq is an apt combination of chromosome immuno-
precipitation and next-generation sequencing to identify
transcription factor binding sites in vivo on the whole-
genome scale. Since its advent, this new method has
generated much excitement in the field of functional
genomics. Proper computational modeling of the ChIP-seq
process is needed for both data scoring and determination
of adequate sequencing depth, as it provides the
computational foundation for analyzing ChIP-seq data. In
our study, we show the characteristics of ChIP-seq data
and present in silico ChIP sequencing, a computational
method to simulate the experimental outcome. On the
basis of our data characterization, we observed transcrip-
tion factor binding sites with excessive enrichment of
sequence tags. Our simulation results reveal that both the
genomic background and the binding sites are not
uniform. On the basis of our simulation results, we
propose a statistical procedure using the more realistic
genomic background model to identify binding sites in
ChIP-seq data.

In Silico ChIP Sequencing
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sites. For a uniform background, every nucleotide position in the

background is given one as its sampling weight. For a varying

background, if we assign each nucleotide position a different

weight, given the large size of the human genome it becomes

computationally prohibitive to sample the background many times

as the simulation requires. Instead, we partition the background

into adjacent blocks of nucleotide positions. After testing different

block sizes ranging from 500 bp to 5 kb, we find they all give

practically identical simulation results. In the end, we choose 1 kb

as the block size. Every adjacent 1-kb block in the background is

given a random weight drawn from a pre-specified underlying

distribution and all nucleotide positions in a block are assigned the

same weight. For the background variation, we assume that most

of the background has a low sampling weight as most of the

background is not enriched in the immunoprecipitation (the

working principle of ChIP) but a few places of it have relatively

high weights, comparable to some binding sites. Based on this

assumption, we use a gamma distribution, Gamma(s,c), which skews

to the right, for the distribution of sampling weight on the

background.

To specify the sampling weights in the binding sites, we first

calculate w̄b, the average sampling weight at each nucleotide

position in the background, and multiply it by the enrichment

coefficient t, to obtain w̄f = t?w̄b, the average sampling weight at

each nucleotide position in the binding sites. The ChIP

enrichment at different binding sites is, however, different and

can be estimated by the fold increase of tags placed in the

foreground over those placed in the background in the simulation.

Given w̄f and the number of nucleotides in the binding sites, we

calculate Wf, the total amount of sampling weight in the binding

sites, and then distribute it to each binding site either evenly or

varyingly according to a certain distribution. For the intersite

variation, we use a power-law distribution generated by a

‘‘preferential attachment’’ procedure. If a tag is placed in a

binding site, the current sampling weight of this site, wk, is updated

by a linear function as wk = w+r?k?w, in which w is its initial

sampling weight, k is the number of tags placed at this site, and r is

the weight increase coefficient. For each binding site, we also

distribute the amount of its sampling weight to each nucleotide

position according to a symmetric binomial or an equilateral

triangular profile. We test various combinations of values for s, c,

and r, the two free parameters in our simulation method, and find

s = 1, c = 20, and r = 1.5 produce simulated data that give overall

best fit to the actual data.

Implementation
We implemented our ChIP-seq simulation method in R and

wrote several auxiliary programs for text processing in Perl. The

whole software package with source code and documentation is

available for download at http://www.gersteinlab.org/proj/chip-

seq-simu.

Results

The Observed Tag Count Has a Power-Law Distribution
and a Significant Right Tail

For our analysis and simulation of ChIP-seq data, we used the

dataset generated from STAT1 DNA binding under IFN-c
stimulation by Robertson et al. [6]. Of the initial 2,915,382

sequence reads obtained in their experiment, 2,025,931 (69.5%)

could be uniquely mapped to the unmasked NCBI v36/hg18

human reference genome. After the genomic mapping, we

extended the length of mapped sequence reads from 27 to

174 bp, the estimated average length of the size selected DNA

fragments [6], and identified 1,264,752 STAT1 tag clusters on the

whole genome level.

