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Abstract

We explore the possible role of elastic mismatch between epidermis and mesophyll as a driving force for the development
of leaf venation. The current prevalent ‘canalization’ hypothesis for the formation of veins claims that the transport of the
hormone auxin out of the leaves triggers cell differentiation to form veins. Although there is evidence that auxin plays a
fundamental role in vein formation, the simple canalization mechanism may not be enough to explain some features
observed in the vascular system of leaves, in particular, the abundance of vein loops. We present a model based on the
existence of mechanical instabilities that leads very naturally to hierarchical patterns with a large number of closed loops.
When applied to the structure of high-order veins, the numerical results show the same qualitative features as actual
venation patterns and, furthermore, have the same statistical properties. We argue that the agreement between actual and
simulated patterns provides strong evidence for the role of mechanical effects on venation development.
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Introduction

For many years leaf venation motifs have marveled people,

whether scientists or not. Venation patterns are different from one

leaf to another, even in the same plant, but share some common

features that are preserved throughout all angiosperm leaves [1]. A

remarkable characteristic of these patterns is the vein hierarchy,

characterized by their radii, that originates in the successive

formation of veins during leaf growth [2,3]. A second, very robust,

feature of the venation pattern is the abundance of closed loops:

the leaf surface is divided into small polygonal sectors by the

venation array; only the fine veins of the highest orders do not

connect at both ends and are often open ended (see Figure 1).

It has been argued that the vein architecture might ensure

optimal water distribution [4,5]. However, the straightforward

optimization of steady state irrigation within the leaf must lead to

tree-like open topologies [4,5] with strictly no loops [6]. The high

redundancy of paths from the leaf base to any point in the leaf

surface might nevertheless be very advantageous with regard to

local damages ( Magnasco MO, personal communication). Also, it

has been suggested that venation may play a mechanical

stabilization role for the leaf, but the optimization of the

mechanical stabilization leads to very unnatural venation geom-

etries [5].

From a developmental perspective, the leaf venation is puzzling,

too. Since the pioneering works of Sachs [7–9], it is known that the

growth hormone auxin has an enormous effect on the venation

pattern [10–12]. It is believed that auxin is synthesized in the

growing leaf (either homogeneously or at localized sites) and that

there is a net auxin flow towards the leaf base from where it is

transported towards the plant roots. Furthermore, it has been

found that mutations that affect the auxin transport lead to

strongly modified venation patterns [13,14].

These findings have led to models of venation formation based

on a positive canalization feedback [7–9,12]: on the one hand, the

auxin flow is canalized into veins and vein precursors (procam-

bium). On the other hand, high auxin concentrations (or, in a

different variant, high transport values) trigger the differentiation

into procambium. In its simple form, this model cannot lead to any

loop but gives rise to tree-like structures [15–18], and this is a

serious drawback of the model. Several studies have tried to

correct this unrealistic part of the model with varying success [19–

23]. For instance, Rolland-Lagan and Prusinkiewicz [20] have

proposed the possibility that localized auxin sources on the leaf

move around when veins develop. They show that closed loops

can be formed in this way. This model seems to require a rather

complex and coordinate displacement of auxin sources as veins are

formed. On the other hand, Dimitrov and Zucker [21] have

considered a homogeneous production of auxin on the surface of

the leaf, and suggested that closed loops are formed when new vein

segments propagate from existing ones, and meet at the point of

highest auxin concentration. From a basic perspective, it seems

that this model requires a very precise coordinated progression of

the new vein segments, as otherwise the first segment reaching the

highest auxin concentration point would inhibit further growth

and open structures would be obtained. Along the same lines,

Runions and collaborators have devised geometric algorithms that

give rise to aesthetically very appealing venation patterns [22].

Closed loops are obtained in this case (as in [21]) by the tips of

three vein segments meeting in points of high auxin concentration.
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Nevertheless, it is an open question whether the auxin sources

postulated in [21,22] for the formation of high-order veins actually

exist, since Scarpella et al. [12] failed to observe them in their

experiments.

An alternative model has been recently introduced by Feugier

and Iwasaa [17,23]. In this model, loops are formed when a vein

tip curves towards and meets an older vein at some intermediate

point. It is suggested that this behavior is induced by the existence

of ‘flux bifurcators’ in some of the cells with high auxin

concentration. Note that this mechanism is incompatible with

the one proposed in [21,22], as here the loops close at intermediate

points of older veins. Whether the hypothesis of Feugier and

Iwasaa can generate realistic venation patterns is an open

question.

In general, we find that the modifications to the canalization

hypothesis necessary to explain the existence of closed loops are

not generic and rather unnatural, and the mechanism on which

they are based require a lot of fine tuning.

