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Abstract

In recent experimental work it has been shown that neuronal interactions are modulated by neuronal synchronization and that
this modulation depends on phase shifts in neuronal oscillations. This result suggests that connections in a network can be
shaped through synchronization. Here, we test and expand this hypothesis using a model network. We use transfer entropy,
an information theoretical measure, to quantify the exchanged information. We show that transferred information depends on
the phase relation of the signal, that the amount of exchanged information increases as a function of oscillations in the signal
and that the speed of the information transfer increases as a function of synchronization. This implies that synchronization
makes information transport more efficient. In summary, our results reinforce the hypothesis that synchronization modulates
neuronal interactions and provide further evidence that gamma band synchronization has behavioral relevance.
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Introduction

Gamma band synchronization has been found in many cortical

areas and in a variety of tasks. It has been studied most extensively

in the visual cortex of cats and monkeys [1–8]. Several authors

have proposed that these synchronizations influence the interac-

tions among neuronal groups [9,10], a hypothesis referred to as

communication through coherence (CTC, [11]). In computational

studies, it has been shown that entrainment enhances transmitted

information between input and output spikes [12], that synchro-

nization in the gamma frequency range increases the effective

synaptic gain for the responses to an attended stimulus [13] and

that the transmission time of responses of coupled oscillators

depends on the phase difference in the stable synchronized state

[14]. Also, several experimental studies have presented results

supporting the CTC hypothesis [15–19].

In this study, we concentrate on the results shown by Womelsdorf

et al. [17]. They explore the mutual influence of two groups of

neurons as a function of their phase shift. These authors quantify the

mutual influence of the multi unit activity (MUA) in the two groups

as the Spearman rank correlation coefficient of the two MUA’s

60 Hz power. They show evidence that the correlation between the

two groups of neurons varies as a function of the phase shift of the

oscillations at 60 Hz. There is a specific phase shift at which the

correlation between the two groups is highest. [17] conclude that the

effective connectivity in a network can thus be maximized or

minimized through synchronization of a specific phase relation,

resulting in an effective interaction pattern.

While the results presented by [17] clearly support the CTC

hypothesis, they leave some open questions. Is it only the 60 Hz

power that depends on the 60 Hz phase? Do the MUAs only

correlate or is there mutual interaction between the two? Is this

effect restricted to the gamma band or can it be generalized to

other frequency bands? What is the influence of the total gamma

power in the signal?

Here, to address these questions, we use a detailed biophysical

model network with realistic spiking properties. A first advantage

of using a model is that we can generate more data than in an

experiment. This makes it possible to use an information

theoretical measure for the mutual interaction instead of rank

correlation. Many different interdependence measures such as

mutual information, transfer information, nonlinear regression,

phase synchronization and generalized synchronization have

recently been proposed (see [20] and [21] for comparisons of

the different methods). It has become evident that the appropri-

ateness of each measure is determined by the data it is applied to.

Thus, given our current data set, we opted to use transfer entropy

(TE), introduced by [22]. The TE is an information theoretical

measure that quantifies the statistical coherence between systems.

It has the advantage that it does not only measure the coherence

between two signals, but is able to distinguish between driving and

responding elements and therefore between shared and transport-

ed information. This is called the directionality of the information

flow. We measure the TE between the MUA of the two neuronal

clusters, which allows us to study the interdependence of the

spiking activity in each of them and not just the correlation of the

spectral power in a specific frequency band, as was done in the

experimental work. A further crucial advantage of the model is

that we can change network parameters systematically and explore

the dynamical range of the network.

The model we use in this study consists of integrate-and-fire

neurons. One of two pools of excitatory neurons receives input
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(Poisson spike train) which it passes to a neighboring pool,

connected by feedforward and feedback connections. Each pool of

excitatory neurons is connected to a pool of inhibitory neurons,

which generates oscillations in the gamma frequency band

through a pyramidal-interneuron feedback loop [23]. Beta

oscillations are obtained from the same network by parameter

modification. Several methods have been proposed to generate

beta oscillations [24,25]. Here, for the sake of simplicity, we

modify the decay constants of the synapses. We show that the

correlation as measured by the Spearman rank correlation

coefficient depends on the phase relation in the gamma band.

This result confirms the experimental finding of [17]. Secondly,

after applying TE to measure the information exchange between

two pools, we find that TE very similarly depends on the phase

shift, i.e., that there is an optimal phase relation where the TE is

maximal. Thirdly, we reveal such dependence also in the beta

band. Fourthly, we demonstrate that the TE increases as a

function of the power in the gamma band. Lastly, we show that the

information exchange gets faster if the gamma band synchroni-

zation increases. In sum, we provide support for the CTC

hypothesis and make the prediction that CTC is a general

mechanism, not restricted to the gamma band.