While the majority (1,149,405, .90%) of these tag clusters

comprise only one or two tags, a relatively small number (661) of

them contain large numbers of tags (50 and more, the outer-

overlapping count) and consequently show high stacking peaks (the

inner-overlapping count) in their profiles (Figure 3A). For

example, the most prominent STAT1 tag cluster appears

immediately upstream to the centromere of chromosome 1. With

a peak height of 472 tags, it comprises 1,733 tags in its ,1.6 Kb

Figure 1. The genomic profile of ChIP-seq data. (A) The signal profile map of STAT1 ChIP-seq data on human chromosome 22. (B) The same
signal profile map in a small genomic region on human chromosome 22. (C) The sequence tags and the overlap profile of a tag cluster. This cluster,
simplified as green lines in (A) and (B), is defined by 16 sequence tags, each of which is a uniquely mapped sequence read (dark green) plus its
directional extension (light green). The outer and the inner forms of this cluster, bound by the two gray and the two white dashed lines respectively,
have corresponding tag counts 16 and 12.
doi:10.1371/journal.pcbi.1000158.g001

In Silico ChIP Sequencing
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Figure 2. In silico ChIP sequencing. The white segments with dashed borders represent the removed sequence gaps and repeats. The 1-Kb
background blocks are rendered by the blue segments with a darker blue for a higher sampling weight. The 500-bp binding sites are represented by
the dark gray boxes before sampling weight assignment and green boxes afterwards with a darker green for a higher sampling weight. Notice if a
background block has a sampling weight high enough, it can ‘‘attract’’ a similar number of tags as a binding site can. See the main text for a detailed
description of the procedure.
doi:10.1371/journal.pcbi.1000158.g002
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genomic footprint. Indeed, a closer examination revealed that the

tag count c follows a power-law distribution:

P cð Þ*c{c,

where the degree exponent c = 2.97 (R2 = 0.9955, P-value,2610216)

for the outer count and 3.44 (R2 = 0.9976, P-value,2610216) for the

inner count, respectively (Figure 3A and 3B).

We also examined tag counts on individual human chromo-

somes separately to check for possible discrepancies in their

distributions on different chromosomes. The plots in Figure 3C

and 3D show that over all the tag count on individual

chromosomes and on the genome as a whole follows the same

power-law distribution, and there is considerable variation

among different chromosomes in the distribution at high

counts.

Figure 3. Tag counts from the STAT1 ChIP-seq data. (A) The genome-wide outer counts and their frequencies. The black line is the linear
regression on the log-log scale from outer count 2 to 100. (B) The genome-wide inner counts and their frequencies. The black line is the linear
regression on the log-log scale also from inner count 2 to 100. (C) The outer counts and their fractions on the whole genome and each individual
chromosome. (D) The inner counts and their fractions on the whole genome and each individual chromosome.
doi:10.1371/journal.pcbi.1000158.g003
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Both the Genomic Background and the Binding Sites Are
Not Uniform

In our simulation of the ChIP-seq process, we use either

uniform or varying sampling weights on the genomic background

and among the binding sites for the tag placement. The four

simulated datasets generated from the resultant combinations of

the background and the inter-site distributions fit the actual data in

very distinct ways (Figure 4). The goodness of fit is assessed by the

fit of the simulated distribution to the actual one in the range of

small to high tag counts.

The four combinations of the background and the inter-site

distributions can be seen as a gradual increment in the overall

simulation complexity: from a simple model that assumes

uniformity in both the background and the binding sites to one

that assumes variation in either of them and to the most complex

one that assumes variation in both of them. The simplest model

assumes that the tag placement is identical everywhere on the

background and also identical among the binding sites. Data

generated from this model give a distribution of tag counts that is a

very poor fit to the actual one: not only is there a depletion of tag

Figure 4. ChIP-seq simulation with different background and binding-site models. (A) Uniform background and uniform binding sites. (B)
Varying background and uniform binding sites. (C) Uniform background and varying binding sites. (D) Varying background and varying binding sites.
The outer counts are used for all for plots. In each plot the actual tag count distribution is plotted as the black line and five simulated distribution
with the enrichment coefficient t = 5, 10, 12, 15, and 20 are depicted by the colored lines.
doi:10.1371/journal.pcbi.1000158.g004
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clusters with small to medium tag counts due to an excess of single

tags being placed onto the genome, but also clusters with large tag

counts are completely absent (Figure 4A and see the Table S1 for

the quantification of the goodness of fit).

The slightly more complicated second model assumes identical

binding sites but a varying background for tag placement. The

simulated data fit the actual distribution well at small to medium (1

to ,5) tag counts but there is still a complete absence of clusters

with large tag counts (Figure 4B). Contrary to the second model,

the third model assumes a uniform background but varying

binding sites for tag placement instead. Using this model we see an

inversion in the simulation result: tag clusters with small to

medium tag counts are depleted in the simulated data while

clusters with large tag counts are generated (Figure 4C). Finally,

we use a model that assumes variation both in background and

among binding sites for tag placement. It generates data that give

the best fit to the actual distribution of the tag count in its whole

range (Figure 4D).