Couder et al. [24] have pointed out that the difficulties

encountered in creating realistic, loop forming models on the

basis of auxin transport are intrinsically related to the scalar nature

of the concentration fields. In contrast, the growth in a tensorial

field gives rise to hierarchical networks in a very robust manner.

They suggested that this tensorial field could be the mechanical

stress field in the growing leaf. (In a certain sense, the PIN protein

polarization field in [23] can also be considered as a kind of

tensorial field.) In their work they put forward the hypothesis that

mesophyll cells that are submitted to compressive stress exceeding

a threshold value start a differentiation process that eventually

transform them into procambium. This process would be similar

to the one observed in experiments on botanical tissues in which

oriented cell divisions are forced by externally applied compressive

stresses [25,26].

Evidence supporting this hypothesis is two-fold. On the one

hand, micrographs taken in the early steps of leaf venation

development show that in the first stages of differentiation, cells

forming the procambium can be distinguished from the remaining

cells by a mechanical distortion, consisting in a shrinkage of the

cells perpendicular to the vein direction (see, for example, the

images of Figure 2 of [2]). This suggests that stresses play a role in

this distortion. On the other hand, it has been shown that typical

large-scale morphologies of leaf venation patterns can be

reproduced as crack patterns in an appropriately prepared layer

of a slurry that dries in contact with a substrate [24]. This visual

similarity between crack and venation patterns led us to investigate

in more detail the fundamental ingredients in crack pattern

appearance.

Author Summary

Leaf venation patterns of most angiosperm plants are
hierarchical structures that develop during leaf growth. A
remarkable characteristic of these structures is the
abundance of closed loops: the venation array divides
the leaf surface into disconnected polygonal sectors. The
initial vein generations are repetitive within the same
species, while high-order vein generations are much more
diverse but still show preserved statistical properties. The
accepted view of vein formation is the auxin canalization
hypothesis: a high flow of the hormone auxin triggers cell
differentiation to form veins. Although the role of auxin in
vein formation is well established, some issues are difficult
to explain within this model, in particular, the abundance
of loops of high-order veins. In this work, we explore the
previously proposed idea that elastic stresses may play an
important role in the development of venation patterns.
This appealing hypothesis naturally explains the existence
of hierarchical structures with abundant closed loops. To
test whether it can sustain a quantitative comparison with
actual venation patterns, we have developed and imple-
mented a numerical model and statistically compare actual
and simulated patterns. The overall similarity we found
indicates that elastic stresses should be included in a
complete description of leaf venation development.

Figure 1. Venation pattern of a Gloeospermum sphaerocarpum
leaf. This leaf was subjected to a chemical treatment to remove all the
soft tissues, leaving only the veins. The network-like structure as well as
many open ends of the thinnest segments can be observed.
doi:10.1371/journal.pcbi.1000055.g001

Figure 2. Snapshots of the development process. The values of
the growing parameter, from top left to bottom right, are g= 1.2, 2.4,
3.6, and 4.8. The seed we use as the initial condition is shown in the first
panel with a different color. The numerical lattice has 102461024
nodes.
doi:10.1371/journal.pcbi.1000055.g002

Modeling Leaf Venation Morphogenesis
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Crack patterns on the surface of mud or other materials require

the existence of two quasi-two dimensional layers of material, the

substrate and the covering, the latter contracting with respect to

the former upon desiccation. (A pioneering work by Skjeltorp and

Meakin [27] analyzes experimental and computer models of crack

growth in a two-dimensional system consisting on two layers

growing at different rates.) A rather similar situation may indeed

occur in a growing leaf. In fact, a growing leaf consists of two

epidermal layers separated by a softer tissue called mesophyll. This

mechanical unit has to keep its integrity through the growing

process. In the first stages of cellular growing and division, the

three layers keep their status of uni-cellular layers. However, the

growing rate of the epidermis and the mesophyll are not equal but

the mesophyll tends to grow more rapidly than the epidermis [28].

This generates compressive stresses in the mesophyll that can force

cells to grow and divide along particular directions, favored by the

local stress field. In fact it is in this stage where evidence of

collapsed cells of the mesophyll has been obtained [2]. We

interpret the existence of elongated cells as evidence of a larger

mechanical stress along the directions perpendicular to the largest

axis of the deformed cells. Note that the similarity between crack

patterns and our mechanical model for leaf venation has an

important difference: crack patterns are obtained under contrac-

tion of the active layer relative to the substrate, whereas venation

patterns should appear when there is an expanding active layer

(mesophyll) relative to a rigid frame (the epidermis).

