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Abstract

Recent whole genome polymerase binding assays in the Drosophila embryo have shown that a substantial proportion of
uninduced genes have pre-assembled RNA polymerase-II transcription initiation complex (PIC) bound to their promoters.
These constitute a subset of promoter proximally paused genes for which mRNA elongation instead of promoter access is
regulated. This difference can be described as a rearrangement of the regulatory topology to control the downstream
transcriptional process of elongation rather than the upstream transcriptional initiation event. It has been shown
experimentally that genes with the former mode of regulation tend to induce faster and more synchronously, and that
promoter-proximal pausing is observed mainly in metazoans, in accord with a posited impact on synchrony. However, it has
not been shown whether or not it is the change in the regulated step per se that is causal. We investigate this question by
proposing and analyzing a continuous-time Markov chain model of PIC assembly regulated at one of two steps: initial
polymerase association with DNA, or release from a paused, transcribing state. Our analysis demonstrates that, over a wide
range of physical parameters, increased speed and synchrony are functional consequences of elongation control. Further,
we make new predictions about the effect of elongation regulation on the consistent control of total transcript number
between cells. We also identify which elements in the transcription induction pathway are most sensitive to molecular noise
and thus possibly the most evolutionarily constrained. Our methods produce symbolic expressions for quantities of interest
with reasonable computational effort and they can be used to explore the interplay between interaction topology and
molecular noise in a broader class of biochemical networks. We provide general-purpose code implementing these
methods.
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Introduction

Investigations in yeast [1,2] led to the hypothesis that in most

organisms the recruitment of polymerase to the promoter is the

primary regulated step in the activation of gene expression [3–6].

However, recent studies of multicellular organisms have revealed a

diverse array of other regulatory strategies, including several types

of post-initiation regulation [7–9]. Zeitlinger et al. [7] generated

tissue-specific whole-genome polymerase binding data in Drosophila

melanogaster and showed that regulation of polymerase release from

the promoter is widespread during development. Their data shows

that some 15% of tissue-specific genes bind polymerase to their

promoters in all tissues, even though each gene only allows

polymerase to proceed through the coding sequence in a specific

tissue (see Figure S1). Differential expression of these genes is made

possible by a paused state wherein a polymerase remains stably

bound but precisely stopped a short distance from the promoter

and awaits a regulated release that is only triggered in the

appropriate tissue [7]. Finally, many metazoa have been shown to

have, genome-wide, disproportionate amounts of polymerase

bound at promoter regions as compared to coding regions

[7,8,10,11].

This mechanism has been called promoter proximal pausing. It

should not be confused with the stochastic stalling of a polymerase

as it transcribes, a phenomenon which has also been termed

‘‘polymerase pausing’’. Furthermore, there are distinctions to be

made between: stalled polymerase, a polymerase which

associates in a transient, unstable manner with the promoter but

does not proceed into productive transcription; poised poly-
merase, a polymerase for which the association is stable but has

not escaped from the promoter to begin transcription; and

promoter proximal paused polymerase, a polymerase that

completely escapes from the promoter but ‘‘pauses’’ in a stable,

inducible state just downstream of the promoter. It is believed that

most genes which have polymerase bound to their promoters in all

tissues but expressed in only some tissues fall in the last category;

this promoter proximal accumulation of pol II may indicate that

regulation of pausing transitions is a general feature of metazoan

transcriptional control. We remind the reader that a gene need not

use the paused state as a waiting step at which to integrate
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regulatory information in order to be termed a paused gene, as

even constitutive house-keeping genes may be denoted as paused

[12]. In this study we will be interested only in the elongation

regulated subset of paused genes. For further discussion of

terminology and assays which distinguish these conditions, see

the Supporting Information.

It remains an open question why expression of some genes is

controlled further downstream than others. Several groups have

postulated that pausing may ready a polymerase for rapid

induction [8,10,13]. (Here induction refers to the first time at which

all the components required for expression of a particular gene

become available, and expression is when transcription of the first

nascent mRNA transcript begins.) To motivate this idea, the

preloaded, paused polymerase is described as a ‘‘loaded gun’’

ready to shoot off a single transcript as soon as it is induced.

Experiments with heat shock genes – the first class of genes for

which paused promoters were identified – show evidence of rapid

induction consistent with this idea [14,15]. However, pre-loading

only provides an argument for why the first transcript would be

produced more quickly. Surprisingly then, it was also observed by

Yao et al. [14] that subsequent polymerases are recruited rapidly to

promoters of induced, elongation-regulated genes as well as the

first, preloaded Pol II – a phenomenon not accounted for by the

loaded gun metaphor. Since most genes must be transcribed

several times in order to produce functional levels of mRNA,

changes in speed of induction as a whole are likely to be of more

physiological consequence than changes in the time at which the

first, pre-paused transcript releases.

When whole-genome studies extended the observation of

pausing to cover many key developmental regulatory genes [7],

further questions arose. While the selective advantage of rapid

induction is reasonably apparent for stress response genes, it is

harder to explain why rapid induction would be selected for in so

many developmental transcription factors and signaling pathway

components. An additional hypothesis, suggested by Boettiger and

Levine [16], is that regulation of transcriptional elongation (for

instance, by promoter proximal polymerase pausing) may have

evolved to ensure more coordinated expression across populations

of cells. This hypothesis was motivated by the striking correspon-

dence between genes shown experimentally to activate in a

synchronous fashion and genes shown to bind polymerase at the

promoter independent of activator state but not continue

elongation until activator arrival.

Recent work by Darzacq and colleagues [17] provides insight

into why a regulatory interaction downstream of transcriptional

pre-initiation complex (PIC) assembly may lead to more

coordinated gene expression than does regulation upstream of

PIC assembly. Using fluorescently tagged transcription compo-

nents, they demonstrated that transcriptional initiation is a highly

variable process, with only about one in ninety Pol II–gene

interactions leading all the way to productive mRNA elongation

[17]. Nonproductive interactions each lasted between several

seconds and a minute, suggesting that abortion of transcriptional

initiation can occur at different stages in assembly of the complex.

Regulatory interactions that occur after this noisy assembly process

would act only on transcriptionally competent polymerases, and so

this mechanism might result in more synchronous expression – a

hypothesis we test here.

The idea that gene expression itself is intrinsically variable

(rather than variable as a result of extrinsic fluctuations in

upstream quantities) is well established and is a recent focus of

theoretical and experimental interest – see [18] and [19] for

reviews. Stochasticity can arise at many stages of the process,

including from the diffusion of molecules in the cell [20], noisy

gene regulation [21], chromatin and other conformal rearrange-

ments [22], random events during elongation [23,24], and random

dynamics of translation and degradation of mRNA and proteins

[25].