Methods

Experimental analysis
Womelsdorf et al. [17] analyzed four different data sets. The

first data set consisted of measures from awake cats in area 17 [26],

the second from awake cats in areas 18 and 21a [4], the third from

awake monkeys in area V1 and the fourth from awake monkeys in

area V4 [3,7]. In all four data sets they recorded multi unit activity

simultaneously from 4 to 8 electrodes. For each pair of neuronal

groups, they quantified the synchronization by MUA-MUA phase

coherence spectrum, which showed a peak in the gamma

frequency band. These authors then calculated the Spearman

rank correlation coefficient between the two MUAs’ 60 Hz power.

They found that the fluctuations of the 60 Hz power were most

strongly correlated when the 60 Hz phase relation was close to its

mean, as illustrated in Fig. 1. From this they concluded that

effective connectivity can be maximized or minimized through

synchronization at a favorable or unfavorable phase relation.

Theoretical framework
We use a model with leaky integrate-and-fire (IF) dynamics,

following [27]. Each IF unit charges up to its stationary value as

long as its membrane potential stays below a threshold. The

membrane potential V (t) is given by:

Cm
dV (t)

dt
~{gm(V (t){VL){Isyn(t): ð1Þ

Cm is a membrane capacitance, gm a membrane leak conductance,

VL a resting potential and Isyn is the total synaptic current flowing

into the cell. When the membrane potential reaches the threshold

potential, it sends out a spike to all connected neurons and resets

its membrane potential to the reset potential. The circuit remains

shunted for a refractory period. Synaptic currents are mediated by

excitatory (AMPA and NMDA) and inhibitory (GABA) receptors.

The total synaptic current is given by

Isyn(t)~IAMPA,extzIAMPA,reczINMDAzIGABA: ð2Þ

The currents are defined as follows:

IAMPA,ext(t)~gAMPA,ext V (t){VEð Þ
XNext

j~1

sAMPA,ext
j (t) ð3Þ

IAMPA,rec(t)~gAMPA,rec V (t){VEð Þ
XNE

j~1

wjs
AMPA,rec
j (t) ð4Þ

INMDA(t)~
gNMDA V (t){VEð Þ

1z Mg2z½ � exp {0:062V (t)ð Þ=3:57

|
XNE

j~1

wjs
NMDA
j (t)

ð5Þ

IGABA(t)~gGABA V (t){VIð Þ
XNI

j~1

wjs
GABA
j (t) ð6Þ

Figure 1. Spearman rank correlation coefficient. The rank
correlation coefficient between the two MUAs’ 60 Hz power is plotted
as a function of their phase relation. The solid line indicates a cosine fit.
Adapted from [17].
doi:10.1371/journal.pcbi.1000934.g001

Author Summary

Different brain areas are involved in any cognitive task.
This implies that information has to be transmitted
between different brain areas. Recent experimental results
suggest that synchronization plays a crucial role in
information exchange between cortical areas. They show
that synchronization is capable of rendering network
connections effective or ineffective. We study this hypoth-
esis using a neurodynamical model and present results
suggesting that both phase and strength of neuronal
oscillations in the gamma frequency band influence
amount and speed of information transport. We conclude
that neuronal synchronization is crucial for information
transmission and therefore might even have behavioral
relevance.
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g denotes the receptor specific synaptic conductances, sj the

fractions of open channels and the wj the synaptic weights. VE and

VI are the reversal potentials of the excitatory and inhibitory

neurons, respectively, Next is the number of neurons encoding the

spontaneous activity in the cortex, and NE and NI are the

numbers of excitatory and inhibitory neurons in the network. The

sum in each expression runs over all neurons, summing their open

channels, weighted by the synaptic weights that implement the

connection strengths between neurons. The NMDA synaptic

current is dependent on the membrane potential and controlled by

the extracellular concentration of Mg2z
� �

.