The Uniform-Background Model Increases False
Identification of Binding Sites

To identify STAT1 binding sites, we can assess the statistical

significance of each tag cluster found in the actual data using a null

distribution of tag counts derived from a background model. For

the initial assessment, we used a simple background model that

assumes equal probabilities for random tag placement at every

available nucleotide position in the genome and combined 500

independent replicates of background simulation to generate such

a null distribution. After assigning P-values and adjusting them for

multiple testing to control the false discovery rate, we set five and

above, which corresponds to an FDR,0.05, as the threshold on

the tag count and identify 32,763 STAT1 binding sites.

In light of the simulation results, we can reassess the statistical

significance of each tag cluster found in the actual data by using

the varying-background model and combining 500 independent

replicates of background simulation to generate the null

distribution of the tag count. As before, we assign P-values to

tag clusters found in the actual data by using this null distribution

and adjust them for multiple testing to control the false discovery

rate. At the same FDR level (,0.05), we set thirteen and above as

the threshold on the tag count and identified 5,858 STAT1

binding sites from the initial ,3-million sequence reads.

Using the full sets of reads, we identified 28,434 and 5,307

STAT1 binding sites with and without IFN-c stimulation

respectively (Table S2). In their study, Robertson et al found

41,582 and 11,004 sites in these two datasets. The reduction in

both of our numbers reflects a more stringent threshold for peak

calling, which was set by the more realistic varying-background

model. Moreover, the proportionally greater decrease in the

number of sites without stimulation reflects the limitation of

STAT1 as a transcription factor without IFN-c stimulation. To

demonstrate the validity of the threshold change, we performed a

STAT1 motif analysis in the peaks that are between the thresholds

set by the uniform background and the varying background

models. Using Meta-MEME [9] with blocksize = 128,205 charac-

ters, background = peaks.bg (nucleotide frequencies estimated

from the input peak sequences), and E-value,1, we are able to

identify significant STAT1 motifs (as defined in TRANSFAC [10]

and JASPAR [11]) in 6.1% of those peaks. This result suggests that

the threshold increase greatly boosts the specificity at a very small

expense of the sensitivity.

Four distributions of tag counts are plotted in Figure 5: two

actual distributions generated by experiments with and without

IFN-c stimulation and two null distributions derived from the

Figure 5. The null and the actual distributions of the tag count. Plotted in blue and green, respectively, two null distributions are generated
with the uniform- or the varying-background models. The actual distributions with and without IFN-c stimulation are depicted by the black and
purple lines.
doi:10.1371/journal.pcbi.1000158.g005
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uniform- and the varying-background models. Compared with

either null, there is a significant increase of the number of tag

clusters with high tag counts in the observed stimulated

distribution. For example, there are 661 tag clusters with 50 or

more tag counts in the actual data but none in the simulated data

generated with either background model. While the number of tag

clusters strictly decreases monotonously as the tag counts increases

in the null distribution, there is a long tail on the right of the actual

distribution given by the enrichment of clusters with high tag

counts. Moreover, we also observe significant differences between

the simulated datasets generated with two background models

alone. First, comparing with 903,832 tag singletons in the actual

data, there is an enrichment of tag singletons in all simulated

background datasets. However, this increase is much more

pronounced in the datasets generated with the uniform-back-

ground model (,150%) than with the varying-background model

(,115%). Second, on average there are only three tag clusters with

nine or more tag counts in the data simulated with the uniform-

background model but over 2,000 with the varying-background

model.

To check how closely the varying-background model models the

background in the actual experimental data, we compared the

distribution generated under this model with the actual one

without the IFN-c stimulation. In response to the stimulation,

STAT1 binds to numerous promoter elements to upregulate

interferon stimulated genes. Without the stimulation, the role of

STAT1 as a transcription factor is limited. Given such a difference

in the DNA binding of STAT1 in the presence or absence of IFN-

c, we expect the distribution of tag counts from the experiment

without stimulation should be a distribution dominated by a

significant background with a small right tail from its limited DNA

binding. This is exactly what we see in Figure 5, where the good fit

between the distribution simulated under the varying-background

model and the actual unstimulated one is striking and shows the

validity of the varying-background model. Considering these

observations (Figure 5) in the light of the full simulation results

presented in the previous subsection (Figure 4), we conclude that

as the genomic background is varying it is better captured by the

varying model than the uniform one.

Discussion

Simulation of ChIP Sequencing
We generate synthetic ChIP-seq datasets under simulation

models with various assumptions for the binding sites and the

genomic background. By comparing the simulated dataset with the

actual one, we assess the goodness of the assumptions made in

each simulation and thus can gain insight into the actual ChIP-seq

data generating process: the closer the simulated dataset is to the

actual one, the closer the assumptions are to the real process.