Populations of single-celled organisms have been shown to take

advantage of noisy gene expression to achieve clonal yet

phenotypically heterogeneous populations [26]. In metazoan

development, however, proper growth and development generally

relies on coordination and synchrony rather than stochastic

switching. For example, certain cells in the Drosophila embryo are

induced to become neurons if they are next to a mesoderm cell but

not mesoderm themselves [27], so uneven activation of mesoderm

fate could produce early patches of mesoderm, thereby improperly

inducing neuronal development in neighboring tissue. Although

synchronous behavior is important for metazoa, particularly in

development, it is not a universal property of all metazoan genes.

For instance, genes with both synchronous and very stochastic

patterns of induction have been observed in the Drosophila

embryo [16]. The unique challenges of coordinating the behavior

of a large number of independent cells may explain why

elongation regulation aimed at release from a paused state

appears to be much more dominant among metazoa like D.

melanogaster and humans than E. coli or S. cerevisiae.

Here we investigate mathematically whether the significant

change in the coordination of expression observed in experiment

[16] can be explained by a change in the regulation network

topology which only effects whether regulation occurs before or

after PIC assembly, while keeping other details (reactions and

rates) of the PIC assembly process the same. We also seek to

determine which interactions in the transcriptional pathway are

most important for determining the coordination of expression,

and what effect different topologies have on the speed of induction

and variability between sister cells in total number of mRNA

synthesized.

We do this by constructing continuous-time Markov chain

models of PIC assembly with states that correspond to joint

configurations of the promoter and the enhancer. The (random)

time taken for the chain to pass from a ‘‘start’’ state to an ‘‘end’’

Author Summary

Gene activation is an inherently random process because
numerous diffusing proteins and DNA must first interact
by random association before transcription can begin. For
many genes the necessary protein–DNA associations only
begin after activation, but it has recently been noted that a
large class of genes in multicellular organisms can
assemble the initiation complex of proteins on the core
promoter prior to activation. For these genes, activation
merely releases polymerase from the preassembled
complex to transcribe the gene. It has been proposed on
the basis of experiments that such a mechanism, while
possibly costly, increases both the speed and the
synchrony of the process of gene transcription. We study
a realistic model of gene transcription, and show that this
conclusion holds for all but a tiny fraction of the space of
physical rate parameters that govern the process. The
improved control of cell-to-cell variations afforded by
regulation through a paused polymerase may help
multicellular organisms achieve the high degree of
coordination required for development. Our approach
has also generated tools with which one can study the
effects of analogous changes in other molecular networks
and determine the relative importance of various molec-
ular binding rates to particular system properties.
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state corresponds to the elapsed time between successive

transcription events. The models we construct for the two different

modes of regulation have a common set of transition rates, but the

particular mode of regulation dictates that certain transitions are

disallowed, resulting in two chains with different sets of states

accessible from the ‘‘start’’ state. We describe this situation by

saying that each model is a topological rearrangement of the other.

Because the same set of transition rates completely parametrize

both chains, (see Figure 1) we can make meaningful comparisons

between the two models. Once the Markov chains are constructed,

we use the Feynman–Kac formula [28], model-specific decompo-

sition techniques and computer algebra to find symbolic

expressions for features of these first passage times that correspond

to the delay between induction and transcription.

Although there has recently been much work modeling different

sources of stochasticity in gene expression, most models refrain

from a detailed representation of the different protein–DNA

complexes involved in favor of more abstract approximations

[26,29–34]. Two–state ‘‘on–off’’ Markov chains have been used

many times to model stochasticity in transcription (e.g. [21,35]),

and provide analytic solutions. Such models have been used to

explain, for instance, the observation that mRNA copy number

does not in general follow Poisson statistics, implying that there are

‘‘bursts’’ of transcription in some sense. This bursting behavior can

occur if the gene transitions between an active state (in which

transcription can occur), and an inactive state (in which it does not),

as shown by Raj et al. [36]. Although more complicated Markov

chain models have appeared, often presented via a stochastic

chemical master equation [37], they are usually simulated rather

than studied analytically (see [38] for a review of methods and

software). A notable recent exception is Coulon et al. [39], who use

matrix diagonalization to study the power spectrum and other

properties of several models of regulation. A complementary set of

techniques takes a broader view, using the fluctuation–dissipation

theorem to work on the scale of small stochastic deviations from the

differential equations that capture the average behaviors at

equilibrium [29–31,33,39].

We model the intrinsic noise of regulation and polymerase

recruitment using biologically-derived Markov chain models. We

focus on this particular piece of the larger process of expression in

greater detail than has been done previously in order to provide a

detailed mathematical investigation of the role of promoter

Figure 1. From regulatory mechanism to Markov Chain. (A) Schematics of two simplified models for initiation regulation (IR) and elongation
regulation (ER). Transcription is represented in 4 steps: (1) naked DNA, (2) DNA-polymerase complex, (3) actively transcribing polymerase, and (4)
completed mRNA. The enhancer is either (A) open or (B) bound. The enhancer must be bound (the permissive configuration) for the transcription
chain to pass the gated step (‘a), whose identity depends on the model (IR or ER). (B) The corresponding Markov chains for each regulation scheme.
Colors of arrows denote the transition rates from (A). Note that one set of rate parameters determines all the numerical values for both chains,
allowing for a direct test of the effects of topological change. (C) Distributions of log ratios of speed (m), variance of expression time (s), and transcript
count variability (g) across 10,000 randomly chosen parameter vectors (as described in the text), showing that ER is faster, less variable, and produces
less variability in transcript numbers over most possible combinations of rate parameters for this simple model.
doi:10.1371/journal.pcbi.1001136.g001
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proximal pausing. Unlike simulation methods, our approach

provides a tractable way to compute analytic expressions for which

interpretation is direct and reliable. Moreover, it does not depend

on small-noise or equilibrium assumptions, or require the passage

to a continuum limit. Furthermore, the structure of the models we

use is determined by biological realism rather than being

constrained by mathematical tractability. Our approach is most

similar to that of [39], although our methods are less computa-

tionally intensive and produce symbolic expressions which allow us

to investigate phenomena in greater depth. In particular, we

compare alternate modes of gene regulation and readily evaluate

analytically the sensitivity of system properties to changes in rate

parameters over a large proportion of parameter space.

Methods

Framework for modeling regulatory interactions
As a prelude to describing the actual Markov chain model of

transcriptional regulation we analyze, we describe a general

approach to modeling promoters, enhancers and their interac-

tions, and illustrate this approach with a toy model of transcription

that is not too cumbersome to draw – see Figure 1.

We begin with two separate Markov chains, a promoter chain and

an enhancer chain (Figure 1A). The states of the promoter chain are

the possible configurations of the components involved in

polymerase loading onto the promoter (e.g. ‘‘naked DNA’’ or

‘‘DNA–polymerase complex’’) and the allowable transitions

correspond to the arrivals of these components, in whichever

order is permissible by the underlying biochemistry. The states of

the enhancer chain are the the components involved in enhancer

activation (e.g. the binding of regulatory transcription factors to

the appropriate cis-control sequence for that promoter).