The fractions of open channels are given by:

dsAMPA,ext
j (t)

dt
~{

sAMPA,ext
j (t)

tAMPA
z
X

k

d t{tk
j

� �
ð7Þ

dsAMPA,rec
j (t)

dt
~{

sAMPA,rec
j (t)

tAMPA

z
X

k

d t{tk
j

� �
ð8Þ

dsNMDA
j (t)

dt
~{

sNMDA
j (t)

tNMDA,decay

zaxj(t) 1{sNMDA
j (t)

� �
ð9Þ

dxj(t)

dt
~{

xj(t)

tNMDA,rise

z
X

k

d t{tk
j

� �
ð10Þ

dsGABA
j (t)

dt
~{

sGABA
j (t)

tGABA
z
X

k

d t{tk
j

� �
ð11Þ

tAMPA, tNMDA,decay and tGABA are the decay times and tNMDA,rise

is the rise time for the corresponding synapses. AMPA has a very

short decay time (2 ms) while NMDA has a long one (100 ms) and

the GABA decay time lies in-between (10 ms). The rise times of

AMPA and GABA currents are neglected, as they are typically

very short (,1 ms). The sums over k represent a sum over spikes

formulated as d-peaks (d(t)) emitted by presynaptic neuron k at

time tk
j . All input is generated via a Poisson process.

The equations are integrated using a fourth order Runge-Kutta

method with a time step of 0.02 ms. The network is organized in

pools. Neurons within a specific pool have stronger recurrent

connections than neurons between the pools. The intention of this

work is to study cortical neural interactions not limited to a specific

brain area. However, as our simulations needed to be directly

comparable to [17], and have specific parameter sets, our network

models two clusters of cortical neurons in visual cortex V4.

The network model consists of two parts (Fig. 2). In each part

there are pools of excitatory and inhibitory neurons, with a total of

800 excitatory and 200 inhibitory neurons. The excitatory neurons

are subdivided into a selective pool and a non-selective pool. The

neurons in the selective pools (S,S9) are the ones that receive input

either from outside or from the connected selective pool. The non-

selective neurons (NS, NS9) simulate the surrounding brain areas.

Each population of excitatory neurons is connected to a pool of

inhibitory neurons (I, I9). This allows for generating oscillations in

each population separately. The two parts of the network are

connected via feedforward (Jf ) and feedback (Jk) connections that

project onto the selective pools. The external input (nin) is a Poisson

spike train that projects to the selective pool (S) of the first part of the

network. In addition to the recurrent connections, the network is

exposed to an external current (next), modeled as a Poisson spike train

of 800 neurons, firing at 3 Hz. This models the spontaneous activity

observed in the cerebral cortex. The network is fully connected.

Gamma oscillations in a network with excitatory and inhibitory

neurons are generated through a pyramidal-interneuron feedback

loop [23,28]. Pyramidal neurons excite interneurons and inter-

neurons in turn send inhibition back on pyramidal cells. The

population frequency is determined by the sum of excitatory and

inhibitory lags. The recurrent excitatory connections tend to

decrease the oscillation frequency (as compared to only excitatory-

inhibitory and inhibitory-excitatory connections) as they tend to

prolong the positive phase in each cycle. In our network we can

therefore generate and control the oscillations in the gamma

frequency band by adjusting the AMPA and NMDA conductanc-

es. For example, increasing the gAMPA and decreasing gNMDA

shifts the balance in the network towards fast excitation (AMPA)

and slow inhibition (GABA) and thus increases the gamma

frequency band oscillations. The conductances in our network are

varied according to the following rule: gNMDA~gNMDA(1{d)
and gAMPA~gAMPA(1z10d). Throughout the paper, we will

refer to the parameter d as the gAMPA=gNMDA modification ratio.

The factor 10 stems from the fact that near the firing threshold,

the ratio of NMDA:AMPA components becomes 10 in terms of

charge entry, as stated in [27]. Therefore, in order not to change

the spontaneous state, a decrease in gNMDA is compensated by a

tenfold increase in gAMPA. All recurrent conductances (both

inhibitory and excitatory) are changed according to these rules.

By adjusting the synaptic decay constants, the oscillation

frequency can be shifted into the beta band. The crucial

parameter is tGABA. An increase of tGABA slows down the rhythm

of the pyramidal-interneuronal loop and will therefore yield an

oscillation at a lower frequency. To generate oscillations in the

beta range (around 20 Hz), we use tAMPA~1:5 ms and

tGABA~38 ms. To generate phase shifts in the gamma oscillations

between the two parts of the network, we introduce a delay. The

Figure 2. Schematic representation of the network. The network
consists of two parts. In each part, there are excitatory (S, NS) and
inhibitory (I) neurons. The excitatory neurons are divided into two
pools. The selective pool (S) receives the external input (nin) and has
strong recurrent connections (wz). The non-selective pool (NS)
simulates the surrounding cerebral cortex. In each part of the network,
the excitatory neurons are connected to a pool of inhibitory neurons (I)
via connection weights wI . The two parts of the network are connected
via the selective pools. There are both feedforward (Jf ) and feedback
(Jk) connections. The network is exposed to an external current next,
modeling the spontaneous activity observed in the cerebral cortex.
doi:10.1371/journal.pcbi.1000934.g002
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delay is set bidirectionally in the feedforward and feedback

