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Abstract

The mechanisms by which adaptive phenotypes spread within an evolving population after their emergence are
understood fairly well. Much less is known about the factors that influence the evolutionary accessibility of such
phenotypes, a pre-requisite for their emergence in a population. Here, we investigate the influence of environmental quality
on the accessibility of adaptive phenotypes of Escherichia coli’s central metabolic network. We used an established flux-
balance model of metabolism as the basis for a genotype-phenotype map (GPM). We quantified the effects of seven
qualitatively different environments (corresponding to both carbohydrate and gluconeogenic metabolic substrates) on the
structure of this GPM. We found that the GPM has a more rugged structure in qualitatively poorer environments, suggesting
that adaptive phenotypes could be intrinsically less accessible in such environments. Nevertheless, on average ,74% of the
genotype can be altered by neutral drift, in the environment where the GPM is most rugged; this could allow evolving
populations to circumvent such ruggedness. Furthermore, we found that the normalized mutual information (NMI) of
genotype differences relative to phenotype differences, which measures the GPM’s capacity to transmit information about
phenotype differences, is positively correlated with (simulation-based) estimates of the accessibility of adaptive phenotypes
in different environments. These results are consistent with the predictions of a simple analytic theory that makes explicit
the relationship between the NMI and the speed of adaptation. The results suggest an intuitive information-theoretic
principle for evolutionary adaptation; adaptation could be faster in environments where the GPM has a greater capacity to
transmit information about phenotype differences. More generally, our results provide insight into fundamental
environment-specific differences in the accessibility of adaptive phenotypes, and they suggest opportunities for research
at the interface between information theory and evolutionary biology.
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Introduction

During adaptation, a population ‘‘moves’’ in genotype space in

search of genotypes associated with high-fitness phenotypes. The

success of adaptation depends crucially on the accessibility of such

adaptive phenotypes. While adaptive phenotypes rely on natural

selection for their fixation, their accessibility depends, primarily,

on the structure of the genotype to phenotype mapping (GPM)

and, secondarily, on the forces that move a population in

genotype space – i.e. selection and genetic drift (see Materials and

Methods for relevant definitions). In particular, accessible

phenotypes must be linked by a path of viable phenotypes to

the initial phenotype of a population. In addition, the structure of

the GPM determines the dominant mechanism by which a

population moves in genotype space; for a smooth GPM that

contains extensive neutral networks of genotypes associated with

individual adaptive phenotypes, the motion may occur predom-

inantly by genetic drift, with selection acting only occasionally to

move a population from one neutral network onto another [1–3].

On the other hand, for very rugged GPMs having a low degree of

neutrality, movement in genotype space may be mostly mediated

by selection.

By studying the factors that influence biologically relevant

GPMs, we may gain insight into the accessibility of adaptive

phenotypes. To that end, we have taken advantage of recent

advances in the understanding of bacterial metabolic networks [4–

8] to investigate the influence of environmental quality on the

structure of E. coli’s central metabolic network GPM [9,10] (see

Table S1). We used the latest gene-protein reaction-associations

data on the metabolic network [10] to identify all the genes involved

in the network’s central metabolic pathways (i.e., respiration, the

tricarboxylic acid cycle, glycogen/gluconeogenesis, pyruvate me-

tabolism, the pentose shunt). We found 166 such genes (see Table

S1), and defined the network’s genome to be an ordered list of these

genes. Mutations to a given gene are allowed to change the gene’s

state from ‘‘on’’ to ‘‘off’’ (deleterious mutations) and vice-versa

(compensatory mutations). A genotype is defined as a particular

configuration of on-off states of the 166 genes that make up the

genome. The Hamming distance between any two genotypes is the

number of differences in the states of corresponding genes.
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We define a genotype’s phenotype (equivalent, for our purposes,

to fitness) using a model of metabolic flux. Specifically, a growing

body of experimental and theoretical work [7,11–15] suggests that

under conditions of carbon limitation, E. coli (and other bacteria)

organize their metabolic fluxes so as to optimize the production of

biomass, and that experimentally realized optimal biomass yields

can be predicted with reasonable accuracy by the mathematical

method of flux-balance analysis [4–7]. Therefore, we used the

optimal biomass yield predicted by means of flux-balance analysis

as a biologically grounded proxy for the phenotype/fitness of a

particular genotype of the metabolic network (Further details on

the definition of the metabolic network GPM are given in

Materials and Methods). We then used statistical and information-

theoretic methods to investigate the structure of the GPM under

conditions in which one of seven compounds (henceforth called

‘‘environments’’) served as the primary metabolic substrate. Note

that an advantage to studying E. coli’s central metabolic network is

that its GPM is systemic (as are organismal GPMs), and it has a

very rich structure; the network phenotype is an emergent

property of interactions among gene products and between these

products and the intracellular and extracellular environments of

the bacterium. The interaction rules are numerous (i.e., of the

order of the number of genes) and, in some cases, complex (see

Figure 1).

Results

Below, we describe the results of our analyses of the influence of

the environment on aspects of the structure of the E. coli central

metabolic network GPM that are important for the evolutionary

accessibility of adaptive phenotypes. We used a flux-balance [4–7]

model of the network to compute the optimal biomass yield under

conditions in which each of seven chemical compounds (called

environments) – acetate, glucose, glycerol, lactate, lactose,

pyruvate, and succinate – respectively served as the main

metabolic substrate. The considered environments are qualita-

tively different, as indicated by differences in the specific growth

rate m of E. coli in each environment; the rank-ordering of the

environments with respect to quality is as follows: mglucose.mglycerol

.mlactate.mpyruvate.msuccinate.macetate [16]. Note that the specific

growth rate in lactose was not measured in [16], so we are unable

to precisely determine its location in the rank-ordering of

environments. Nevertheless, it is well known that E. coli generally

prefer glucose when grown in environments that contain a mixture

of both glucose and lactose (see, e.g., experimental results in [17]) –

glucose is likely a better metabolic substrate than lactose.