The suggestion of Couder et al. on the importance of elastic

factors in vein formation [24] has not been further studied from a

modeling point of view. In this paper, we present a numerical

model based on this hypothesis. We will show that this approach,

assuming the existence of a mechanical collapse instability of the

mesophyll cells, generally leads to patterns that are not only

qualitatively similar to actual venation patterns, but also show

comparable statistical properties.

Results

Numerically Generated Patterns
In actual leaves, there is an obvious dependency between the

morphology of veins and its rank in the venation structure. In

other words, initial vein generations are strongly dependent on the

form of the leaf and most probably, on genetic factors. It is this

large-scale pattern that is repetitive within the same species and

allows a broad leaf classification according to their venation

patterns. It is also in these initial vein generations where the role of

auxin is relatively well established. High order vein generations are

much more isotropic, and much more universal in its statistical

properties. It is to this stage that we intend to apply our model in

its present form to compare statistical properties.

A comprehensive mathematical description of our model is

given in the last section, but here we summarize the main

hypotheses to ease the reading of this part. We assume that during

growth, the inner cell layer (the mesophyll) is elastically attached to

the epidermis. The epidermis is assumed to grow at a lower rate

than mesophyll, and is otherwise supposed to be inert, i.e., it

undergoes no deformations during growth. Due to the different

growth rates of mesophyll and epidermis, compressive stresses

develop in the mesophyll. Our main assumption is that the elastic

properties of the mesophyll are such that this compressive stress

can give rise to a shape change of the mesophyll cells. Such cells

will acquire an elongated shape perpendicular to the main applied

stress. These assumptions are basically equivalent to the

description of collapsing surface layers presented in [29]. As in

this work, the elastic properties of the mesophyll are included in

the definition of a local free energy that has two minima: an

isotropic ‘intact’ minimum, and a ‘collapsed’ one that corresponds

to the deformed cell. (From a biological point of view, what we are

describing as the ‘collapse’ of a cell from a rather spherical shape

to an elongated shape could occur as preferential growth along the

easiest direction, i.e., perpendicularly to the compressive stress

field.) We use an algorithm in which the elasticity of the cells is

assumed to be linear, the non-linear behavior is introduced by a

scalar field W(x,y). The value of W(x,y) carries the full information

of the complete tensorial stress field and the state of the system at

the (x,y) position. As will be clear in the last section, the field W has

two preferred values, defining two elastic states with different

density and shear modulus. They represent the intact and

collapsed states of the cells in our model. Sectors of the system

that are in the intact or collapsed states are recognized by their

different values of W (see typical profiles of W in the last section).

We will typically refer to collapsed sectors as ‘veins’, although it

must be kept in mind that the definitive differentiation of a vein

will require a further process that we are not modeling here. At

each step of the simulation the system evolves towards the

configuration that minimizes the total free energy. At the same

time, a parameter g (see the precise definition in the last section of

this paper) is used to control the global growing of the leaf:

increasing the parameter g simulates the increasing of the overall

leaf size. For technical simplicity we maintain the size of our

simulation mesh (typically 102461024 nodes with periodic bound-

ary conditions), and the increase in g means that we are effectively

‘zooming out’ with the leaf growth. This means that new veins will be

seen as thinner ones, while older veins keep their thickness during the

simulation. In order to have a reasonable description of the

hierarchical process of sequential vein formation, a sort of

‘irreversibility’ condition is implemented. It guarantees that once a

new vein is created, it is forced to remain in the collapsed state during

the leaf growth. In actual leaves, a similar mechanism explains why

older veins are thicker: once a cell becomes a vein cell, the process of

cellular division generates new cells that will also be vein cells. The

implementation of the irreversibility condition in the model is

explained in detail in the last section.

To avoid an extremely uniform initial condition, we typically

seed the simulation with a few large-scale veins that provide the

initial veins of our numerical leaf. This first division is not

significant in the statistical analysis we perform on the final

patterns. We show results in which we prepare the system with

tree-like thick initial veins, or divide the sample into two pieces.

When new veins are formed (upon increasing of g), they

typically propagate rapidly through the system, reaching in most

(but not all) cases an older vein, where they stop. This propagation,

once triggered, occurs essentially at constant g, i.e., it is not driven

by the growing itself.

A few snapshots during the numerical evolution are shown in

Figures 2 and 3, where we plot the points of the numerical mesh

for which W have positive values (associated to the collapsed state).

The hierarchical nature of the process can be clearly observed in

these figures, as new veins are progressively thinner than old ones.

We stress that the observed hierarchical patterns are a direct

consequence of the irreversibility condition. In this way the history

of the growth process remains encoded in the statistics of vein

widths. Moreover, notice that hierarchical patterns can also be

obtained in a very simple and well-controlled model such as that

described in Text S1.