Next, to model the regulatory interaction between enhancer and

promoter, we designate a particular configuration of the enhancer

as the permissive configuration, and specify a particular transition of

the promoter chain as the regulated step. We require the enhancer

chain to be in the permissive configuration for the promoter chain

to make the transition through the regulated step and we assume

that the enhancer remains in the permissive configuration as long

as the promoter chain is downstream of that step. (The

specification that the enhancer remains in the bound/permissive

state while the process is downstream of the regulated step is not

the only possible choice, but it is a reasonable one, and one we do

not expect to affect our conclusions.) We choose the regulated step

according to the regulation mechanism that we are modeling.

The composite stochastic process that records the states of both

the promoter and enhancer chains is our resulting Markov chain

model of transcription. Varying the regulated step leads to

alternative topologies for this chain. We stress that, as we change

the choice of regulated step, the underlying promoter and

enhancer chains remain the same. In particular, the same set of

rate parameters are used in both schemes and they have the same

meaning. This permits meaningful comparison of different

methods of regulation. Two possible regulated steps, labeled ‘‘IR

gated’’ and ‘‘ER gated’’, are shown along with the corresponding

Markov chains in Figure 1. Each possible configuration of the

components of the transcription complex and associated enhancer

elements is represented by a state of the composite chain, and the

composite chain jumps from one state to another when a single

molecular binding or unbinding event converts one configuration

of complexes into another. For simplicity, we assume that each

arrival in the end state allows one transcript to be made. After

transcription occurs, the transcription complex may dissociate

entirely, returning the chain to its initial state, or it may leave

behind a partial scaffold, returning the composite chain to an

intermediate state (and possibly leading to successive rounds of

reinitiation and thus a ‘‘burst’’ of transcription products – i.e.

multiple mRNA molecules being transcribed per promoter

opening event).

Formally, the general composite Markov chain model is

constructed as follows. Consider two promoter configurations,

say, xi and xj , such that a direct transition from the first to the

second is possible. Write rP(xi,xj) for the rate at which this

transition occurs. For any two promoter configurations for which a

direct transition is not possible, we set this rate equal to zero.

Similarly, we write rE(yi,yj) for the transition rate from enhancer

configuration yi to enhancer configuration yj . Denote the

permissive enhancer configuration by y�. Suppose that the

regulated step of the promoter chain is the step from state xa to

state xb. Let X � be the set of states downstream from xb, i.e. those

states that can only be reached from the unbound state by passing

through xb. Then, the composite Markov chain takes values in a

set of pairs of configurations (x,y), and it jumps from (xi,yi) to

(xj ,yj) at rate q((xi,yi),(xj ,yj)), defined as follows:

q((xi,yi),(xj ,yi))~rP(xi,xj), if (xi,xj)=(xa,xb),

q((xi,yi),(xi,yj))~rE(yi,yj), if xi[=X �,

q((xa,yi),(xb,yi))~0, if yi=y�,

q((xa,y�),(xb,y�))~rP(xa,xb),

and q((xi,yi),(xj ,yj))~0, otherwise. Denote by xe the expressing

promoter configuration with productively elongating mRNA. We

are interested in the passage of the composite Markov chain from

certain starting states – either the state in which both promoter

and enhancer are unbound or the state to which the system returns

after elongation begins – to the final, expressing state (xe,y�).
Depending on which transition is regulated, some pairs of

promoter and enhancer configurations will be unreachable from

the relevant starting states; these pairs are biochemically

inaccessible and are never visited, and so need not appear in

our depictions or in our generator matrices (e.g. state 2A in the IR-

gated model of Figure 1).

Because there are generally only two promoters per gene active

at the same time in a given nucleus, binding of a general

transcription factor (TF) at one locus does not decrease the total

concentration of the TF in the nucleus sufficiently to affect the rate

of binding at the homologous locus. Furthermore, since the

observed timescales of variability in induction are shorter than the

expected timescale for protein translation and folding, we neglect

any feedback from mRNA synthesis which might modify the

transition rates. This allows us, in particular, to assume that the

jump rates of the Markov chain are homogeneous in time.

Detailed model of transcription
We now apply this framework to examine a model of

transcription that is more interesting and detailed than the toy

model used above for illustrative purposes.

Many general transcription factors (TFs), such as the protein

complexes TFIIA, TFIIB, etc., function together in a coordinated

fashion to form the pre-initiation complex (PIC) necessary for the

proper activation of transcription [40–42]. Experiments with

fluorescently labeled TFs in vivo indicate that the components of

this complex assemble on the promoter DNA [17,43] rather than

float freely in the nucleoplasm, as had been previously argued

[44].

Transcriptional Regulation
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The steps of PIC assembly are not fully understood [40],

although some important details are known. We analyze the

assembly scheme depicted in Figure 2, which is largely consistent

with available data. The promoter is recognized by TFIID, the

binding of which allows TFIIA and TFIIB to join the complex

[42]. We choose this complex as the first state in our promoter

model (state 1 of Figure 2), since it is only just after this step that

the regulation method may differ. TFIIB facilitates the recruit-

ment of RNA polymerase II (Pol II) [42] (state 2). For many non-

paused genes, polymerase is only detected in cells that have an

activated enhancer (the cis regulatory sequence which controls

expression) [7]. We call these genes initiation regulated and require

that the enhancer reach its permissive state (B) before this

association can occur. Since Mediator is important for many

promoter–enhancer interactions [40,45] it has likely also joined

the complex prior to polymerase arrival. TFIIE, (state 3), and

TFIIF (state 4), bind next, possibly in either order. Once both are

bound (state 5), TFIIH must also bind (state 6) before Pol II starts

synthesizing RNA and clears the promoter [40,41]. TFIIH is

displaced upon promoter escape [41], and if Ser 2 of the Pol II

tail is not phosphorylated by CDK9 (pTEFb), transcription

pauses 40–50 base pairs downstream of the promoter [15,45,46]

(state 7). For elongation regulated genes, it is the release from this

paused state that is possible only in the presence of an activated

enhancer (permissive state) – which is generally believed to recruit

the necessary CDK9 (and possibly other factors). Phosphorylation

of Ser 2 allows the fully competent polymerase to proceed

through the gene and produce a complete mRNA (state 8). The

transition rates between configurations depend on the energy of

association of the bond created and the concentration of the

reacting components.