Before we begin presenting our results, we find it useful to put

the results into perspective. The structure of an organismal GPM

changes on both ecological and evolutionary time scales; changes

to the GPM’s structure may result from, among other factors,

changes to the environment and the outcomes of interactions

Author Summary

Adaptation involves the discovery by mutation and spread
through populations of traits (or ‘‘phenotypes’’) that have
high fitness under prevailing environmental conditions.
While the spread of adaptive phenotypes through
populations is mediated by natural selection, the likeli-
hood of their discovery by mutation depends primarily on
the relationship between genetic information and pheno-
types (the genotype-phenotype mapping, or GPM).
Elucidating the factors that influence the structure of the
GPM is therefore critical to understanding the adaptation
process. We investigated the influence of environmental
quality on GPM structure for a well-studied model of
Escherichia coli’s metabolism. Our results suggest that the
GPM is more rugged in qualitatively poorer environments
and, therefore, the discovery of adaptive phenotypes may
be intrinsically less likely in such environments. Neverthe-
less, we found that the GPM contains large neutral
networks in all studied environments, suggesting that
populations adapting to these environments could cir-
cumvent the frequent ‘‘hill descents’’ that would otherwise
be required by a rugged GPM. Moreover, we demonstrated
that adaptation proceeds faster in environments for which
the GPM transmits information about phenotype differ-
ences more efficiently, providing a connection between
information theory and evolutionary theory. These results
have implications for understanding constraints on adap-
tation in nature.

Figure 1. An example of the interaction rules found in the E. coli
metabolic network. The protein products of the genes b0116, b0726,
and b0727 combine to form a protein complex that catalyzes
production of succinate coenzyme A (SUCCOA) from alpha-ketogluta-
rate (AKG) and coenzyme A, with the concomitant reduction of
nicotinamide adenine dinucleotide (NAD) and release of carbon dioxide
(CO2). A matrix S of the stoichiometries of the reactants, and a vector V
of fluxes are shown. v, b1, b2, b3, b4, b5, and b6 denote the rates of the
above reaction, the production of AKG, NAD, and COA, and the
utilization of CO2, NADH, and SUCCOA, respectively (Note that this is a
simplification of the way the reaction is actually represented in our
model). At steady state S?V = 0. In the event that one of the genes
catalyzing the above reaction is turned off by mutation, the reaction
flux v is set to 0. Abbreviations (gene/protein product): b0116/LpdA,
dihydrolipoamide dehydrogenase; b0726/SucAec, alpha-ketoglutarate
decarboxylase; b0727/SucBec, dihydrolipoamide acetyltransferase.
doi:10.1371/journal.pcbi.1000472.g001

An Information-Theoretic Principle for Adaptation
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among individuals within a population. For a given GPM, our

ability to make meaningful predictions about its structure by

considering only a subset of the factors that determine that

structure will depend on the degree of coupling between the

underlying factors. The first set of results we describe below takes

into account the effects of the environment on the GPM’s

structure, independently of population-level processes. For a

particular environment, these results give insights into (static)

statistical structures of the GPM, and they should be interpreted in

that light. Subsequently, we show that some of these static insights

are consistent with population-level simulations of the adaptation

process and with analytic predictions of the relative speed of

adaptation to different environments.

Statistical structures of the GPM in different
environments

Conditional probability of phenotype differences

(PPD). We begin by asking: how does the phenotype change

as we move in genotype space, in search of genotypes associated

with adaptive phenotypes? To answer this question, we computed

the PPD, that is, the probability that two genotypes that are

separated by a Hamming distance dh in genotype space map onto

phenotypes whose fitnesses differ by de [18] (see Materials and

Methods). We computed the PPD from the probability of

differences between the phenotypes of a large number of

randomly chosen, viable reference genotypes and the phenotypes

of genotypes sampled at Hamming distances dh ( = 1,…,166) from

each reference genotype. We find that the PPD has a less rich

structure in acetate, the poorest of the environments, than in the

other six environments (see Figures 2 and S1). For example, in

glucose (see Figure 2) the PPD has its maximum at very small

phenotype differences when Hamming distances from the

reference genotype are small (i.e., 1#dh,30). At Hamming

distances dh$30 the PPD exhibits an interesting bi-modal

behavior that is largely independent of dh. Therefore, dh = ,30,

which is equivalent to 18% of the metabolic network’s genome

size, can be thought of as a critical Hamming distance that marks a

transition from local to global features of the distribution of the

magnitude of phenotype changes that accompany changes to the

genotype. In contrast, in acetate the PPD (see Figure 2) has a lower

critical Hamming distance (,20) at which genotype and

phenotype differences become de-correlated, and the PPD is

uni-modal above this critical Hamming distance. Note that the

vast majority phenotypes sampled at large Hamming distances

from an arbitrary reference genotype have zero fitness. Therefore,

the distribution of fitness differences at large Hamming distances

reflects the expected distribution of the fitnesses of randomly

sampled, viable genotypes.

Correlation length (CL) of phenotype differences. To

gain further insight into the dependence of phenotype changes on

genotype changes, we computed the CL of phenotype differences,

which quantifies the robustness of the phenotype to genotype

changes. The longer the CL, the more robust is the phenotype.