connections of the selective pools. Each spike emitted in S arrives

at S’ after Dt and vice versa. This lag in spike transmission

generates a phase lag in the oscillations. A delay of, e.g., 4 ms

yields a phase shift of about 90 in a 60 Hz oscillation. The actual

value of the mean phase shift is not crucial to the obtained results.

All trials are initiated with a period of 400 ms in which no stimulus

is presented, followed by a period of 5500 ms composed of the

presentation of the stimulus, followed by 100 ms in which no

stimulus is present. Each simulation consists of 100 trials. All

parameter values are listed in Table 1.

Analysis
Multi unit activity. From our spiking simulations we

calculate the multi unit activity (MUA) to analyze our

simulations, in order to be able to compare our results directly

with the experiments. To simulate the MUA, we randomly chose

10 neurons in each of the selective pools. This point process data is

converted to a time series by binning the spikes in windows of

5 ms. The binning window is shifted in steps of 1 ms. The time

series is then normalized to zero mean and unit variance. We use

the normalized time series to estimate power spectrum and

transfer entropy. Normalization is applied to rule out the possible

influence of rate changes.

Power spectrum and phase estimation. We use the

multitaper method [29,30] to calculate the spectral power of our

data. The signal in each time window (1000 ms) is multiplied with

a set of Slepian data tapers. The tapered signal is then Fourier

transformed, according to:

~xxk(n)~
XN

t~1

wk(t)x(t)e{2pint ð12Þ

where wk(t) are K orthogonal taper functions, x(t) is the time

series of our signal, and N is the number of elements in each time

window. The power spectrum is then the squared amplitude of

~xxk(n), averaged over the K tapers. We used K~4 tapers in our

study. The cross spectrum (Syx) between two signals ~xxk(n) and

~yyk(n) (averaged over K tapers) is given by

Syx~
1

K

XK

k~1

~yyk (n)~xx�k(n): ð13Þ

The phase relation between two signals ~xxk(n) and ~yyk(n) is defined

as the angle of the cross spectrum. We use this method for phase

estimation to be able to compare directly to the experimental

results.

Transfer entropy. In Ref. [17] the mutual influence between

two neuronal groups is quantified as the Spearman rank corre-

lation coefficient of spectral power. The Spearman rank corre-

lation is a non-parametric measure of correlation, which makes no

assumptions about normality or linearity of the data. However, it is

a symmetric measure and therefore fails to measure directionality

of the flow of information. Thus, to overcome this limitation, here

we use TE [22], which enables us to distinguish between shared

and transported information. TE measures the deviation from the

following generalized Markov property:

p(xtz1Dxk
t )~p(xtz1Dxk

t , yl
t), ð14Þ

where p is the transition probability and k and l are the

dimensions of the delay vectors. xt and yt are the time series of the

signal. We write xt and yt instead of x(t) and y(t), respectively, for

better readability. If the deviation is small, then Y has no

relevance for the transmission probability of X . The incorrectness

of this assumption can be quantified by the Kullback entropy

Ty?x~
X

t

p(xtz1, xk
t , yl

t) log2

p(xtz1Dxk
t , yl

t)

p(xtz1Dxk
t )

: ð15Þ

In other words, transfer entropy represents the information about

a future observation of variable xt obtained from the simultaneous

observation of past values of both xt and yt, after discarding the

information about the future of xt obtained from the past of xt

alone [20]. For computational reasons, we set k~l~1. Con-

ditional probabilities required in equation 15 are calculated from

the joint probabilities. We approximate the joint probabilities by

coarse-graining the continuous state space at resolution r and

using the histograms of the embedding vector (naive histogram

technique [31]). When the available data is limited (number of

samples Nv1000) and the coupling between the time series is

small, TE suffers from a finite sample effect, in particular for small

resolution (rv0:05), which makes the assessment of the

significance of the obtained values difficult [31]. However, for all

our simulations Nw1000 and rw0:05, so we can assume that the

finite sample issue affects our results to a negligible extent. We

calculate the TE between the MUA in the two neuronal pools.