Since we are interested in exploring the differences in which

step of PIC assembly is regulated and not the different possible

modes of enhancer activation, we use a simple abstracted two-

state model of enhancer activation. A single transition switches

the enhancer from the inactive state to the permissive state. For

instance, a transition to the permissive state could represent the

binding of a TF to the enhancer. This is not likely to be

completely realistic, but if a particular step in the actual

dynamics of transcription factor assembly and enhancer-

promoter interaction is rate-limiting (e.g. the looping rate

between a bound enhancer and its target promoter), then its

behavior will be well approximated by our minimal model, with

the transition from active to inactive corresponding to the rate

for this limiting step.

For many paused genes, it is the phosphorylation event which

is believed to be regulated [7,45]. However, accumulating data

suggests the molecular identity of the release factors may vary

between paused genes. For example, some also require the

recruitment of TFIIS in order to escape a ‘‘backtracked’’ paused

state [47]. We consider any such regulation by release from

pausing after PIC assembly to be elongation regulation (ER), and any

regulation acting upstream of PIC assembly initiation regulation

(IR).

Finally, the scaffold of transcriptional machinery that facilitates

polymerase binding does not necessarily dissociate when tran-

scription begins. Thus, reinitiation may occur by binding new

polymerases (at step 5) which must still reload TFIIH which was

evicted during promoter escape in order to proceed to step 6 and

so on back to step 8. Repeated cycles of reinitiation may lead to a

burst of mRNAs synthesized from a single promoter opening

event. We denote by b the probability that the scaffold survives to

cycle in a new polymerase (see Figure 2). The scaffold breaks down

before the next polymerase arrives with probability 1{b, in which

case transcription activation must start again from state 1. We

analyze both the time until the first transcript begins (for which

such bursting is irrelevant) and the effect of this partial stability of

the scaffold on cell–to–cell variation in total mRNA.

Our aim is not to present a definitive model of PIC assembly

itself. Rather, we seek to understand the impact of different modes

of regulation on a reasonable model that incorporates sufficient

detail and to develop tools that can analyze effectively models of

this complexity.

Statistical methods
We are interested in the speed and variability of the

transcription process, as measured, respectively, by the mean,

mt, and variance, s2
t , of the delay t between induction of the gene

and expression of the first functional mRNA transcript. (Recall

that by induction we mean the first time at which all the components

required for expression of a particular gene become available, and

by expression we mean the time when transcription of the first

nascent mRNA transcript begins.) We use the mean delay to

explore the hypothesis that the mechanism of elongation

regulation is faster than that of initiation regulation, even when

there is no polymerase initially bound (as reported in [14]). The

variance of the delay is related to the degree of synchrony of

expression of the first transcripts in a population of identically

induced cells (studied in [16]) – allowing us to test if synchrony is a

functional consequence of elongation regulation. We are also

interested in the variation between activated cells of the total

amount of mRNA produced in each. If we denote by N(t) the

random number of transcripts produced up until time t, then it

follows from elementary renewal theory (see e.g. Section XI.5 in

[48]) that N(t) has mean approximately mN(t)&t=mt and variance

approximately s2
N(t)&s2

tt=m3
t . A natural measure of relative

variability of N(t) is the squared coefficient of variation of N(t),

s2
N(t)=m2

N(t) (i.e. the variance of N(t) divided by the squared mean

of N(t)), which is thus approximately s2
t=(mtt). We denote the

coefficient s2
t=mt by g, and refer to it as transcript count variability.

The transcript count variability provides a measure of the

variation in total number of rounds of transcription initiated by

identical cells that have been induced for the same amount of time.

Note that g has units of time:

g~
s2

t

mt

&
s2

N(t)

m2
N(t)

t:

However, the ratio of this quantity for the IR scheme to its

counterpart for ER scheme does not depend on our choice of

time scale. For any time t, this ratio is approximately the ratio of

the squared coefficients of variation of N(t) for the two schemes,

and thus the ratio provides a way of comparing the relative

variability in transcript counts between the two schemes across all

times. Such a comparison is of interest because many of the

known pausing regulated genes are transcription factors or cell

signaling components that act in concentration dependent

manners, and hence the precision of the total number of

transcripts made directly affects the precision of functions

downstream [16]. (Rather than the coefficient of variation, some

authors consider the Fano factor of N(t), defined to be s2
N(t)=mN(t)

[32]. If N(t) has a Poisson distribution, then its Fano factor is 1,

and hence a Fano factor that differs from 1 indicates some form

of ‘‘non-Poisson-ness’’. As such, the Fano factor capture a feature

of the character of the stochasticity inherent in the number of

transcripts made up to some time, whereas the squared coefficient

Transcriptional Regulation
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of variation indicates the (relative) magnitude of the stochastic

effects.)

We use our model to examine how these three important

system properties – speed, synchrony, and transcript count

variability – depend on the jump rates and how they differ

between an IR and an ER regulation scheme. In both cases, the

delay t between induction and transcription corresponds to the

(random) time it takes for the corresponding Markov chain to go

from an initial state s to a final state f . For the chains

corresponding to the models shown in Figures 1 and 2, the

moments of t, the Laplace transforms of t, and hence the

probability distributions themselves, can be found analytically as

we describe briefly here (for detailed discussion, see the

Supporting Information, Text S1; and Figure S3).

Figure 2. Model of PIC assembly. Each possible complex in the process is enumerated as a state of the promoter Markov chain. (see text for
description of each complex) The promoter chain (states 1–8) is combined with the enhancer chain (states A and B) to make the full 16 state model of
transcription. Transitions that in some scheme require an activated enhancer (state B) are indicated by a gate, ‘a. Forward rate transitions are in light
font and backward transitions in dark font. The 1?2 transition is regulated in the IR scheme, and the 7?8 transition is regulated in the ER scheme.
doi:10.1371/journal.pcbi.1001136.g002

Transcriptional Regulation
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Denote by Q the infinitesimal generator matrix that has off-

diagonal entries qij given by the jump rate from state i to state j,
and diagonal entries qii given by the negative of the sum of the

jump rates out of state i. The infinitesimal generator of the chain

stopped when it hits state f is the matrix ~QQ obtained by replacing the

entries in the row of Q corresponding to f with zeros. Writing

p(:) for the probability density function of t, the Laplace

transform of p is

w(l)~

ð?
0

e{ltp(t)dt~(lI { ~QQ){1
sf : ð1Þ

In principle, the transform w can be inverted to find p, as we do in

Figure 4D. Also, the nth moment of t can be found from the nth

derivative of w:

ð?
0

tnp(t)dt~ ({1)n dn

dln w(l) Dl~0 : ð2Þ

In particular, the mean and variance of t can be computed from

the first and second derivatives of w(l).
It is not necessary to carry out the differentiation in equation (2)

explicitly, since (2) becomes

ð?
0

tnp(t)dt~n!
X

y

{Q{f

� �{(nz1)

sy
~QQyf ð3Þ

after some matrix algebra, as derived in the Supporting

Information. Here, Q{f is the submatrix of Q obtained by

removing the final row and column. As shown in the Supporting

Information, these expressions can be computed much more

efficiently than (1) or (2).