Longer CLs are also characteristic of GPMs that have a relatively

smooth structure [18], in which adaptive phenotypes are more

readily accessible. We found the CL to be larger in qualitatively

better environments (see Figure 3). The rank-ordering of

environments based on the CL (CLglucose.CLglycerol.CLpyruvate

Figure 2. Conditional probability of phenotype differences (PPD). The PPD was computed in acetate and glucose environments.
doi:10.1371/journal.pcbi.1000472.g002

An Information-Theoretic Principle for Adaptation

PLoS Computational Biology | www.ploscompbiol.org 3 August 2009 | Volume 5 | Issue 8 | e1000472



.CLlactate.CLlactose.CLsuccinate.CLacetate) is consistent with the

rank-ordering based on quality (see above), with the exception of

pyruvate, which is poorer than (but is associated with a greater CL

than) lactate. The CL for glycerol, lactate, and pyruvate are

similar, which is consistent with the fact that both glycerol and

lactose are converted into pyruvate by a small number of

metabolic reactions. These results suggest that the GPM has a

less rugged structure in qualitatively better environments.

Normalized mutual information (NMI) of genotype

differences relative to phenotype differences. In addition

to the CL, we defined another statistic called the NMI of genotype

differences relative to phenotype differences (see Materials and

Methods for mathematical details). The NMI quantifies the

amount of information (measured in ‘‘bits’’) that genotype

differences provide about phenotype differences, normalized by

the entropy of the distribution of phenotype differences.

We will use a simple example to explain what the NMI

measures. Consider a hypothetical population of individuals with

known fitnesses. Suppose we wish to know the difference df

between the fitnesses of any two individuals randomly selected

from the population. According to standard information-

theoretic principles [19], our (average) uncertainty about the

value of df is given by the entropy of the distribution p(df) of fitness

differences between individuals found in the population:

H df

� �
~{

X
df

p df

� �
log2 p df

� �� �
. For example, if all individu-

als have the same fitness, then our uncertainty about df will be

H(df) = 0 ‘‘bit’’ – we will know with certainty the value of df. If, on

the other hand, there are n possible (suitably discretized) fitness

differences each of which is equally likely, then our uncertainty

about df will be maximal: H(df) = log2(n) bits. Now, suppose we

are told that the two individuals selected from the population

have genotypes that differ by dg. If there is a consistent

relationship between genotype differences and phenotype

differences, then knowledge of dg should decrease our uncer-

tainty about df, that is, it should provide us with information

about df. The amount of information that dg provides about df is

called the mutual information of dg relative to df (denoted by I(dg;

df)). The NMI is the ratio of I(dg; df) to H(df), that is, it measures

the proportional reduction in the uncertainty about df due to

knowledge of dg.

It is important to keep in mind that here we are concerned with

measuring the amount of information that genotype differences

Figure 3. Summary statistics on the structure of E. coli’s metabolic network GPM. Shown are the correlation length (CL) of phenotype
differences, the normalized mutual information (NMI) of genotype differences relative to phenotype differences, and the number of essential genes
(essentiality) found in the metabolic network, under different environmental conditions. The environments are listed in increasing order of quality,
except in the case of lactose whose position in the rank-ordering is not known precisely. The NMI was computed as described in Materials and
Methods, using a mutation rate per genotype position of 0.001. Error bars indicate 95% confidence intervals.
doi:10.1371/journal.pcbi.1000472.g003

An Information-Theoretic Principle for Adaptation
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convey about phenotype differences, on which natural selection

acts during adaptive evolution, and not, as is often the case (e.g.,

see [20,21]), the amount of information that the genotype conveys

about the phenotype. The NMI is lowest in environments where

phenotype differences are independent of genotype differences,

and it is highest (i.e., 1) in environments where phenotype

differences are completely determined by genotype differences. In

contrast to results based on the CL (see above), the rank-ordering

of environments based on the NMI (NMIacetate.NMIglycerol

.NMIsuccinate.NMIlactate.NMIglucose.NMIpyruvate.NMIlactose) is

inconsistent with the rank-ordering based on quality (see Figure 3).

The results suggest that in acetate, the poorest of the environments,

genotype differences could be more informative about phenotype

differences than in the other environments. Note that the rank-

ordering of environments based on both CL and NMI differs from

the rank-ordering based on gene essentiality, a measure of the

robustness of a metabolic network to gene deletions (see Figure 3).

Here, gene essentiality was quantified as the number of single gene

deletions that result in an unviable genotype. Also, note that part of

the reason for the very low NMI in lactose is the relatively high

entropy of phenotype differences computed in this environment.

Lengths of neutral networks. Additional information about

the structure of the GPM and its potential impact on the

accessibility of adaptive phenotypes is provided by the sizes of

neutral networks. Neutral networks are important because they

allow the search for adaptive phenotypes to proceed (by neutral

drift) even if the GPM has a rugged structure. We estimated the

distribution of the sizes of neutral networks by performing neutral

walks on the GPM (see Materials and Methods). A neutral walk

starts at a randomly chosen, viable genotype and proceeds to a

random genotype located at a Hamming distance of 1 from the

current genotype if: (i) the new genotype has the same phenotype

as the current one and (ii) the Hamming distance between the new

and starting genotypes is greater than the Hamming distance

between the current and starting genotypes. A neutral walk ends

when no neighbors of the current genotype satisfy these criteria.