Before going to the quantitative characterization of the patterns

obtained, two important features are worth noting. One is that in

many cases several thin free-ended veins are observed. This also

occurs in actual leaves and we propose an explanation in the next

Modeling Leaf Venation Morphogenesis
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section. Another feature is that some minor veins are completely

disconnected from other veins. They typically appear at the center

of intact regions (where the stress is maximum), and seem

unrealistic, since vein patterns in leaves are almost always

connected. Although they might be due to an artifact in our

simulations (in fact, the thickness of these disconnected veins is

already comparable to our numerical discreteness), recall that our

patterns are actually showing the places where the tension is high

enough to generate collapsed cells that will eventually, but not

necessarily, differentiate into veins. If the later differentiation

process requires the canalization of a flux through the network of

collapsed cells, differentiation of the disconnected segments into

disconnected veins will not occur.

Quantitative Comparison with Actual Leaf Patterns
In order to test whether our simulation results are comparable

with actual leaf patterns, we computed the vein width, length and

angles from our simulation results, and compare them with data

from actual leaves. The same numerical image processing

technique was used for the two data sets; see a detailed explanation

in [30]. The image processing converts the venation patterns in

sets of segments, nodes and free endings, each segment having a

given length and width.

In Figure 4 we show the average length of the vein segments as a

function of its width, w. Data from actual leaves of Figure 4A show

that at first glance the typical length of segments is independent of

the segment width, except for very thin segments, since there is a

minimum thickness below which there are essentially no segments.

This result is obtained also in the toy model presented in Text S1.

An interesting deviation of this trend is found however when

averaging many different data sets, where we see that thicker

segments tend to be slightly longer than thinner ones (see the inset

of Figure 4A). Going back to snapshots of actual leaves (Figure 1),

it is clear that this result originates in the fact that thin segments

have some difficulty in reaching thick segments and many open

ends of thin segments are typically found near thick ones. Notably,

this feature is reproduced in our numerical model (see Figures 2

and 3), and the increase of length as a function of segment width is

in fact observed in the statistical plot of Figure 4B. The reason for

the difficulty of thin segments to reach thicker ones in our model

(and probably also in actual leaves) is the following. A given vein

segment relaxes mechanical stresses in some neighborhood of it.

The size of this relaxed zone increases with the vein width. When a

thin vein is approaching a thick one, it enters a region where

elastic stresses have diminished, and in many cases this relaxation

is sufficient to stop the advance of the thin vein before it actually

hits the thicker one. In case of approaching veins of approximately

the same thickness this tendency is lower, and it does not seem to

be strong enough to stop the vein advance before contact.

Moving to the description of the results of Figure 5 for the

number of vein segments with a given width, N(w), first of all we

note the overall similarity of real and numerical curves. Also, a

shoulder in N(w) is observed both in the numerical as in the real

data for the region of thick segments. In our numerical leaves we

relate this behavior with the way in which we seed the simulation.

In our runs, the first generation of veins appears quite rapidly and

generates a number of thick segments. We observed that such

distribution of thick veins is quite constant during the evolution of

the system, whereas the region of the curve fitted by a power decay

appears in later stages of the growing. The evolution of N(w) can

be observed in Figure 6, where we plot the histograms of widths

for the four snapshots of Figure 2.

For intermediate values of thickness, the results of our model are

compatible with a power decay of N(w), with an exponent close to

2 (see Figure 5B). This result is also obtained with the minimal

model described in Text S1, showing that our model generates a

hierarchical pattern along the lines we have already discussed.

From the data of actual leaves of Figure 5A we see that N(w) can be

fitted by a power law decay, and this is a nice indication that a

hierarchical mechanism is at work in actual leaves. However, in

this case the decay exponent of N(w) is larger than 2, rather close to

3. Although it is probably too ambitious to try to give an

explanation of this discrepancy, we want to present the following

argument. One of the implicit assumptions in our scaling method

is that all distances measured over the leaf surface grow at the

same rate during leaf growth. This is reasonable as long as the

cellular layers involved are one-cell thick. However, once some

cells have been committed to become a vein, they must give rise to

a cylindrical object. The hypothesis of two-dimensionality does not

work for veins. If, on biological grounds, we assume that the rate of

cellular division is constant, and take it independent of the kind of

cell, we arrive to the conclusion that vein width increases as square

root of time, instead of linearly. If this fact is taken into account in

a counting as we did in the model described in Text S1, the result

is that N(w) gets an additional factor w21, justifying a more rapid

decay for N(w) in actual leaves than in our model, which assumes

all distances measured in the leaf surface grow at the same rate.