Equation (1) is known as the Feynman–Kac formula [28], and it

reduces our problem in principle to inverting the matrix (lI{~QQ).
This is easy to do numerically for particular rate parameter values,

but in order to make detailed general predictions about the

consequences of changing the step at which the enhancer regulates

transcription we require symbolic expressions for the system

properties with the rates as free parameters. However, for even

moderately complex chains like that described in Figure 2,

symbolic inversion of the matrix is prohibitively difficult for

commonly available software.

To overcome this obstacle, we develop new analytic techniques

that take advantage of the special structure of these matrices. First,

we note that chains modeling transcription often have a block

structure, in that we can decompose the state space according to

the subset of states that must be passed through by any path of

positive probability leading from the initial to the final state (we

call such states pinch points) (see Figure 2). A schematic of this

decomposition is shown in Figure S3. The models of initiation

regulation we consider are amenable to this approach. In order for

the ER model to be amenable to this approach, we assume that by

the time the PIC assembly has reached the regulated step, the

enhancer chain is in (stochastic) chemical equilibrium. Concretely,

if p is the stationary probability that the enhancer is in the

permissive state, then at each time the promoter chain jumps to

state 7 (of Figure 2) we suppose it jumps to state 7B with

probability p and to state 7A with probability (1{p). (To evaluate

the effect of this approximation, we investigate how our results

change after removing the parameter vectors in which the

enhancer chain is slow to equilibrate and hence when this

approximation is the worst.) A similar decomposition for

elongation regulated genes is possible using spectral theory, but

the computational savings are not as great as for the pinch point

decomposition. We provide a detailed description of these

techniques and the accompanying proofs (plus implementations

coded in MATLAB) in the Supplemental Text S2.

Our approach has several advantages. Firstly, once we have

derived symbolic expressions for features of interest, it is

straightforward to substitute in a large number of possibilities for

the transition rate vector in order to understand how those features

vary with respect to the values of the transition rates. This would

be computationally impossible using simulation and at best very

expensive using a numerical version of the naive Feynman–Kac

approach. Secondly, we are able to differentiate the symbolic

expressions with respect to the transition rate parameters to

determine the sensitivity with respect to the values of the

parameters. It would be even more infeasible to use simulation

or a numerical Feynman–Kac approach to perform such a

sensitivity analysis.

Results

Predictions for representative parameter values
To get an initial sense of the differences between these two

schemes of regulation, we first compared the transcriptional

behaviors for a best-guess set of parameters, guided by mea-

surements of promoter binding and escape rates by Darzacq et al.

[17] and Degenhardt et al. [49] in vivo and observations in

embryonic Drosophila transcription. These data do not allow us to

uniquely estimate all 14 binding reaction rates in our model of PIC

assembly, but they do constrain key properties, including the time

scale of the rate-limiting reactions and the ratio of forward to

backward reaction rates for both early binding events and later

promoter engagement events. We chose parameters to be

consistent with these measurements, and chose enhancer activa-

tion and deactivation rates to be consistent with induction times

estimated in Drosophila [16] (which are also in the range recently

reported in human cell lines [49]).

We used the following rate parameters for the model of

Figure 2:

½k12,k21,k23,k32,k24,k42,k35,k53,k45,k54,k56,k65,k67,k78,kab,kba�
~½:108,:725,10,10,10,10,10,10,10,:008,:005,10,10,10,:01,1�sec{1:

We found the probability density of the amount of time it takes the

system to go from induced to actively transcribing, shown in

Figure 3A, by numerical inversion of the Laplace transform

(equation 1). With these rate parameters, the mean time between

induction and the start of transcription for an elongation regulated

scheme is around 5 minutes, with a standard deviation of about 4

minutes, whereas an initiation regulated scheme with the same

rate parameters has a mean of 16 minutes and a standard

deviation of 12 minutes, consistent with experimentally estimated

initiation times in Drosophila [16].

We also described the number of mRNA produced over a given

period of time at one choice of b (the probability the GTF scaffold

dissociates before the return of the next polymerase). Setting

b~0:8, we found the distribution of the time delay between the

beginning of the production of subsequent transcripts under each

model. Using this distribution, we simulated the number of mRNA

produced during a 600 minute period in 2000 independent cells,

under both the IR and the ER scheme (for the common vector of

rate parameters listed above). The resulting distributions of mRNA
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Figure 3. Model predictions. (A) Probability distributions for first passage times: Probability density functions of the time to first transcription,
obtained by inversion of symbolically calculated Laplace transforms, using rate parameters computed in experimental studies of particular
transcription systems. Rates inferred from Darzacq et al. [17] measurements of promoter binding and promoter escape rates (see text).
(B) Distribution of total transcripts among a population of simulated cells during 600 minutes of transcription under the ER model with parameters as
in (A) and a reinitiation probability of 0.8. (C) as in (B) but for the IR model. (D) Individual cell simulation (see text) showing of the expected results for
an mRNA counting assay on the population of cells plotted in (B). Each mRNA transcript is represented by a red dot randomly positioned within the
cell. Cells with less than two-thirds of mean mRNA concentration are shaded blue, cells with more than three-halves of mean mRNA concentration are
shaded red. (E) as in (D) but for the IR scheme.
doi:10.1371/journal.pcbi.1001136.g003
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numbers are shown in Figure 3B and C. To depict the amount of

variability this represents, Figures 3D and E show a cartoon of the

results – for each cell pictured, we sampled a random number of

mRNA as above, which are shown red dots randomly scattered

within the cell. To emphasize the variability, we then colored cells

blue that have less than two-thirds the mean mRNA number and

colored cells red that have more than three halves the mean

mRNA number.

In this example, g is 2.8 times larger in the ER model than in

the IR model, so these simulations also give a sense of how a given

ratio of transcript count variabilities g for the two schemes

corresponds to a difference in cell-to-cell variability of transcript

counts, a topic we explore in more detail below.

Effects of regulation scheme on expression timing
Our predictions for the time of expression and the number of

transcripts in the previous subsection depended on the chosen

parameter values such as the association rate of different GTFs

and the average burst size of the gene expression. The values of

such parameters can, for the most part, be only very approxi-

mately estimated. Moreover, they may be expected to vary

considerably between different genes and different species.

Since a single vector of parameters simultaneously specifies our

models for the two regulation mechanisms, we can systematically

explore all possible combinations of promoter strength and

enhancer activation rates and ask in each of these cases how the

two mechanisms compare in terms of speed, synchrony and

variability in transcript counts.

To compare the two kinds of regulation of the model in Figure 2,

we sampled 10,000 random vectors of transition rates and

substituted them into our analytic expressions for mt, s2
t , and g,

with each rate chosen independently and uniformly between 0 and

1 (we could also have used a regular grid of parameter vectors).