The distribution of the lengths (i.e., the Hamming distances

between the final and starting genotypes) of 2000 neutral walks is

shown in Figure 4. The neutral walk-lengths follow uni-modal

distributions for the three environments with lowest-quality;

pyruvate, acetate, and lactate. The lengths follow bi-modal

distributions for all other environments. Observe that even in

the environment predicted to be most rugged (acetate) neutral

walks have an average length of 122.663.0; on average ,74% of

the genotype can be altered by neutral drift without any effect on

the phenotype

Speed of adaption to different environments
Simulations-based estimates of the speed of

adaptation. In the preceding section we inferred, based on

static pictures of the structure of the metabolic GPM, that the

GPM has a less rugged structure in qualitatively better

environments, suggesting that adaptive phenotypes could be

comparatively more accessible in such environments. To gain

further insight into the possible impact of environmental quality on

the dynamics of adaptation, we simulated the evolutionary search

for the highest-fitness phenotype in different environments.

Specifically, we simulated the adaptive evolution of a population

of size 1000, starting at randomly chosen genotypes with fitnesses

#20% of the highest possible fitness (i.e., 1.0) (see Material and

Methods for further details on these simulations). The simulations

were run for a maximum of 250 generations, and they were

Figure 4. Distribution of the lengths of neutral walks in different environments. Neutral walks were performed as described in Materials
and Methods. The length of a neutral walk corresponds to the Hamming distance between the final and starting genotypes associated with the walk.
doi:10.1371/journal.pcbi.1000472.g004
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stopped whenever the evolving population reached the target

phenotype – i.e. whenever the population’s mean fitness rose to

within 10% of the highest possible fitness (Note that due to

continual mutation, it is unlikely that an evolving population’s

mean fitness will equal 1.0 exactly, hence the chosen fitness cut-

off). Simulations were performed in three qualitatively good

environments (glucose, glycerol, and lactose), and in two

comparatively poorer environments (acetate and succinate).

All evolving populations found the highest-fitness phenotype

during adaptation to acetate, while 82% and 78% of the

populations did so during adaptation to glycerol and succinate,

respectively. In contrast, the highest-fitness phenotype was found

by only 67% of populations adapting to glucose and by 63% of

populations adapting to lactose. In addition, the populations that

found the highest-fitness phenotype did so at a much faster rate in

acetate, glycerol, and succinate than in either glucose or lactose

(see Figure 5). These results are inconsistent with the expected

speed of adaptation based on the CLs associated with the

considered environments, but they are in agreement with the

environment-specific NMIs (see Figure 3); adaptation appears to

be faster in environments associated with higher NMIs.

Analytic insights into the expected speed of

adaptation. The results presented above suggest the existence

of a positive correlation between the NMI and the speed of

adaptation. To shed additional light on this result, we now

describe a simple mathematical model that makes explicit the

relationship between the NMI and the speed of adaptation to a

given environment, under the assumptions of Fisher’s fundamental

theorem of natural selection (e.g., see [22]). Consider a population

consisting of k ‘‘types’’ of individuals, with ni, i~1, . . . ,k,

individuals belonging to the ith type. Let each type be

characterized by its genotype, which is assumed to contain m loci

that have additive effects on fitness. Further, consider a hypothetical

type of individuals whose fitnesses correspond to the mean fitness

�ww of the population. Now, let the genotype of individuals of the ith

type differ from the genotype of the abovementioned individuals,

and let ai denote the corresponding fitness difference (also called

the average excess in fitness; e.g., see [22]).

Mathematically, we can express the relationship between the

genotype and fitness differences as: ai~
Xm

j~1
ajnijzei, where nij

denotes the number of differences occurring at the j th locus, and aj

denotes the average effect of those differences on fitness

differences. We can think of ei as the portion of fitness differences

explained by the environment and other random, non-genetic

factors. In general, the average effects of genotype differences will

result from additive contributions of individual genes as well as

interaction effects (due to, e.g., epistasis). As in the original

formulation of the fundamental theorem of natural selection, we

do not explicitly model the interaction effects but we include in ei

the deviation from additivity of the average effects of genotype

differences on fitness differences.

The relationship between genotype and fitness differences for all

types of individuals found in the population can be written as:

A~H � XzE, ð1Þ

where A is a 1 by m vector consisting of the ai
;
s, H a 1 by k vector

Figure 5. Outcome of in silico adaptive evolution of E. coli populations in different environments. The fraction P(t) of evolving
populations that found the highest-fitness phenotype at (or before) the tth generation is plotted against t.
doi:10.1371/journal.pcbi.1000472.g005

An Information-Theoretic Principle for Adaptation
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consisting of the aj
;
s, X a k by m matrix whose entries are the nij

;
s,

and E a 1 by m vector consisting of the ei
;
s. We let ei*N 0,s2

� �
,

i~1, . . . m, where N denotes the Gaussian distribution and s2 the

variance. Let pj denote the probability of a difference at each

position of locus j and let lj denote the length of the locus. Then,

for large lj we can approximate the distribution of each row of X

by a multidimensional Gaussian with an m by m covariance matrix

S, where the diagonal entries of S are the variances of the number

of differences occurring at each locus – ljpj 1{pj

� �
– and the off-

diagonal entries are the covariances between the number of

differences occurring at different pairs of loci. The additive genetic

variance in fitness is given by ĤH � S � ĤHT , where ĤH denotes the

least-squares estimate of H. According to standard least-squares

theory, the additive genetic variance in fitness is maximized when:

ĤH~A � X �, ð2Þ

where X � denotes the Moore-Penrose pseudo-inverse of X.

The mutual information of genotype differences relative to

fitness differences is given by (e.g., see [19]):

I X ; Að Þ~ 1

2
log2 1zs{2ĤH � S � ĤHT

� �
, ð3Þ

and it is similarly maximized when ĤH is given by (2). The mutual

information increases with the additive genetic variance in fitness,

which, according to Fisher’s fundamental theorem of natural

selection (e.g., see [22]), scales linearly with the rate of increase in

fitness, under fixed environmental conditions (i.e., s2 fixed).