Finally, we analyze the behavior of the angles between vein

segments at the points where three vein segments meet. As pointed

out in [30], the values of the three angles of a node are directly

related to the local hierarchy of the meeting vein sizes. The

authors found that the relation between angles and radii (or

widths) is a general property of all the leaves they studied. We

analyze our patterns to see whether it is possible to find in the

numerical leaves the kind of organizational law obtained in actual

venation patterns. For each node, we measure the three angles

obtained and relate them with the radii of the vein segments.

Thus, aLS is the angle between the thickest and the thinnest

segments, aLI is the angle between thick and intermediate

segments, and aIS is the angle between intermediate and thin

segments. We calculated the averages of the three angles and plot

them as a function of the ratio between the radius of the thinnest

(RS) and thickest (RL) segments. The configuration of radii is well

Figure 3. Snapshots of the development process with a
different starting configuration. The values of g and the system
size are the same as in the previous figure. In both figures the
hierarchical process can be clearly observed. Note also the open ends of
some of the thinnest segments.
doi:10.1371/journal.pcbi.1000055.g003

Modeling Leaf Venation Morphogenesis

PLoS Computational Biology | www.ploscompbiol.org 4 April 2008 | Volume 4 | Issue 4 | e1000055



defined with the parameter RS/RL because the segment of

intermediate radius has usually a value close to RL. In Figure 7 we

compare the numerical and the real data by adding our numerical

results to the ones of Figure 14 of [30]. A very good agreement is

obtained. The behavior observed can be understood by analyzing

the two limiting cases. For RS/RL close to one, all radii are almost

equal and the three angles are near to 120 degrees. This describes

a situation in which a vein has bifurcated into two. Since the three

segments are then created almost simultaneously, the three radii

are similar. On the other hand, RS/RL near to zero correspond to

the case in which a thin vein reaches a thick one. In this case, the

angle aLI between thick and intermediate segments tends to be 180

degrees, meaning that the thick vein is almost unperturbed by the

thin one. A continuous and rather linear variation is observed

between these two extreme situations. Although the overall

coincidence of measured angles in our simulations and in actual

leaves is encouraging, a full understanding of the origin of a

general relation between angles and radii is not achieved yet.

Figure 4. Histograms of the average length of the vein segments of width w. (A) Actual leaves. Each curve is the histogram of a given
dycotiledon leaf: Gloeospermum sphaerocarpum (square symbols), Amphirrhox longifolia (full triangles), and Rinorca amapensis (open circles). Inset:
the same quantity, but averaged over more than 1,200,000 segments of eight different leaves. Note that thicker veins tend to be slightly larger than
thinner ones. (B) Numerical leaves. Histograms for three different realizations (size: 102461024). Inset: Histogram of 30,000 segments obtained in
twelve realizations for g= 3.6 and three different sizes (5126512, 7686768, and 102461024).
doi:10.1371/journal.pcbi.1000055.g004

Modeling Leaf Venation Morphogenesis
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In our model, the free energy of a vein can be conceived as a

interface energy between the two sectors into which the vein

divides the leaf. In the case that all veins are of the same width, the

minimization of this interface energy would give rise to a foam-like

pattern with 120 degrees angles. However, irreversibility gives rise

to the formation of veins of different thickness and free energy

minimization produces angles whose values are correlated with the

veins’ age.

The ‘force model’ proposed in [30] shows that if a force is

assigned to each vein segment, pointing along the segment

direction and with an intensity proportional to the vein radius, the

angles between segments correspond to the situation in which the

three forces emerging from each node are in equilibrium. The

applicability of the force model to our numerical results could be

justified by the following argument. Assuming that three segments

of given radii have to meet, our modeling prescribes that the

structure they form must have the minimum accessible free

energy. If we assume that a rough measure of the free energy is

given by the area covered by the veins, a line tension can be

associated with each vein, which is proportional to its radius, and

from here the prediction of the force model follows immediately.

In any case, this is a point that deserves further study.

Discussion

In this paper we have set up a model to study leaf venation,

which is based on the idea that venation patterns are strongly

influenced by mechanical instabilities of the leaf, when the cellular

layers of epidermis and mesophyll grow at different rates. We took

a model that had been successfully applied to study phase

Figure 5. Histograms of the number of vein segments of width
w. (A) Actual leaves. Histograms for the same three leaves showed in
the previous figure. For all the leaves analyzed, a power decay with an
exponent close to 3 is observed. Inset: Average over four leaves. A
shoulder for thick veins can be observed in both figures. (B) Numerical
leaves. Histograms for three different realizations. In the region of
intermediate values of thickness, a power decay with an exponent close
to 2 is obtained. Inset: Average for the same realizations as in the
previous figure, showing a shoulder for the region of thick veins.
doi:10.1371/journal.pcbi.1000055.g005

Figure 6. Evolution of the histograms of widths. Each curve
corresponds to one of the four stages of growth shown in Figure 2 of
this paper. Note that the distribution of thick veins is quite constant
during the evolution.
doi:10.1371/journal.pcbi.1000055.g006

Figure 7. Comparison of angles. Angles between veins as a
function of the ratio between the radius of the thinnest (RS) and
thickest (RL) segments. The angle between thin and intermediate radius
is labeled aIS. The angle between thin and thick segments is aLS,
whereas the angle between thick and intermediate segments is aLI.
Isolated symbols are data obtained from actual leaves, and were taken
from Figure 14 of [30]. Colored lines with small symbols are our
numerical results.