Since we will use ratios of the relevant quantities to compare

models, and these ratios are all invariant under a common linear

rescaling of time, the fact that all rates are bounded by 1 is no

restriction – we are effectively sampling over all of parameter

space. (For instance, the ratio of mean expression times of the two

models does not change after multiplying every rate parameter by

100.) Furthermore, independent draws of new sets of 10,000

parameter vectors and substitutions give nearly identical results,

confirming that our results are not sensitive to the specifics of the

sample. Additionally, discarding parameter vectors for which the

enhancer dynamics are significantly slower than for the promoter

chain (i.e. kab or kba is smallest) does not qualitatively change any

of the results, validating our treatment of the enhancer chain when

analyzing the ER scheme.

In Figure 4A–C we plot the histogram of log2 ratios for the

mean delay, variance in delay, and transcript count variability for

the 10,000 randomly selected parameter combinations sampled

uniformly across parameter space. We found that at all sampled

choices of rate parameter, and therefore in the vast majority of

parameter space, the time to the first transcription event after

induction is smaller and less variable (i.e. more synchronous) for

elongation regulation than for initiation regulation in the realistic

model of Figure 2. Thus, both the experimentally reported speed

[14] and synchrony [16] for elongation regulated genes can be

expected purely from effects of regulation topology without

invoking changes in promoter strength or in the composition of

the PIC.

We emphasize that this conclusion is still consistent with the

possibility that a particular initiation regulated gene is expressed in

a more synchronous pattern or with more rapid kinetics than some

other elongation regulated gene: it is only necessary that the rate

parameters are also sufficiently different. However, for the fixed set

of rates associated with a given gene, the network topology of the

ER scheme always improved synchrony and speed in our model of

transcription relative to the corresponding IR scheme for the

parameter vectors we sampled.

There is a plausible intuitive explanation for why elongation

regulation is almost always faster than initiation regulation

(Figure 4A). When the regulation acts downstream, there are

multiple paths which the system can take to before it reaches the

regulated step – (i.e. either the enhancer can reach the permissive

state first or the polymerase can load), as illustrated for the simple

model in Figure 1A and B. The system moves closer to the

endpoint with whichever happens first, whereas the IR regulated

scheme must wait for enhancer activation before proceeding. The

combination of this intuition and our strong numerical evidence

suggests a provable global inequality. However, recall that for the

toy model IR is faster over about 6% of parameter space, and one

can reduce the realistic model to the toy model by making

appropriate transitions very fast. For example, for the toy model

the choice of parameters

Figure 4. Model results. (A) Comparison of log ratios of mean expression speed for the IR/ER schemes for 10,000 uniformly sampled rates. For all
jump rates, the log ratio is positive (red line), indicating the ER scheme is always faster. Extreme values that would be off the edge of the graph are
collected into the outermost bins. (B) Variance in timing of expression. (C) log2 ratio of noise in transcript number, measured by the squared
coefficient of variation between cells of total mRNA counts N(t) up to time t: s2

N(t)=m2
N(t) – the ratio is approximately independent of t.

doi:10.1371/journal.pcbi.1001136.g004
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½kab,kba,k12,k21,k23,k34�~½1,1,:1,:1,:1,:0001�

leads to a 5 fold increase in speed of the IR scheme relative to the

ER scheme. Figure S2 shows the distribution of values for each

parameter in the parameter sets where the IR scheme is faster (see

also Text S1). This allows us to find parameter vectors where IR is

faster than ER for the realistic model, for instance,

½kab,kba,k12,k21,k23,k32,k24,k42,k35,k53,k45,k54,k56,k65,k67,k78�
~½:1,1,:01,:01,:01,:01,:01,:01,:01,:01,:01,:01,:01,:01,:01,:0001�

produces in the realistic model a 10 fold increase in speed for the

IR scheme relative to the ER scheme. However, such reversals of

the typical ordering must occur over less than one ten-thousandth

of parameter space. The fact that the typical ordering is not

universal and hence not the consequence of some analytically

provable domination of one model by the other demonstrates the

necessity of our numerical exploration of parameter space.

Effect of regulation scheme on mRNA concentration
The effect of the regulatory scheme on the variation in the total

amount of expression among cells is perhaps the most interesting

and also experimentally untested consequence of regulating

release from the paused state. As discussed above, we compute

a factor g&(s2
N(t)=m2

N(t))t for each scheme and compare the

schemes by examining the ratio of the resulting quantities. If the

ratio gIR=gER is larger than one at a particular set of parameter

values, a population of cells using the IR scheme with those rate

parameters will show more variability in mRNA concentrations

between cells (relative to the average over all cells) than if they

were using the ER scheme with the same rate parameters. In this

case, we say that the ER scheme is more consistent than the IR

scheme.

We explored the logarithm of this ratio (equivalently, the

difference of the logarithms of the respective g quantities) at four

different values of b (the probability the scaffold does not

disassemble; see Figure 2); several of the resulting distributions

are shown in Figure 5.

When the complex is very stable, so that all polymerases find a

preassembled scaffold to return to (b~1, Figure 5A), the ER

scheme is more consistent for most rate parameters, but the

differences are small. In fact, in nearly all cases at which g differs

by a factor of at least 2, the IR scheme is the more consistent.

When the scaffold is still stable but less so (b~0:9, Figure 5A;

mean burst size 10), the ER scheme still almost always produces

more consistent numbers of transcripts among cells than the IR

scheme, and the differences are much larger. If the scaffold is less

stable (b~0:3, Figure 5C; mean burst size 1.4), the ER scheme is

still more often more consistent than the IR scheme.

When we consider the simplest case with no bursting (b~0,

Figure 5D), the ER scheme produces less variation in total

transcript (smaller g) for most of parameter space. Moreover, the

distribution is strongly skewed to the right, to the extent that for

the 20% of parameter space where there is more than a 1.5 fold

difference between the two regulatory mechanisms the ER scheme

is always less variable.

We have found that, regardless of the value of b, the ER scheme

is more consistent over most of parameter space. However, for that

difference in consistency to be substantial, b must not be too close

to 1. This is at first surprising, because if the scaffold remains

assembled, so that the chain returns to state 5 of Figure 2, an IR

scheme seems to have a clear ‘‘advantage’’ – it does not have to

wait for the enhancer to arrive, whereas the ER scheme does, and

one might expect that this added stochastic event would only

increase variability.

Consideration of how each chain depends on its starting state

suggests an intuitive explanation for this difference. The IR

scheme differs more in the amount of time it takes to reach the

synthesis state when started with or without a scaffold (state 5 or

state 1) than does the ER scheme. Intermediate values of b allow

the possibility of some cells making many bursts by reverting to

state 5 after each synthesis while other cells make dramatically

less by reverting to state 1 after each synthesis. In contrast, under

the ER regulation scheme, cells that start again from state 1 or

from state 5 have relatively more similar synthesis times, and thus

relatively less variation. The similar synthesis times result from

the fact that ER is faster starting from state 1, for the reasons

discussed above, and slower than IR when starting from state 5,

because of the extra regulatory step before synthesis. Conse-

quently, an ER scheme reduces the noise associated with very

stable transcription scaffolds (see [30,32,34] for a discussion of

this noise).