Results

First we describe how the mean phase shift between pools of

neurons is set by the delay in the feedforward and feedback

connections. We then show that the correlation between the

gamma power in the two pools depends on the phase relation in

the gamma band. We demonstrate that TE has a very similar

Table 1. The default parameter set.

Parameter Value Parameter Value

Cm (excitatory) 0.5 nF VL {70 mV

Cm (inhibitory) 0.2 nF Vreset {55 mV

gAMPA,ext (excitatory) 2.08 nS Vthr {50 mV

gAMPA,ext (inhibitory) 1.62 nS wz 1.5

gAMPA,rec (excitatory) 0.104 nS wI 1.0

gAMPA,rec (inhibitory) 0.081 nS a 0.5 ms{1

gGABA (excitatory) 1.287 nS nin 250 Hz

gGABA (inhibitory) 1.002 nS next 2.4 kHz

gNMDA (excitatory) 0.327 nS tAMPA 2 ms

gNMDA (inhibitory) 0.258 nS tAMPA (beta osc.) 1.5 ms

gm (excitatory) 25 nS tGABA 10 ms

gm (inhibitory) 20 nS tGABA (beta osc.) 38 ms

Jf 1.8 tNMDA,decay 100 ms

Jk 0.6 tNMDA,rise 2 ms

NE 800 trefr (excitatory) 2 ms

Next 800 trefr (inhibitory) 1 ms

NI 200 Dt (delay) 4 ms

VE 0 mV feedback/feedforward ratio 1/3

VI {70 mV

The default parameter set used in the integrate-and-fire simulations.
doi:10.1371/journal.pcbi.1000934.t001

Optimal Information Transfer in the Cortex

PLoS Computational Biology | www.ploscompbiol.org 4 September 2010 | Volume 6 | Issue 9 | e1000934



dependence on the phase shift and that TE increases as a function

of gamma power. Finally, we reveal that if gamma power is high,

information flow as measured by TE commences earlier.

Delay–phase relation
Raster plots for 20 neurons from each neuronal pool are shown

in (Fig. 3). The power spectrum of the MUA in our network shows

a clear peak in the gamma band (Fig. 4), in accordance with the

experimental results. Therefore, the introduced delay sets the

phase shift for oscillations in the gamma band. The delay,

however, sets only the mean phase shift, but the phase shifts

fluctuate over time. Thus, even for a fixed delay they show a broad

distribution around this mean phase shift. This distribution is

shown in Fig. 5a. The mean phase in this specific simulation is

91.4u. This, however, is just an example, as the mean phase shift in

the simulations can be set to any value by adjusting the delays

accordingly. The phases are similarly widely distributed as in the

experimental results by [17], shown in Fig. 5b.

Dependence of correlations on phase
The phase shifts at 60 Hz between the two pools show a broad

range of phases. We determine the phase shift in each time

window of 500 ms. Then we calculate the correlation between the

two pools for this time window by calculating the Spearman rank

coefficient for the 60 Hz power in the two pools. The obtained

correlation can now be sorted into different bins for the different

phase shifts. We find that the correlation of the gamma band

power between the two pools depends on the mean phase shift in

the gamma band. Fig. 6 shows the rank correlation plotted against

the phase shifts. The correlation is highest for the bin containing

the mean phase shift and drops as it moves away from the mean.

This confirms the experimental results of [17].

Dependence of TE on phase
We apply TE to the same data as in the previous section.

However, we measure the TE between the MUA in the two pools

Figure 3. Raster plots. Raster plot of spikes of 20 neurons from the default simulations (gAMPA/gNMDA modification ratio~0:12). (a) Neurons from
selective pool 1. (b) Neurons from selective pool 2.
doi:10.1371/journal.pcbi.1000934.g003

Figure 4. Power spectrum. The power spectrum of the MUA signal
from a simulation with default parameters is shown. gAMPA/gNMDA

modification ratio~0:12, averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g004

Optimal Information Transfer in the Cortex
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and not only the spectral power at 60 Hz, as was done in the

experiment. We find that the TE depends strongly on the phase

relation in the gamma band between the spiking activities of the two

groups of neurons. It is highest for the mean phase between the two

signals and drops as it moves away from the mean. This is consistent

with our results for correlation. The phase dependence is illustrated

in Fig. 7. TE is plotted as a function of the mean phase shift. The

solid line represents TE from the first to the second pool (forward)

and the dashed line TE from the second to the first one (backward).