Modeling Leaf Venation Morphogenesis
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separation process in alloys, added the interaction with a substrate,

and made also the appropriate changes necessary to study the

crucial effect of leaf growth. We claim that the properties of

biological growth added to the characteristics of the model,

explains the formation of a hierarchical structure with well defined

statistical properties for different quantities. The results of the

statistical analysis are in good agreement with results obtained in

actual leaves. Our model explains the existence of abundant closed

loops in venation patterns in a natural way. Moreover, some

statistical features can be understood analyzing a very simple

model of hierarchical division (see Text S1). Our analysis has

concentrated in the high order structure of the venation pattern,

where it appears isotropic and statistically independent on the

particular species that is being studied, and where closed loops are

dominant. A further step of investigation would require consid-

ering also the first stages of venation growth, where characteristic

features of different species appear, and where the existence of

closed loops is less universal. We think that it is at this stage where

the role of auxin will be critical. In a recent work, Scarpella and

collaborators [12] suggested that pre-procambial cells cannot be

distinguished by their shape from intact cells at a very early stage

of growth. This fact seems to be contrary to the mechanism

suggested in this paper, but it is worth emphasizing that our

numerically generated patterns have to be interpreted as an

indication of the places where the stress is high enough to generate

collapsed cells that will eventually differentiate into veins.

A complete and realistic modeling also requires taking into

account non-uniform and anisotropic growth, and probably

genetic factors [31]. While this is a challenging prospect for future

investigation, in its present form our model has some salient

interesting features: it provides good statistical agreement of

predicted patterns with real ones, and gives a natural explanation

for some characteristics of venation patterns, namely the presence

of ubiquitous closed loops, which can be accounted for by other

models only through the use of very specific hypothesis.

However, it must be stressed that the existence of a instability is

an assumption of our modeling, as we do not yet have a

confirmation of its existence from a biological point of view. An in

situ investigation of this collapse transition along the lines of the

experiment made in [26] could help to shed light on the vein

pattern formation mechanisms.

Model
Our main assumption is that vein formation is triggered by the

elastic collapse of cells of the mesophyll, growing at a larger rate

than the (assumed rigid) epidermis to which they are attached. An

appropriate approach would be to describe the mesophyll as an

elastic layer with a highly non-linear behavior modeling an

irreversible local collapse.

The natural way to theoretically describe the behavior of an

elastic layer is by constructing a free energy in terms of the elastic

displacement field, u. Two main contributions to the free energy

should be considered: the elastic interaction between the inner

cells and the epidermis, and the energy of the deformed cells that

can have two possible internal configurations associated to the

intact and collapsed states (see the schematic representation of

Figure 8). When this problem is studied in two dimensions the

fundamental variable u is a two-dimensional vector field. To avoid

some technical difficulties that otherwise could appear, instead of

studying a non-linear elasticity model directly in terms of u, we

choose an algorithm in which the elasticity of the cells is assumed

to be linear, the non-linear behavior is introduced through an

additional field W, which is coupled with the elasticity field through

a term of the form W=u. The coupling generates the non-linear

behavior of the mesophyll in an effective way. This kind of models

was successfully used to study phase separation processes in alloys

[32–35]. They are described by continuum (differential) equations,

and thus the cellular structure of the biological tissues is not

considered in detail.

A free energy in terms of the elastic displacement field u in the

plane of the leaf and the additional phase field W, is introduced in

the form:

F W, uð Þ~
ð

dr f0 Wð Þz C=2ð Þ +Wj j2 z aW+:u z fel uð Þ
h

z c=2ð Þu2
�
:

ð1Þ

Here, f0 is a Ginzburg-Landau local free energy for W that has two

different minima, representing the intact and collapsed states:

f0 Wð Þ~ { 1=2ð Þr0W2 z 1=4ð Þs0W4:

A regularization term proportional to |=W|2 is included to obtain

smooth profiles of the fields by penalizing rapid spatial variations

of W. It is introduced to make the behavior of the system almost

isotropic and independent of the underlying numerical lattice.