Therefore, fitness should also increase with the mutual informa-

tion. In other words, under given environmental conditions the

speed of adaptation should be positively correlated with the

mutual information of genotype differences relative to fitness/

phenotype differences. More generally, normalization of the

mutual information by the entropy of the distribution of fitness

differences, which gives the NMI, controls for environment-

specific differences in the non-genetic component of fitness, and

allows comparison of the mutual information (and the expected

speed of adaptation) across environments. Note that in [22], it was

suggested, under certain simplifying assumptions, that the

‘‘acceleration’’ of the Shannon entropy is mathematically

equivalent to the Fisher information, which was in turn related

mathematically to the additive genetic variance in fitness. But, no

explicit connection was suggested between the mutual information

and the additive genetic variance in fitness, as we did here.

Discussion

Bacterial evolution experiments have demonstrated that the

environment can exert an important influence on the structure of

the genotype-phenotype map (GPM). For example, Remold and

Lenski [23] showed that the environment interacted synergistically

with the genetic context to affect the fitness consequences of

mutations introduced artificially into E. coli populations. Here, we

asked a general question, a comprehensive investigation of which

is currently only feasible by theoretical means: how does the

environment affect those properties of the GPM that are

important for the evolutionary accessibility of adaptive pheno-

types? Four properties of the GPM were of particular interest to

us: (i) the phenotypic response to genotype changes, that is, how

the phenotype changes as we move in genotype space, (ii) the

characteristic correlation length (CL) of phenotype differences,

which measures the robustness of the phenotype to genotype

changes, (iii) the normalized mutual information (NMI) of

genotype changes relative phenotype changes, which quantifies

the GPM’s capacity to transmit information about phenotype

differences, and (iv) the distribution of the lengths of neutral walks,

which gives insight into an evolving population’s capacity to

circumvent a rugged GPM structure. We investigated the above

GPM properties, using an empirical model of bacterial metabolism

[4–15].

Statistical and information-theoretic perspectives on the
GPM

We found that in all environments (except acetate) large

genotype changes (.,30) induce phenotype differences that

follow an interesting bi-modal distribution. This bi-modal

distribution is characteristic of the expected distribution of

phenotype differences between randomly sampled genotypes,

suggesting that in the considered environments the E. coli

metabolic network maps onto two dominant clusters of similar

metabolic phenotypes. In acetate, the poorest environment, the

distribution of phenotype differences induced by large genotype

changes was essentially uni-modal, suggesting the existence of only

one dominant cluster of similar metabolic phenotypes. The CL

was shorter in poorer environments, suggesting that the GPM

could have a more rugged structure in such environments and,

hence, it may be intrinsically more difficult to find adaptive

phenotypes. Note that in poorer environments there may be fewer

possibilities of re-routing fluxes through the metabolic network in

order to maintain biomass yields following gene deletion; this

could account for the faster decay of the correlation between

biomass yields attained before and after gene deletions and, hence,

the lower CLs computed in these environments.

In spite of the predicted ruggedness of the GPM in acetate, the

poorest of the considered environments, very long (,74% of the

genotype length) neutral walks could still be performed on the

GPM, suggesting that neutral drift can alter a substantial fraction

of the phenotype during evolution. In other words, a population

evolving in acetate could explore large portions of genotype space

by drifting on neutral networks, increasing its likelihood of

discovering adaptive phenotypes. Furthermore, the NMI was

largest in acetate and smallest in lactose, suggesting that the

information-transmission capacity of the GPM does not necessar-

ily increase in better environments.

Implications for the dynamics of adaptation
In order to gain further intuition about how qualitative changes

to the environment could influence the dynamics of adaptation, we

simulated the adaption of E. coli populations to qualitatively

different environments. The speed of adaptation to a given

environment was positively correlated with the NMI associated

with that environment; adaptation appeared to increase with the

GPM’s capacity to transmit information about phenotype

differences under given environmental conditions. In contrast,

the relative speed of adaptation to different environments was

inconsistent with expectations based on the environment-specific

CLs. This suggests that the CL, and the degree of ruggedness of

the GPM that it measures, may not capture enough information

about features of the GPM that influence the speed of adaptation.

The above results were found to be consistent with the predictions

of a mathematical theory that, under the assumptions of Fisher’s

fundamental theorem of natural selection (e.g., see [22]),

demonstrated the existence of a positive correlation between the

NMI and the rate of fitness increase (i.e., the speed of adaptation).

Together, the above results suggest that environmental quality

could have a fundamental influence on the outcome of adaptation.
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Note that previous work [24,25] showed that in a changing

environment, the speed of adaptation may increase with the

mutation rate and also with the propensity of point mutations to

have phenotypic effects. The mathematical theory presented here

provides a complementary perspective: if both the environment and

the mutation rate are fixed, then the speed of adaptation may

increase with the amount of information that genetic variation

provides about phenotypic variation and, due to the symmetry of

the mutual information, with the amount of information that

phenotypic variation provides about underlying genetic variation.

This suggests an intriguing connection between the ‘‘predictability’’

of the genetic basis of fitness increases of a particular magnitude and

the rate at which such increases occur. Also, note that the NMI is, in

essence, a measure of adaptation potential (or evolvability). It is

applicable to a wider range of data types (both numeric and

symbolic data types) than related measures of evolvability used in

quantitative genetics, such as the (‘‘narrow-sense’’) heritability of

phenotype [26], defined as the ratio of the additive genetic variance

in phenotype to the total variance in phenotype.