We use the uniform and the varying models for both the

background and the binding sites in our simulation. In Figure 5,

marginal comparisons show that the model with a varying (non-

uniform) weight distribution for either the background or the

binding sites generates substantially better simulated data. When

the background and the binding sites are considered together, the

simulated datasets generated with various combinations of the

background and the binding-site models show striking differences

in their quality. The data simulated with the uniform-weight

models used for both the background and the binding sites show

practically no fitting to the actual data except for the general trend

(Figure 5A). When the varying-weight model is used for either the

background or the binding sites, there are substantial improve-

ments to the fit in different ranges of the tag count (Figure 5B and

5C). However, when the varying-weight models are used for both

the background and the binding sites, not only is the fit the best

but also there is a general agreement between the simulated and

the actual data (Figure 5D).

These simulation results clearly show that neither the binding

sites nor the background is uniformly presented in ChIP-seq data.

Due to the inherent random noise in the experiment, binding sites

are unlikely to contain the same number of mapped sequence tags.

Not all the variance in the number of sequence tags mapped to

binding sites could be explained by random noise, which should be

counted by the uniform-site model as the simulation itself is

intrinsically a stochastic process. Because DNA segments contain-

ing the binding sites are enriched by immunoprecipitation, the

variance should also reflect the different DNA-binding affinity that

a transcription factor has for its binding sites. Such variation could

be the result of differences in either the nucleotide sequences of the

binding sites [12] or the local chromotin modification status [13].

Perhaps more importantly, our simulation results also reveal

that there is a substantial variation in the tag placement on the

genomic background. Obviously, such background variation

cannot be explained by the uniformity of background currently

assumed in ChIP sequencing. Instead, our results suggest a varying

background that is mildly fluctuating and contains some ‘‘hot’’

spots with relatively high ChIP enrichment comparable to some

binding sites. The presence of such background ‘hot’ spots in the

ChIP-seq data may be caused by preferential sequencing

particular to the sequencing protocol/platform used in the

experiment. Their enrichment through immunoprecipitation is

precluded, however, as the background DNA segments are not

bound by the transcription factor. Our inference of a varying

genomic background not only raises questions about both biology

and technology involved in ChIP sequencing but also has

important practical implications to the analysis of ChIP-seq data

as it provides a better background model (see next subsection for

explanation).

To examine our simulation results more closely, we plot in

Figure 6 the actual tag count distribution and the simulated ones

generated under different background and site models with the

enrichment coefficient t = 10 only (the blue lines in Figure 5A–D)

because as seen in Figure 5D at this enrichment level the simulated

data give the best fit to the actual ones. Based on the fitting of

different simulated distributions to the actual one, the range of the

tag count in the actual data can be divided into four sections with

low, medium, high, and ultrahigh tag counts respectively.

As marked by the dashed circles and lines in Figure 6, the three

section boundaries are defined by the divergence of the simulated

distribution based on the varying-background and uniform-site

model from the actual distribution (the green and the black lines),

the convergence of the simulated distribution based on the

uniform-background and varying-site model from the actual

distribution (the purple and the black lines), and the divergence

of the simulated distribution based on the varying-background and

varying-site model from the actual distribution (the orange and the

black lines). Based on the models used to generate these simulated

distributions, we can also infer the genomic identities of tag

clusters found in the actual data. Tag clusters with low and high

(including ultrahigh) tag counts are almost certain to be

background and binding sites, respectively. Because there is a

mixture of signals, the true identities of the clusters with medium

tag counts are much less certain, and thus some form of

thresholding is necessary. Figure 6 also shows that the part of

the tag count that has a power-law distribution is supported by the

background or the binding sites or both at low, high, and medium

In Silico ChIP Sequencing
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counts respectively. The right tail, diverged from the power-law

distribution (Figure 4), occupies the ultra-high count section.

Methods To Identify Binding Sites in ChIP-seq Data
Reported in two recent studies [6,7], ChIP sequencing is a

newly-developed high-throughput method for genome-wide map-

ping of in vivo protein–DNA association. In these two studies, two

different analytical methods were used to identify transcription

factor binding sites. In the first study [7], a list of sites ‘known’ to

be bound (the positives) and unbound (the negatives) by the

transcription factor being studied is first compiled. Given this ‘gold

standard’, the sensitivity and the specificity of the experiment at

each threshold on the sequence read per region are then

calculated. And finally a threshold is chosen to give both high

sensitivity and high specificity. In the second study [6], a

background model is first used to simulate the sequence read

placement unto the genome in the absence of binding sites. The

false discovery rate, defined as the ratio of the number of peaks at

and above a peak height threshold in the simulated data to that at

and above the same threshold in the actual data, is then calculated

at each peak height as the threshold. And finally a threshold on the

peak height is chosen to give a stringent FDR. For easy reference

in our later discussion, we name the former the ‘‘known-sites’’

method and the latter the ‘‘background-simulation’’ method.