This term is also useful because allows the simulation of a

continuous growth through the rescaling of the parameters, as will

be explained later.

The parameter a is a measure of the coupling between the fields

W and u.

The term fel is the usual elastic free energy density in the

reference state in which W= 0, expressed in terms of the bulk and

shear moduli, K and m, and the displacement field u:

fel uð Þ~ K=2ð Þ +:uð Þ2 z m=4ð Þ

Si,j Luj

�
Lxi

� �
z Lui

�
Lxj

� �
{ 2=3ð Þdij+:u

� �2
:

Figure 8. Schematic representations. (A) Mechanical analogy.
Elastic stresses are accounted for by the springs indicated. Horizontal
springs represent the cells of the mesophyll, and its deviation from its
equilibrium length is a measure of the deformation energy of the cell.
Vertical interlayer springs account for the interaction between
mesophyll and epidermis. We suppose that the epidermis grows at a
lower rate than the mesophyll, and thus the mismatch between layers
will increase with time. A collapsed cell in this schema is represented by
a horizontal spring suffering a stress higher than its elastic limit. Once
this threshold is reached, the spring has a permanent deformation. (B)
Representation of the mesophyll layer with a group of cells in the
collapsed state. Note that the initial three-dimensional problem was
reduced to two dimensions, as we only describe the intermediate plane
where horizontal springs lie.
doi:10.1371/journal.pcbi.1000055.g008
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We consider the bulk modulus K as constant. However, in order to

obtain collapsed regions that can be tentatively associated to

growing veins it has to be assumed that the elastic properties of

collapsed cells correspond to a lower volume and lower shear

modulus than the intact cells (see the morphologies observed in

[29]). Thus, the shear modulus m will depend on whether the

medium is in the collapsed or intact state:

m ~ m0 z m1 W ð2Þ

As we said, due to the f0 term, the field W has two preferred values

W6 = 6(r0/s0)1/2. When these values are introduced in Equations 1

and 2 they define two different elastic states with different density

and shear modulus, representing the intact and collapsed states of

the cells in our model. The fact that the variable W is continuous,

however, guarantees the possibility of a smooth transition between

these states.

The only difference between these expressions and those in the

works [32,33,35] is the presence, in our model, of a term

proportional to c giving a perfectly harmonic, elastic interaction to

a rigid layer that represents the epidermis. Although there are

actually two epidermis layers, we suppose their roles are equivalent

and thus a single substrate layer is considered in the model. As the

growing rate of mesophyll is assumed to be larger than the growing

rate of the epidermis, compressive stresses into the mesophyll

appear to produce the collapse of some parts of it. This situation

corresponds formally to an elastic layer expanding with respect to

a rigid substrate, a situation that has been recently studied by one

of us [29].

A formal transformation in the model should be made before

implementation in the computer. If in the free energy of

Equation 1 we were able to integrate out the field W, we should

end up with a non-linear elastic model written completely in terms

of the displacement field u. However, the approach we follow is

the inverse. Through a well documented procedure [34,35], the

elastic field u is integrated out of the model to first order in m1, and

an effective model in terms of W is obtained. The new model is

non-linear and non-local in W, describing in an effective way the

non-linear elastic behavior of the system. The free energy takes the

form:

F Wð Þ~
ð

dr f Wð Þz C=2ð Þ +Wj j2 z gE W Xij 1
�

+2 { gL

� �� �� �2
h

z a Akk,

where Xij = hihj2(dij/2) =2, gE = m1 a2/L0
2, gL = c/L0, L0 = K+m0

in 2D, Aij = Æ=j uiæ, and

f Wð Þ~ f0 Wð Þ{ W a2
�

2
� �

+2
�

L0+2 { c
� �� �

W:

At this point, all the information is encoded in the field W. In

particular, different values of W in different spatial positions will

tell whether that portion of the system is in the intact state, or in

the collapsed state. The temporal evolution is governed by an

equation compatible with a non-conserved order parameter, i.e.,

dW/dt = 2dF/dW. In this way the system tries to adapt

dynamically to the external conditions in order to minimize the

value of F.

The main external condition that drives the evolution of the

system is the fact that the leaf is growing. The natural way to

model the growth (which mimics most closely the real situation) is

to assume that, although the parameters of the model do not

change upon growing, the linear dimension of the system L(t)

increases in time. We suppose the growth is sufficiently slow that at

each moment the system is in mechanical equilibrium. The initial

condition for the minimization at time t+Dt should be the result of

the minimization at time t, but stretched by a factor L(t+Dt)/L(t).