Future directions
We conclude by pointing out some limitations of our empirical

GPM model, and we discuss possible directions for future work.

Firstly, our approach to analyzing E. coli’s metabolic network

GPM did not take into account transcriptional regulation, which

has been shown [27,28] to mediate dynamic microbial responses

to environmental perturbations. By accounting for transcriptional

regulation we would endow the metabolic network with a much

richer structure that may provide additional information about the

evolutionary accessibility of the network’s adaptive phenotypes.

Nevertheless, there is ample experimental evidence [7,10–15] that

the model underlying our approach to analyzing the network is

sufficient for predicting bacterial growth phenotypes in various

environments. Secondly, we only considered genotype changes

that turn a gene either off (i.e., deleterious changes to the gene or

to its associated transcription factor) or on (as could happen when

compensatory changes occur). This was motivated by practical

considerations: computational prediction of graduated phenotypic

consequences of genotype changes is currently not feasible on a

genomic scale. Future improvements in our ability to make such

predictions will allow for better modeling of metabolic network

GPMs.

The GPM model we studied will add to the suite of available

models (e.g., see [25,29,30]) that have enabled the investigation of

important questions in evolutionary biology. In addition, the

insights we presented could contribute to the understanding of

evolutionary processes at both the molecular and population

levels. At the molecular level, the NMI could be useful for

understanding the evolvability of proteins. For example, one

expects the nucleotide sequences of proteins that are particularly

important for the adaptation of a pathogen to the immune

response of its host (e.g., the hemagglutinin protein of influenza

viruses) to occupy regions of genotype space associated with NMI

values that are significantly greater than random expectations. To

test this hypothesis, the NMI of the nucleotide sequence variation

in a population sample of nucleotide sequences of a pathogen’s

protein relative to the corresponding amino acid sequence/protein

structure variation can be computed. The computed NMI can be

subsequently compared to the distribution of NMIs obtained from

appropriately randomized (e.g., see [21,31]) versions of the

original sample of nucleotide sequences to determine its statistical

significance.

In addition, since the NMI affords an analytically tractable

measure of evolvability, it could be useful to the mathematical

investigation of the evolutionarily important relationship between

evolvability and robustness (e.g., see [32]). Of particular interest is

the derivation of a broadly applicable mathematical description of

this relationship. Previous simulation studies of the RNA GPM

(e.g., see [1,33]) showed that evolvability can increase with the

robustness of RNA structures to nucleotide changes. In contrast, a

recent simulation study of GPMs generated by a model gene

network showed that the fraction of phenotypically consequential

point mutations to a genotype of the network, which is inversely

correlated with the network’s robustness, increased with evolva-

bility, during adaptation to a changing environment [25]. It is not

clear whether these conflicting results can be obtained from

different instantiations of the same mathematical model or

whether they are fundamentally irreconcilable. Additional insight

could come from mathematical investigations of simple model

GPMs (e.g., see [30]) using analytically tractable measures of

evolvability (e.g., the NMI) and robustness (e.g., the CL; see [18]).

These investigations could yield important insights into the

possible existence of general mathematical rules underlying the

relationship between evolvability and robustness.

Materials and Methods

Central metabolic network of E. coli. A number of

reconstructions of the E. coli metabolic network have been

published and used to obtain important insights into ways that

the bacteria organize their fluxes in order to achieve optimal

growth rates in different environments (e.g., see [6–15]). For our

current purposes, we sought a reconstruction that satisfied the

following criteria: (i) its predictions have been validated in a

rigorous manner, and (ii) it is not so complex as to preclude

intensive computational analyses. Based on these criteria, we chose

the central metabolic network described in [9] as a starting point.

We updated the reactions (including the stoichiometries of

reactants and products) based on information presented in [10].

We also updated information about the enzymes (and associated

genes) that catalyze reactions found in the network based on the

relevant gene-protein-reaction associations data [10]. The updated

central metabolic network contains reactions catalyzed by

enzymes encoded by a total of 166 genes (see Table S1). The

genome of the network is defined as an ordered list of these 166

genes.

Definition of the metabolic network’s genotype and

phenotype. A genotype of the metabolic network corresponds

to a particular state of the network’s genome (defined above).

Mathematically, we represent the genotype as an ordered list of

binary values (0 or 1), with a ‘‘1’’ at position x of the genotype

indicating that the gene at position x of the genome is active or

‘‘on’’, and a ‘‘0’’ indicating that the gene is inactive or ‘‘off’’. The

Hamming distance between any two genotypes is the number of

differences in the on-off states of corresponding genes found in

both genotypes. Each genotype defines a unique set of constraints

on metabolic reaction fluxes. The phenotype of a given genotype is

the maximum biomass yield that is attainable under the

constraints defined by that genotype; this definition of

phenotype/fitness is well grounded in experimental data (e.g.,

see [11–17]). The maximum biomass yield is computed by means

of flux-balance analysis [4–7], under ‘‘environmental’’ conditions

in which one of seven compounds (acetate, glucose, glycerol,

lactate, lactose, pyruvate, and succinate) serves as the primary

metabolic substrate. For each environment, the upper bound of

the input flux through the exchange reaction for the metabolic

substrate associated with that environment is set to 10, while input

fluxes through all other substrates are set to zero. An upper bound
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of 1000 is assigned to all unconstrained input/output fluxes, except

for fluxes through the exchange reactions for oxygen, carbon

dioxide, and inorganic phosphate, which are constrained be less

than or equal to 50. This upper bound makes oxygen non-limiting

for bacterial growth in the considered environments. Note that all

computed phenotypes/fitnesses were scaled so that the highest

fitness computed in a given environment was equal to 1.0. In the

considered environments the fitnesses of viable genotypes were

$,161022, while the fitnesses of unviable genotypes were

#,161029 (essentially equal to 0. No fitness values occurred

between these two limits

The genotype-phenotype map (GPM). A genotype

(respectively phenotype) space refers to a structural arrangement

of genotypes (respectively phenotypes) based on the Hamming

(respectively Euclidean) distances between those genotypes

(respectively phenotypes). A GPM is a mapping from genotype

space onto phenotype space. When the phenotype is fitness, as is

the case in the present study, the geometric structure of the GPM

is called a fitness landscape.