The known-sites method has the advantage in giving the

sensitivity and the specificity of a particular ChIP-seq experiment

at a chosen threshold. Its applicability is, however, problematic

since it requires a ‘‘gold standard,’’ a list of true positives and true

negatives. Conceptually, the validity of such a ‘gold standard’ is

questionable given the dynamic nature of protein–DNA associa-

tion—i.e., under different conditions a transcription factor has

different DNA-binding profiles. Operationally, this method is also

difficult to use. The prerequisite functional ‘‘gold standard’’ is

rarely available, let alone a good one. Moreover, the ‘‘known’’

Figure 6. The four segments in the range of the tag count in the actual data. Only the actual tag count distribution and four simulated ones,
one (the green line) from each panel of Figure 5 that are generated with the enrichment coefficient t = 10 only, are plotted here for clear depiction.
Notice the convergence at the start or the end of each of four pairs of simulated distributions generated with the same background or site models.
For example, the blue and the green curves differ at the start but converge at the end because they are generated with different background models
but the same site model. The range of the tag count in the actual data is divided into four segments based on the divergence and convergence
(indicated by dashed circles) of the actual and simulated distributions. These sections correspond to different features of the actual tag count
distribution and the genomic identities of the tag clusters.
doi:10.1371/journal.pcbi.1000158.g006
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positives are biased towards binding sites with high enrichment of

sequence tags, and as the majority of the genome is not bound by a

transcription factor ever, it is an open question how many ‘‘true

negatives’’ should be included in the calculation. That is, given the

huge preponderance of negatives, it is very difficult to build a

correctly balanced gold standard, which is essential for training an

effective classifier [14].

Instead of using a ‘‘gold standard’’ to identify binding sites in

ChIP-seq data, the background-simulation method uses a back-

ground model to simulate how sequence reads are distributed in a

genome in the absence of binding sites. Since this method does not

assume any prior knowledge about the binding sites of the

transcription factor under investigation, it avoids major difficulties

encountered by the known-sites method. In their study, Robertson et

al used a background model that implicitly assumes uniform tag

placement everywhere on the background. However, our simulation

results show that the data generated by this uniform-background

model agree poorly with the actual experimental data. Based on our

further analysis, we can generate a better null distribution by using a

more realistic, varying-background model that assumes most of the

background is not enriched but at a few places it has a high

enrichment level on a par with some binding sites.

In our analysis we estimated the background and the

foreground together from the ChIP-seq sample data alone.

However, if the negative control data from the experiments

without immunoprecipitation are available, the estimation of the

background becomes simpler as such experiments give a direct

empirical estimate of the ChIP-seq background. Because our

method can simulate the background alone, the negative control

data can thus be easily accommodated. First the control data are

used to estimate the parameters of the varying background model.

The fitted model is then used to generate the null distribution of

the tag count. And finally this null distribution is used to score the

ChIP-seq data.

We also make improvement to the usage of the null distribution

in the background-simulation method. In the study of Robertson

et al, the false discovery rate is defined as the ratio of the number

of peaks at and above a threshold in the simulated data to that at

and above the same threshold in the actual data. The implicit

assumption behind this definition is that the peaks identified in the

simulated data are false positives and the number of them is equal

to the number of false positives in the actual data. The first half of

this assumption is reasonable, but the second half is unwarranted.

For direct comparability, the same number of uniquely mapped

sequence tags as contained in the actual data is used to simulate

the null distribution on the background. Due to the finiteness of

this number and the presence of binding sites (the true positives) in

the actual data, the number of the peaks identified in the simulated

data will be greater than the number of false positives in the actual

data at any threshold. This discrepancy is more pronounced at

lower thresholds. In fact, at low thresholds there could be more

peaks in the simulated data than in the actual data. When this

happens, the false discovery rate exceeds one, which is nonsensical.

Instead of using the null distribution in such an ad hoc manner, we

use it to assign each tag cluster found in the actual data a P-value

to assess its statistical significance. We then adjust the P-values of

the multiple-hypothesis tests to control the false discovery rate.

Supporting Information

Table S1 The goodness of fit between the simulated and the

actual curves.

Found at: doi:10.1371/journal.pcbi.1000158.s001 (0.03 MB PDF)

Table S2 Publicly available ChIP-sequencing datasets and the

number of sites identified using varying-background model.

Found at: doi:10.1371/journal.pcbi.1000158.s002 (0.03 MB PDF)
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