This approach is quite difficult to implement in the simulation,

because of the problems that appear in changing the size of the

system under temporal evolution. Technically more simple, but

fully equivalent to the previous procedure, is to keep the size over

which we integrate the equations of the model, but change its

parameters in such a way that the same numerical mesh simulates

progressively a larger system. This is like saying that we ‘zoom out’

with the system growth. The scaling parameter that will do such

rescaling is called g, and the growing process is implemented in

terms of changes in the parameters as follows. If in Equation 1 we

formally change from r to gr, the only parameters that are

rescaled (in addition of an unimportant global rescaling of the free

energy) are C and c, which become C/g2 and cg2. This means

that changing C and c in this fashion is precisely the way in which

the growing process can be simulated. We start the runs with a

value of g= 1, and increase it progressively during the simulation.

Note the scaling effect in the simulations: Decreasing C will

produce a sharper interface between intact and collapsed region,

which is a reasonable effect as we zoom out with the system

growth. In addition, the increase of the substrate interaction will

produce the effective increase of compressive stresses in the active

layer, and this will trigger the appearance of new collapsed sectors

in order to relieve the accumulated elastic energy.

Our modeling is compatible with the hypothesis that when a

new vein has been nucleated in an actual leaf, it will continue to

grow at the same pace than the rest of the leaf. In particular its

thickness should increase with time. In our modeling, due to our

zooming out procedure this means that veins must preserve its

width during the evolution and newer veins are progressively

thinner than older ones. In order to achieve this, we have to avoid

that the older (thicker) veins become thinner as the spatial scale in

the system is changed. As we said, this implies a kind of

irreversibility condition that guarantees that when a new vein

was created, it is committed to grow at a fixed rate. The

implementation of the irreversibility condition in the model is as

follows. We include the condition that W (x,y) in the time step t+dt

can not be in the relaxed phase if its value in the previous time step

corresponds to the collapsed phase. This is done by defining a

threshold value W0, namely, if at a certain stage of the simulation

some point has a value W (x,y).W0, then this point is forced to

remain with a value of W at least as large as W0. Our numerical

results indicate that the final patterns are reasonably independent

on the value of the threshold we use to define each phase.

Irreversibility is what stabilizes the existence of thick veins, as can

be observed in Figure 9, where we show a typical profile of W for a

fixed value of x at two different stages of the growth. In this plot,

values of W close to 2 represent the section of a vein, whereas

negative values of W are intact sectors. These results where

obtained by using a value W0 = 2. Note in the bottom panel how

the interface sharpness is greater (because of the increase in the

effective C) and how the new nucleated veins are significantly

thinner.

It is worth emphasizing the effect that the term that was used to

generate irreversibility has on the simulations. In the absence of

this term, the same parameters which lead to the snapshots of

Figures 2 and 3, produce now patterns like that in Figure 10. A

lateral wandering and thinning of veins during evolution is clearly

observed. As a consequence, the hierarchical structure is

completely lost. Note that in actual leaves a mechanism generating

a similar kind of irreversibility can be claimed to be present. In
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fact, once the germ of a vein has been nucleated, all daughter cells

are committed to become part of the vein. This is why older veins

are thicker and it is an additional ingredient on top of mechanical

energy minimization.

We also include in our model a stochastic noise of small

amplitude that helps to nucleate new veins. The evolution

equation becomes dW/dt = 2dF/dW+fT, where fT is a stochastic

force with the properties ÆfiTæ = 0 and ÆfiT(t) fj
T(t’)æ = 2 kB T d(t–t’)

dij. The existence of random noisy effects on the growing of an

actual leaf cannot be denied, and then our inclusion of a stochastic

term in the evolution equation could be ultimately justified.

However, we emphasize that we do not intend to model any

precise physical process with this. We only want to include in a

simple form the fact that there is some randomness in the

nucleation events, which eventually make individual leaves of the

same species to differ from one another. In order to be sure that

the stochastic term does not introduce systematic spurious effects,

we have explored the effect of the noise by applying it in three

different ways: 1) a ‘static version’ in which the noisy term is

included only in the initial condition, 2) a dynamic noise as

described in the previous paragraph, and 3) an intermediate

version, in which a fixed noisy landscape affect the leaf during its

evolution. We found that the main characteristics of our patterns

as well as its statistical properties are the same in the three cases.

Then we present results only for the noisy dynamics, which in

addition we consider to be the most realistic one, as fluctuations at

the cellular level produced by discrete cellular division events can

be considered as some sort of noise during the growing process.

Supporting Information

Text S1 A minimal model with scale invariance properties. We

present here a toy model that has the minimal hierarchical

properties we expect to obtain in the full simulation. It may be

useful to better appreciate the results of the full modeling.

Found at: doi:10.1371/journal.pcbi.1000055.s001 (0.16 MB PDF)
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