Conditional probability of phenotype differences. The

probability p(de|dh) that two genotypes that are a separated by a

Hamming distance dh in genotype space map onto phenotypes

that have a phenotype difference of de is given by [18]:

p dejdhð Þ~ n dejdhð ÞP
de

n dejdhð Þ , ð4Þ

where n(de|dh) denotes the number of instances when two

genotypes separated by Hamming distance dh map onto

phenotypes that differ by de. p(de|dh) is computed by the

following uniform sampling algorithm [18]:

1. Choose a reference genotype at random.

2. Sample exactly l = 10 genotypes at each Hamming distance

h = 1,2,…,165 from the reference genotype, plus the only

genotype found at h = 166.

3. Compute the phenotype/fitness (i.e., the optimal biomass yield)

of each genotype sampled in step 2. Normalize the computed

fitnesses by dividing by the highest-possible fitness in the

current environment (this facilitates the comparison of fitnesses

across environments). Calculate the absolute difference be-

tween the computed fitnesses and the fitness of the reference

genotype.

4. Arrange the fitness differences computed in step 3 into (de|dh)

bins; note that only the de values were binned. Bins of size 0.01

were used (there were 100 bins, with right edges at 0.01,

0.02,…,1.0). Both smaller (0.001) and larger (0.05) bin sizes

gave qualitatively similar distributions for (de|dh) (e.g., see

Figure S2).

5. Repeat the above steps until convergence of p(de|dh).

The above algorithm converges relatively fast (i.e., p(de|dh) does

not vary by .10% at convergence; e.g., see Figure S3). We

performed 2000 repetitions of the algorithm, generating 3.36106

data points in the process.

Correlation function of phenotype differences. The

correlation function describes, for example, how the similarity

between the phenotype of a given genotype and that of an

ancestral genotype decays as the two genotypes diverge. The

correlation function of phenotype differences can be obtained

directly from the quantity n dejdhð Þ computed in the preceding

section. It is given by [18]:

c hð Þ~1{

P
de

deð Þ2n dejdhð ÞP
dh

P
de

deð Þ2n dejdhð Þp dhð Þ
, ð5Þ

where

p dhð Þ~
G

dh

� �
a{G ð6Þ

is the probability that the Hamming distance between two

genotypes sampled randomly from genotype space equals dh. In

(6), G = 166 is the genotype length and a= 2 is the number of

symbols in the genotype alphabet (1/a is the probability that two

genotypes uniformly sampled from genotype space differ at a

particular genotype position). The correlation length, CL, is

obtained by fitting c(h) to exp(2dh/CL), via minimization of the

sum of squared errors.

Note that the above statistical methods are applicable to any

mapping from a combinatorial set (e.g., the set of possible

metabolic genotypes, which consist of sequences defined on a

binary alphabet) onto a set consisting of either continuous- (e.g.,

the set of possible metabolic phenotypes/maximum biomass

yields) or discrete-valued entities, whenever both the domain

and range of the mapping are equipped with appropriate metrics

(e.g., dh and de). The applicability of the methods does not depend

on the specifics (e.g., folding thermodynamics, in the case of RNA

GPMs, or flux-balance analysis, in the case of our metabolic

network GPM) of the mapping under consideration.

Mutual information of genotype differences relative to

phenotype differences. The mutual information is a standard

information-theoretic quantity [19]. The mutual information of a

random variable Y relative to another random variable X

quantifies the difference between the entropy H(X) of the

probability distribution p(X) of X and the expected value of the

entropy H(X|Y) of the conditional probability distribution p(X|Y).

In other words, it measures the difference between the total

uncertainty about X and the uncertainty about X that remains

after we know Y (i.e., the uncertainty that is eliminated by

knowledge of Y). In the current context, the mutual information

measures the amount of information that genotype differences

(corresponding to Y) provide about phenotype differences

(corresponding to X) and vice-versa. We compute the mutual

information as follows:

I Y ; Xð Þ~H Xð Þ{H X jYð Þ ð7Þ

~
X

de
p deð Þlog2 p deð Þ½ �{

X
dh

p dhð Þ
X

de
p dejdhð Þ log2 p dejdhð Þ½ �, ð8Þ

where

p dejdhð Þ~ n dejdhð ÞP
de

n dejdhð Þ ð9Þ

and

p deð Þ~
X

dh

p dejdhð Þp dhð Þ: ð10Þ

Both n dejdhð Þ and p dhð Þ are defined above. We normalize the

mutual information by H(X) – obtaining the NMI – in order to

control for differences in the entropy of p(X) in different
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environments. Note that the mutual information is symmetric:

I(X;Y) = I(Y;X).

When computing the NMI, c = 1/a, the probability that two

genotypes randomly sampled from an evolving population differ at

a particular genotype position (see Eqn. 6), can be estimated from

either the population’s actual genetic variation (its standing genetic

variation) or its potential genetic variation (its genetic variability).