Forward TE is stronger than backward TE, implying that TE

correctly detects the causal dependence of the second neuronal pool

on the first one. Forward TE is stronger than backward TE even if

the feedforward and feedback connections are symmetrical (not

shown). The stronger the feedforward and the weaker the feedback

connections, the bigger the difference in the TE for the two

directions, as shown in Fig. 8. We plot the relative difference in the

TE, calculated as (TEf {TEk)=TEk. The feedback/feedforward

ratio is defined as Jk=Jf . We use a feedback/feedforward ratio of

1=3 in the baseline simulations. To make sure the phase dependence

is not only a by-product of changes in spectral power, we sorted the

trials according to their spectral power in the gamma frequency

band and calculated the phase dependence both for trials with

power below and above the median. In both cases, the phase

dependence is very similar (not shown).

Different frequency bands
Another result we obtain is that the phase dependence of

information transport is not restricted to the gamma band. We

find that even in simulations with a network oscillating strongly in

Figure 5. Phase distribution. The phases are widely distributed around the mean (marked with an asterix). The dark and light segments around
the figures represent the phase bins into which trials were sorted. (a) Simulation: Phase distribution with an exemplary mean of 91.4 from the default
simulations (gAMPA/gNMDA modification ratio~0:12). (b) Experiment: Phase distribution with a mean of 45.8. Adapted from [17].
doi:10.1371/journal.pcbi.1000934.g005

Figure 6. Spearman rank correlation coefficient. The rank
correlation between the 60 Hz power in two neuronal pools is plotted
as a function of the phase shift in the gamma band. A phase shift of
zero represents the mean phase shift which is the point where the rank
correlation is highest. The solid line indicates a cosine fit.
doi:10.1371/journal.pcbi.1000934.g006

Figure 7. TE as a function of phase shifts and directionality. The
phases are aligned relative to the mean phase, i.e., a phase shift of zero
represents mean phase shift. TE is highest for the mean phase shift and
gets lower the more it differs from it. The solid line represents TE from
neuronal pool 1 to pool 2 (forward), the dashed line from pool 2 to pool
1 (backward). Forward TE is clearly stronger than backward TE. gAMPA/
gNMDA modification ratio~0:12, averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g007

Optimal Information Transfer in the Cortex
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the beta band (around 20 Hz), the TE is again highest for the

mean phase shift. In Fig. 9, we compare the results for networks

oscillating in the beta and gamma frequency band. Fig. 9a shows

the TE for a network oscillating in the gamma band. The trials are

sorted according to their phase relation in the gamma band. Fig. 9b

shows the same network but with the trials now sorted according

to their phase relation in the beta band. The phase dependence

curve becomes a lot flatter and the optimal phase for maximal TE

is much less pronounced. Fig. 9c shows the TE for a network

oscillating in the beta band with trials sorted according to the

phase relation in the gamma band. And Fig. 9d shows the TE for a

network oscillating in the beta band with trials sorted according to

the phase relation in the beta band. It becomes clear that it is the

phase of the dominating frequency band that is responsible for

high of low TE. We therefore conclude that it is not only the

gamma band that has the ability to shape effective network

connections via the phase, but that it is a general mechanism,

observable in different frequency bands.

Dependence of TE on gamma band power (without
parameter modification)

We further find that TE depends on the spectral power in the

gamma band (30–85 Hz). For a fixed parameter set, we first sort

all the trials according to their power in the gamma band into bins.

In each of these bins, we measure the TE for the mean phase

relation. The TE as a function of the power in the gamma band is

plotted in Fig. 10. We find that the TE increases as a function of

power. Note, however, that instead of sorting the trials according

to their gamma band power for a fixed parameter set, we can also

vary the parameters in the network. This allows us to vary the

power over a wider range and the effect becomes clearer (see the

next section).

Figure 8. Relative differences in forward and backward TE.
Differences in forward and backward TE are shown as a function of
feedback/feedforward connection ratio, which is defined as Jk=Jf . The
difference between forward and backward TE becomes smaller as the
feedforward and feedback connections become more similar. Error bars
indicate 95% confidence intervals, gAMPA/gNMDA modification ratio~
0:12, averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g008

Figure 9. TE as a function of the mean phase shift in the gamma and beta band. The network oscillates strongly in one frequency band
(either beta or gamma). The trials are sorted according to their phase shift either in the beta or gamma band. (a) Network oscillating in the gamma
band. The trials are sorted according to their phase shift in the gamma band. (b) Network oscillating in the gamma band. The trials are sorted
according to their phase shift in the beta band. (c) Network oscillating in the beta band. The trials are sorted according to their phase shift in the
gamma band. (d) Network oscillating in the beta band. The trials are sorted according to their phase shift in the beta band. In all four graphics,
gAMPA/gNMDA modification ratio~0:12, averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g009
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Dependence of TE on gamma band power (with
parameter modification)