Pertinent properties of elongation regulation
To further understand why elongation regulation results in

faster, more synchronous, and more consistent gene expression

over a wide range of parameters we investigated alternative post-

initiation regulatory schemes. This allows us to explore how

changing certain properties of the model of PIC assembly (the

Figure 5. Effect of scaffold stability for variation in transcript number. (A) log2 ratio of transcript variability, g, between the IR and ER model
when all subsequent polymerases engage an assembled scaffold b~1. Extreme values that would be off the edge of the graph are collected into the
outermost bins. (B) As in (A) when b~0:9, note the ER scheme is more often substantially more coordinated, though a few parameters still make the
IR scheme the more coordinated by a smaller margin. (C) b~0:3. (D) b~0.
doi:10.1371/journal.pcbi.1001136.g005
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promoter chain) will affect the results: Is the difference large

because there are many steps between the IR step and the ER

step, or is it because there is no allowed transition leading

backward out of the state immediately before the regulated step?

To explore these questions, we made modifications to the toy

model of Figure 1 which we are able to analyze without the

assumption of enhancer equilibrium.

First note that, as is shown in Figure 1C, the ER model is still

faster, less variable, and more reliable (smaller m, s, and g) than

the IR model over approximately 95% of parameter space. (It is

also reassuring that the results are so similar to those for the more

realistic model.)

We performed the same analysis after adding a reverse

transition from state 3 back to state 2 (see Figure S4A–B). The

results are shown in Figure S4C, and demonstrate that there is

strikingly little difference between the two models of regulation.

This suggests that the absence of a backwards transition from the

state immediately preceding the regulated transition is an

important factor in producing the differences between the models

we observed above. In the ER scheme of Figure 1, PIC assembly

becomes ‘‘caught’’ in state 3, awaiting arrival of the enhancer.

(Similarly, the ER scheme of Figure 2 gets ‘‘caught’’ in state 7).

After adding a transition 3?2, PIC assembly may run up and

down the chain many times before it is in state 3 at the same time

the enhancer is in the permissive configuration, and this

counteracts any benefits in speed or reliability that may have

been gained otherwise. (It is not obvious that this will happen: the

ER scheme of Figure S4B still has ‘‘more routes’’ from state 1A to

state 4 than the IR model, so it may run counter to intuition that

the IR model could be so often faster.) This furthermore suggests

that regulating after a state in which PIC assembly is ‘‘caught’’

reduces variation – some polymerases may run from state 1 to 8

smoothly and fire very quickly, while others may go up and down

the assembly process many times before they actually escape the

promoter and make a transcript (as is suggested by the data of

Darzacq et al. [17]), and this will substantially spread out the times

at which the first transcript is created.

We also investigated the case in which the 2?3 transition is

regulated and observed a similar pattern – see Figure S4D–F. This

investigation supports the intuition that it is the stability of the

paused state, not simply the parallel assembly of enhancer complex

and promoter complex, that is most important in understanding

the different behavior of the two regulatory schemes. It also

suggests that these differences should be specific to genes that are

regulated through paused (as opposed to poised or stalled)

polymerase.

Sensitivity analysis
Small variations in rate parameters between cells will occur if

the number of TF or Pol II molecules is small, so it is of interest to

investigate how robust the properties of each regulation scheme

are to such variation and which jump rates affect each scheme the

most. To measure this sensitivity, we compute the gradient of a

quantity of interest (e.g. the mean induction speed) with respect to

the vector of jump rates, square the entries, and normalize so that

the entries sum to one, giving a quantity we refer to as relative

sensitivity that is analogous to the ‘‘percent variation explained’’ in

classical analysis of variance. Our analytic solutions for the

quantities of interest make this computation possible. For example,

let m(r) denote the mean transcription time of the chain when the

vector of transition rates is r. Then, the relative sensitivity of m to

each rate ri is (Lri
m(r))2=

P
j (Lrj

m(r))2. The larger this quantity is,

the larger is the relative effect a small change in ri has on m.

To explore the sensitivity across parameter space, we computed

relative sensitivities for each of the three system properties to all 16

parameters at each of the 10,000 random vectors of transition

rates described above. Each of the system properties showed

surprisingly similar sensitivity profiles, so we only discuss the

results for the mean time to transcription. Marginal distributions of

sensitivity of mean time to transcription to each parameter are

shown in Figure 6. Corresponding plots for the variance of

transcription time and for transcript count variability are shown in

Figures S5 and S6.

As one might expect, for a given parameter vector the

parameters to which the behavior of the models are most sensitive

are generally those that happen to take the smallest value (and are

thus rate-limiting): for each parameter vector, we recorded the

sizes of the two parameters with the highest and second highest

sensitivity values and found that their sample means were 0:147
and 0:296, respectively (whereas the sample mean of a typical

parameter value will be very close to 0:5). However, just how small

a given transition rate must be before it controls the system

properties depends on where the corresponding edge lies in the

topology of the network. As shown in Figure 6, some parameters

are relatively important throughout a large region of parameter

space in both the ER and IR schemes, while others only dominate

the response of the system in a small portion and some never

appear.

Two further observations are evident from this analysis. First,

we see which transitions in the process of activating the gene are

most sensitive to small fluctuations (due to small number of TF

molecules or changes in binding strength). As is apparent from

Figure 6, just 4 of the 16 promoter chain jump rates dominate the

Figure 6. Sensitivity analysis for mean expression time.
Histograms of the marginal distributions of relative sensitivities for
both the ER and IR schemes, across uniform random samples from
parameter space, as described in the text. The smallest bin of the
histogram (values below :05) is disproportionately large, and so is
omitted; shown instead is the percent of parameter space on which the
relative sensitivity is at least :05. Note that often only a single parameter
dominates (many sensitivities are near 1), that many parameters are
almost never influential, and that ER and IR are similar except for the
addition of sensitivity to kab.
doi:10.1371/journal.pcbi.1001136.g006
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sensitivity, and these are the same for both IR and ER schemes

(k12, k56, k67, and k78). The relative importance among those 4

jump rates depends on the position in parameter space, primarily

through their relative sizes. Furthermore, although the ER and

IR schemes have otherwise similar sensitivity profiles, the IR

scheme is additionally sensitive to variation in the rate of

enhancer–promoter interactions, kab. As this interaction between

potentially distant DNA loci is likely rate-limiting for gene

expression, the robustness of the elongation regulated scheme to

fluctuations of this rate may provide a further explanation for

why elongation regulated genes appear to exhibit considerably

more synchronous activation. It suggests additionally that the rate

of enhancer–promoter interactions is under more selective

pressure for IR genes, where it has a large effect on their

expression properties, than it is for ER genes, which may exhibit

very similar expression properties despite having different

enhancer interaction rates.