In the latter case, c will depend on the assumed model of evolution.

For example, consider a population of N haploid individuals

evolving from a common binary, ancestral genotype. Assuming

that: (i) the mutation rate per genotype position p is constant, (ii)

mutations at different genotype positions segregate independently

of each other, and (iii) a particular genotype position changes at

most once, the distribution of the number of genotype positions

that have changed i times in the population, 0vivN, can be

approximated by a Poisson distribution with mean [34]:

F ið Þ~
ð1

0

f q; N,p,sð Þ
N

i

� �
qi 1{qð ÞN{i

dq, ð11Þ

where

f q; N,p,sð Þ~p
1{e{2Ns 1{qð Þ

1{e{2Ns

dq

q 1{qð Þ ð12Þ

is the steady-state density of changed genotype positions with

frequency q (equivalently, the transient distribution of the

frequency of changes to a particular genotype position), and s is

the average selection coefficient of genotype changes (Note that

Eqn. (12) differs from the equivalent equation found in [34] by a

factor of 2 because here we are dealing with haploid individuals). It

follows from (11) that:

c~2PN{1

i~1 e{F ið Þ 1{PN{1

i~1 e{F ið Þ
� �

: ð13Þ

In this work, we estimated the value of c using N = 1000 and

p = 0.001, corresponding, respectively, to the population size and

mutation rate used in our simulations of adaptive evolution (see

below). In the absence of information about the average selection

coefficient of changes to our metabolic network genotypes, we

used the estimate of s = 0.02 previously reported for beneficial

mutations occurring in evolving populations of E. coli [35]. We

used the estimated value of c, together with Eqns. (6,8–10), to

compute the NMI under different environmental conditions. The

rank-ordering of environments based on the computed NMI was

qualitatively similar for small values of p (0.001 and 0.0001), but it

was different for values of p that are close to the reciprocal of the

genome size (0.005 and 1/G) (see Figure S4).

Neutral walks. A neutral walk proceeds as follows [18]:

1. A ‘‘walker’’ starts at an initial, randomly chosen viable

genotype, x. The walk length, L, and the current genotype, y,

are initialized to 0 and x, respectively.

2. A genotype, z, is chosen randomly from among the genotypes

that are a Hamming distance of 1 away from y.

3. The walker moves to z if (i) z has the same phenotype as does x,

and (ii) the Hamming distance between x and z is greater than

L. If both (i) and (ii) are satisfied, then y is set to z and L is

incremented by 1.

4. Steps 2 and 3 are repeated until it becomes impossible for the

walker to move further.

In silico simulation of adaptive evolution. We ran 100 in

silico simulations of adaptive evolution of bacterial populations in

each considered environment. We initialized each simulation with

1000 genetically identical individuals. The fitnesses of all

genotypes were scaled such that the fittest genotype in each

environment had a fitness of 1.0. The initial genotype was chosen

at random subject to the constraint that it was (i) viable, and (ii) its

fitness was #0.2. We stopped each simulation when either (i) the

mean fitness of the evolving population was within 10% (i.e., $0.9)

of the highest possible fitness, or (ii) the number of simulated

generations was $250; one generation equals ,20 minutes of

physical time. The evolutionary dynamics were simulated by the

following algorithm, which is similar in its essential features to

algorithms used in [1,2]: in each generation the genome of each

individual is replicated, with probability proportional to its fitness,

and with fidelity equal to 1-p, where p = 0.001 is the mutation rate

per genotype position. After replication is completed, individuals

are randomly removed from the population until the population

reaches its pre-replication size. Note that the mutation rate was

chosen so that it is high enough to allow adaptation to occur

quickly on the time scale of our simulations, but small enough so

that the expected number of mutations per replication pG,1,

where G = 166 is the genotype length.

Computer implementations of the methods and algorithms

described above are available upon request.

Supporting Information

Table S1 Reactions found in the E. coli central metabolic

network analyzed in this study

Found at: doi:10.1371/journal.pcbi.1000472.s001 (0.14 MB

DOC)

Figure S1 Conditional probability distribution of phenotype

differences. The distributions were computed as described in the

main text. Phenotype differences were binned using bins of sizes

0.01.

Found at: doi:10.1371/journal.pcbi.1000472.s002 (1.05 MB TIF)

Figure S2 Conditional probability distribution of phenotype

differences. The distributions were computed as described in the

main text. Phenotype differences were binned using bins of sizes

0.05.

Found at: doi:10.1371/journal.pcbi.1000472.s003 (1.72 MB TIF)

Figure S3 Convergence of the conditional probability distribu-

tion of phenotype differences. Shown is the Kolmogorov-Smirnov

distance between the distribution of phenotype differences de

conditioned on genotype differences dh obtained after t iterations

of the uniform sampling algorithm described in the main text

(denoted p(de|dh,t)) and the distribution p(de|dh,t-10), for three

values of dh spanning a wide range. The Kolmogorov-Smirnov

distance is given by max{abs(p(de|dh,t)-p(de|dh,t-10))}. The data

were collected in a glucose environment.

Found at: doi:10.1371/journal.pcbi.1000472.s004 (0.21 MB TIF)

Figure S4 Rank-ordering of metabolic environments based on

the normalized mutual information (NMI). The environments are

listed in increasing order of quality, except in the case of lactose

whose position in the rank-ordering is not known precisely. The

NMI was computed as described in the main text, using different

values of p, the mutation rate per genotype position. The

measurement scales of NMI values corresponding to different
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values of p were adjusted in order to facilitate their presentation on

the same graph.

Found at: doi:10.1371/journal.pcbi.1000472.s005 (0.20 MB TIF)
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