In the previous section we have shown how TE depends on

power in the gamma band for a fixed parameter set. Now we

explicitly vary the amount of gamma power and study the TE

dependence. Gamma band oscillations in a network of excitatory

and inhibitory integrate-and-fire neurons appear when excitation

is faster then inhibition [28]. Thus, we made the network oscillate

by increasing AMPA conductance and decrease NMDA conduc-

tance. This change was applied to both excitatory and inhibitory

neurons. In our simulations, we vary the gAMPA/gNMDA

modification ratio from 0 to 0.12, which results in a gamma band

that contains from 10 to 65% of power. If we sort the data

according to its shift as in the previous section, we find that, for the

different gAMPA/gNMDA modification ratios, the TE shows a

similar dependence on the phases. However, if the gAMPA/gNMDA

modification ratio is too low, the phase measurement is not reliable

any more and the curve gets flat, consistent with the case of

random phase distribution. Fig. 11 shows the TE as a function of

phase shift for several different gAMPA/gNMDA modification ratios.

To summarize this result, we take the TE at the mean phase shift

and plot it against the gAMPA/gNMDA modification ratio. As the

spectral power in the gamma band increases from 10 to 65%, the

TE increases from 0.38 to 0.65 and thus shows strong positive

correlation with the level of gamma band power (Fig. 12). In other

words, the higher the gamma band synchronization between the

two pools, the higher the information throughput. This result

suggests that gamma band oscillations improve the signal

processing in a network of IF neurons, as they increase the

amount of transmitted information. This in turn confirms the idea

that gamma band synchronization can shape effective networks,

especially as it can influence the information transmission in a

given direction, as shown above.

Timing
Finally, we are interested in whether the gamma band

oscillations also have an influence on the speed of information

exchange, on top of the increased amount of information

exchange. To do this, we measure the time required until the

stimulus presentation to the first pool leads to an increase in TE

towards the second pool. We find that the onset of TE increase is

significantly earlier when there is a lot of power in the gamma

band. While for a gAMPA/gNMDA modification ratio of 0.02 it

requires 28 ms to reach 50% of the average TE, for a gAMPA/

gNMDA modification ratio of 0.12 it takes only 17 ms. The onset of

information flow is clearly faster for higher levels of gamma band

power (Fig. 13). This increase in speed is a further demonstration

of how gamma oscillations increase network performance and

shows how a network can be made more competitive.

Figure 10. TE of trials sorted by power in the gamma band.
Network parameters are kept fixed. The TE increases as a function of
gamma power. gAMPA/gNMDA modification ratio~0:12, averaged over
100 trials. Error bars indicate 95% confidence intervals.
doi:10.1371/journal.pcbi.1000934.g010

Figure 11. TE as a function of phase shifts and gamma
oscillations. If the oscillations are strong in the gamma band
(gAMPA/gNMDA modification ratio~0:12), there is a clear phase shift
between the two groups of neurons and the phase dependence curve
is clearly bell shaped. If the oscillations are too low, there is no
meaningful phase shift and the curve becomes flat (gAMPA/gNMDA

modification ratio~0:02). Averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g011

Figure 12. Mean TE as a function of gamma frequency band
power. We plot the TE for six different gAMPA/gNMDA modification
ratios (solid line). A higher gAMPA/gNMDA modification ratio causes the
network to oscillate in the gamma frequency range and thus increases
the power in the gamma frequency band (dashed line). Error bars
indicate 95% confidence intervals; averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g012
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Discussion

Communication through coherence
It has been hypothesized that interactions among neuronal

groups depend on neuronal synchronization. Recent results show

that gamma band oscillations and especially the phase relation in

the gamma band can modify the strength of correlations in a

network and therefore influence the effectiveness of connections in

it [17]. These effects could be used as a mechanism to connect and

disconnect areas in a network without altering the physical

connections. Here, using a model network of IF neurons, we

intend to test this hypothesis. We demonstrate that also in a model

network, the correlation between two areas depends on the phase

shift in the gamma band between these two areas. Our modeling

approach enables us to use an information theoretical measure, as

it allows us to generate as much data as needed for such a measure.

Thus, we use transfer entropy, which has the advantage of being

able to distinguish driving and responding elements in a network.