Second, we also observe that the complex assembly steps which

may occur in arbitrary arrival order, namely the recruitment of

TFIIE or TFIIF (governed by the jump rates k23, k24, k35, and k45)

are considerably more tolerant to stochastic variation than

sequential assembly steps such as the initial recruitment of the

polymerase (k12), the arrival of the last component of the complex,

TFIIH (k56), or promoter escape (k67). Although between–cell

variation in the total concentration of these intermediate, non-

sequential binding factors will affect their binding rate parameters,

it will not greatly change properties of the time to expression, thus

suggesting an additional benefit of ER. This observation leads to

the conclusion that the regulatory processes controlling the

concentration of factors arriving in arbitrary order and the

binding affinities of such factors may be under less evolutionary

pressure than the corresponding quantities for factors associated

with other transitions.

Discussion

Speed, synchrony, degree of cell–to–cell variability, and

robustness to environmental fluctuations are important features

of transcription. They are properties of the system rather than of a

particular gene, DNA regulatory sequence, or gene product taken

in isolation, and optimizing them can, for instance, reduce the

frequency of mis-patterning events that arise due to the inherently

stochastic nature of gene expression. Understanding how these

properties emerge, the mechanism by which they change, and the

tradeoffs involved in optimizing them all require tractable models

of transcription.

Through a study of stochastic models of transcriptional

activation, we demonstrated that the increased speed and

synchrony of paused genes, reported by Yao et al. [14] and

Boettiger et al. [16] respectively, are expected consequences of the

elongation regulation shown by such genes. We also predicted that

ER genes produce more consistent numbers of total transcripts

than IR genes. This hypothesis can be tested directly using

recently developed methods (see [19,50] for reviews and the

Supporting Information for more details).

We furthermore explored what aspects of ER make this

possible. From an examination of the effect of scaffold stability

we proposed that elongation regulation should reduce the noise-

amplifying nature of bursty expression. By investigating alternative

models of post-initiation regulation, we also determined that our

predictions depend critically on the stability of the transcriptionally

engaged, paused polymerase, and would not be expected from

polymerases cycling rapidly on and off the promoter (i.e.

polymerase stalling).

Our investigation required us to introduce a general probabi-

listic framework for analyzing system properties of protein–DNA

interactions. Stochastic effects, resulting from molecular fluctua-

tions, are increasingly understood to play important roles in gene

control and expression (see [18] for a review). We can now

determine quantitatively how an element’s location in a network

affects the general properties of that network, even when the rate

constants and concentrations of the network components are

unknown. In particular, we quantified the extent to which system

properties are sensitive to each rate parameter, something which

might predict the evolutionary constraint on that component.

Most previous approaches to the analysis of protein–DNA

interactions have either relied on simulations, which require some

knowledge of numerical rate values, or use the fluctuation–

dissipation theorem assuming the system is near equilibrium and

the noise is small. Our methods avoid the limitations of those

approaches and also make analysis of realistic models, as done in

[39], significantly more feasible.

Finally, our approach is not restricted to investigating the

assembly of transcriptional machinery, but may also prove useful

in studying stochastic properties of a variety of regulatory DNA

sequences (such as enhancers). Different assembly topologies, such

as sequential versus arbitrary association mechanisms for the

component TFs [40], may account for some of the observed

differences in sensitivities and kinetics between otherwise similar

regulatory elements. As new technologies allow better experimen-

tal determinations of these mechanisms, a theoretical framework

within which one can explore their potential consequences will

become increasingly important.

Supporting Information

Figure S1 Sample chip. Identification of Paused Polymerase in

Drosophila by Chip-chip: (A) Gene models are shown top, aligned

to Pol II chromatin immunoprecipitation signal measurements

from whole genome tiling array, showing locations in the genome

where Pol II is bound in each of three specific tissues — the dorsal

ectoderm, the neurogenic ectoderm, and the mesoderm, from

Zeitlinger 2007. pnr is expressed only in the dorsal ectoderm —

the promoter (highlighted region) is silent in the other tissues.

(B) Genome data as in (A) for the region around the gene tup. In

this case the promoter region is bound in all three tissue types,

even though the rest of the gene is only transcribed in the dorsal

ectoderm.

Found at: doi:10.1371/journal.pcbi.1001136.s001 (0.53 MB EPS)

Figure S2 Paramater Histograms. Histograms of the distribu-

tions of those parameter values where the IR scheme is faster than

the ER scheme (top row), more synchronous the ER scheme

(middle row) or less noisy in terms of total transcripts than the ER

scheme (bottom row).

Found at: doi:10.1371/journal.pcbi.1001136.s002 (0.30 MB EPS)

Figure S3 Pinchpoint schema. A schematic of the decomposi-

tion. The probabilities ak, bk, ck, and dk depend only on the

distributions of both adjacent chains Xk and Xk+1, while the

behavior of X between pinch points pk-1 and pk only depends on

the distribution of Xk.

Found at: doi:10.1371/journal.pcbi.1001136.s003 (0.30 MB EPS)

Figure S4 Change topology. Effect of regulated step. (A) Adding

a transition k32 which enables polymerase to exit the paused state

and return to a pre-initiated state. (B) Effect of the added transition

on the structure of the composite Markov chains. (C) Comparison

between the models over all of parameter space when the

transition k32 is added. (D) Schematic of changing the regulated
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step to control promoter escape rather than release from pausing.

(E) Resulting composite Markov chains for regulating promoter

escape. (F) Comparison between the models over all of parameter

space when promoter escape is the regulated step.

Found at: doi:10.1371/journal.pcbi.1001136.s004 (1.25 MB EPS)

Figure S5 Sensitivity analysis for variance in transcription time.

The details are the same as for Figure 4 in the text, except that the

variance in transcription time is analyzed, rather than the mean

transcription time.

Found at: doi:10.1371/journal.pcbi.1001136.s005 (0.47 MB EPS)

Figure S6 Sensitivity analysis for transcript count variability.

The details are the same as for Figure 4 in the text, except that the

transcript count variability is analyzed, rather than the mean

transcription time.

Found at: doi:10.1371/journal.pcbi.1001136.s006 (0.47 MB EPS)

Text S1 Derivation of equations and detailed mathematical

approach for rapid inversion of large transition matrices.

Found at: doi:10.1371/journal.pcbi.1001136.s007 (0.45 MB PDF)

Text S2 Matlab code to implement the analyses described in the

main text and outlined in detail in Text S1.

Found at: doi:10.1371/journal.pcbi.1001136.s008 (6.06 MB ZIP)
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