We show that also for TE there is an optimal phase shift between

two neuronal groups, where TE is highest. We study this phase

dependence in different bands (beta and gamma). Our results

demonstrate that, in a network with strong beta oscillations, TE

depends on the phase shift in the beta band similarly to the way

TE depends on the phase shift in the gamma band in a network

with strong gamma oscillations. The ability to shape network

connections seems therefore not to depend on the frequency range

and seems to be a general mechanism. This confirms recent

experimental results that have pointed out the importance of beta

synchrony in functional integration [32,33]. We also study how

TE depends on power in a specific frequency band. We do this

here for the gamma band. For a fix set of parameters, we sort the

trials in a simulation according to their power in the gamma band.

We find that within a simulation, the trials with high gamma

power have a high TE. Then we modify the parameters and vary

the gamma power over a wider range. Again, we find that TE

increases as a function of gamma power. Finally, we reveal that it

is not only the amount of exchanged information that increases

but also the speed: The higher the power in the gamma band, the

earlier the onset of the information flow.

Our results support the CTC hypothesis. If the effective

connections in a network are to be influenced by the phase lock

in a specific frequency band between two areas, it is important that

it not only affects the coherence between them, but also the

throughput of information in a specific direction. By measuring

TE instead of the Spearman rank coefficient, we extend the work

of [17]. Our result is also more general, as we use the rates to

measure TE and not only the 60 Hz power. Our study of different

frequency bands is a further extension. We provide evidence that

the CTC mechanism is not restricted to the gamma band, but also

functions in different frequency bands. In addition, our modeling

approach also enables us to study how the information transport

depends on the total power in a specific frequency band. Our

finding that TE increases as a function of power suggests that both

the phase and the power in a specific frequency band are

important to shape effective connections in a network. The phase

dependence of information transmission is not only a byproduct of

the power dependence, as we find the same phase dependence

both in trials with high gamma power as well as in trials with low

gamma power. Furthermore, we demonstrate that the onset of

information exchange depends on the power, which contributes to

effectively shaping the connections in a network. We have already

shown in the context of attention that gamma power increases the

network effect of an attentional bias and that it makes the network

more efficient [34]. Here, we can confirm this finding and put it in

a more general context, independent of attention.

Implications for visual information transmission
As we are modeling results from visual cortical areas, we can

assume that the neuronal clusters in the model transmit largely

visual information. Several recent studies have contributed to the

understanding of visual information transmission. These studies

suggest that LFP power gradually increases as a function of

stimulus contrast and gamma band LFP power increases

differentially, that is, to a higher extent with respect to the

baseline than relative to either higher or lower bands [35]. For the

highest stimulus contrast, these authors report a clear peak in the

gamma frequency band. In other words, the contrast dependence

of the LFP is different in different frequency bands and the LFP

power spectrum changes shape depending on contrast, with a peak

in the gamma band emerging at high contrast. [36] studied the

encoding of naturalistic sensory stimuli in LFPs and spikes. They

found that the most informative LFP frequency ranges were 1–

8 Hz and 60–100 Hz. They showed that the LFP in the 60–

100 Hz high gamma band showed little noise correlation during

visual stimulation but showed the highest observed signal

correlation across all LFP frequencies. The high gamma band

also had the highest proportional power increase during visual

stimulation. These experimental results are supported by the

modeling work of [37]. These authors showed that their modeling

network encoded static input spike rates into gamma-range

oscillations generated by inhibitory-excitatory neural interactions.

In sum, these reports indicate that the gamma frequency range is

the one used most frequently to encode visual information in the

visual cortex and that visual information is encoded by the power

of gamma range oscillations. These observations, together with our

result that gamma oscillations increase both the overall amount

and the speed of information indicates that information about

preferred stimuli is treated preferentially and, in consequence, that

cortical modules mostly exchange information about their

preferred stimuli.

Figure 13. Rise times of TE as a function of gamma band
power. Information starts flowing after stimulus onset when,
consequently, TE starts rising. The plot shows the time required to
reach 50% of the average TE. TE clearly rises faster for higher power in
the gamma band (high gAMPA/gNMDA modification ratio). Error bars
indicate 95% confidence intervals; averaged over 100 trials.
doi:10.1371/journal.pcbi.1000934.g013
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In sum, we provide results to support the CTC hypothesis, we

show evidence that CTC is a general mechanism independent of a

specific frequency band and show that not only the phase but also

the power is important to effectively shape the flow of information

in a network.
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