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The immune response to Mycobacterium tuberculosis (Mtb) infection is complex. Experimental evidence has revealed
that tumor necrosis factor (TNF) plays a major role in host defense against Mtb in both active and latent phases of
infection. TNF-neutralizing drugs used to treat inflammatory disorders have been reported to increase the risk of
tuberculosis (TB), in accordance with animal studies. The present study takes a computational approach toward
characterizing the role of TNF in protection against the tubercle bacillus in both active and latent infection. We extend
our previous mathematical models to investigate the roles and production of soluble (sTNF) and transmembrane TNF
(tmTNF). We analyze effects of anti-TNF therapy in virtual clinical trials (VCTs) by simulating two of the most commonly
used therapies, anti-TNF antibody and TNF receptor fusion, predicting mechanisms that explain observed differences
in TB reactivation rates. The major findings from this study are that bioavailability of TNF following anti-TNF therapy is
the primary factor for causing reactivation of latent infection and that sTNF—even at very low levels—is essential for
control of infection. Using a mathematical model, it is possible to distinguish mechanisms of action of the anti-TNF
treatments and gain insights into the role of TNF in TB control and pathology. Our study suggests that a TNF-
modulating agent could be developed that could balance the requirement for reduction of inflammation with the
necessity to maintain resistance to infection and microbial diseases. Alternatively, the dose and timing of anti-TNF
therapy could be modified. Anti-TNF therapy will likely lead to numerous incidents of primary TB if used in areas where
exposure is likely.
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Introduction

Control of Mycobacterium tuberculosis (Mtb) infection is a
result of a successful immune response that requires priming
and activation of antigen-specific CD4+ and CD8+ T
lymphocytes, recruitment of cells to the infection site
(typically the lung), and production of cytokines, some of
whose role is to activate macrophages. This leads to inhibition
or killing of some but not all bacilli. Immunological
structures (granulomas) form in the lung in response to
persistent antigen and cytokine and chemokine signals. In
95% of infected hosts, M. tuberculosis (Mtb) persists without
causing symptoms or disease. Latent infection can subse-
quently reactivate to cause active TB. Experimental evidence
has revealed that tumor necrosis factor (TNF) plays a major
role in host defense against Mtb in both the active and
chronic phases of infection [1–4].

TNF action increases the phagocytosis by macrophages and
enhances mycobacterial killing in concert with IFN-c [3,5].
TNF is crucial in recruitment of inflammatory cells, stimulat-
ing chemokine production [6] and inducing adhesion
molecules on vascular endothelium [7].

Table S1 summarizes data regarding TNF in Mtb murine
models. TNF is a crucial component of both antibacterial

protection and the inflammatory immune response. TNF-
deficient mice exhibit disorganized granulomas, altered tissue
pathology, high bacterial loads, and reduced survival [2,3].
TNF also possesses tissue-injuring properties that manifest in
clinical settings including inflammation, auto-immune dis-
eases, and transplant rejections [8,9]. In TB patients,
peripheral increases in TNF have been implicated in clinical
worsening [10]. In the absence of TNF signaling, disruption of
granulomatous formation as well as dissolution of granulo-
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mas during chronic infection occurred, resulting in death of
the mice [1,4,11].

TNF is initially a transmembrane (tmTNF) protein that
undergoes cleavage by the specific metalloproteinase TNF-
converting enzyme (TACE) to form a soluble trimer [soluble
tumor necrosis factor (sTNF)] [12]. Both forms of TNF
function by binding to one of two receptors, TNFR1
(TNFRp55) and TNFR2 (TNFRp75) [13]. It was reasoned that
transmembrane ligands of TNF superfamily might elicit
bidirectional signals (reverse signaling) [14]. That hypothesis
was supported by data describing potential receptor-like
properties of tmTNF [15]. The majority of reverse signaling
described in lymphocytes is stimulatory [16,17], whereas
monocytes are mainly inhibited in their effector functions
[18–20]. For further details, we review TNF biology (sTNF and
tmTNF, receptors, reverse signaling, and the role of lympho-
toxin) in Text S1. Known effects of sTNF and tmTNF on
macrophages and T cells are summarized in Table 1.

Several biologic inhibitors (antibodies and receptor fusion
molecules) have been developed that interfere with TNF
activity and are used to control inflammation in diseases such
as rheumatoid arthritis [21,22] and Crohn’s disease [23,24].
The importance of TNF in control of TB is highlighted by an
increased susceptibility of these patients to TB reactivation

[25,26]. The incidence of TB in individuals receiving antibody
appears to be higher than in those treated with receptor
fusion molecule [27], suggesting that there are differences in
the mode of action of these agents. Alternatively, the dose
and timing of anti-TNF therapy could be modified.
The present study takes a theoretical approach toward

characterizing the role of TNF in protection against the
tubercle bacillus in both active and latent infection. We
extend our previous models [28–31] to investigate the roles
and production of sTNF versus tmTNF. To explore the effects
of TNF blockade, we study two anti-TNF agents, a TNF-
neutralizing antibody and a soluble p75 TNF receptor fusion
(TNFR2Fc). Using a mathematical model, it is possible to
distinguish mechanisms of action of the anti-TNF treatments
and gain insights into the role of TNF in TB control and
pathology.

Results

We describe results in these different areas of TNF study:
mathematical modeling of typical infection progressions in
humans, mechanisms driving infection outcomes, and anti-
TNF therapies. Deletion and depletion experiments are
discussed in Methods. Unless otherwise specified, all plots
are on a linear-log scale.
Negative control simulations have been performed on the

model [31]. The model simulates both latent infection and
active TB outcomes, depending on parameter values. Cell and
cytokine profiles associated with latent and active TB are
shown in Figures 1 and 2, respectively. As discussed
previously [31], we use bacterial load as a marker of disease
progression, where uncontrolled growth is indicative of active
TB.

Latent TB
Simulations predict that with an inoculum of 25 mycoba-

teria [32], latency is achieved (i.e., bacterial numbers are
controlled) in fewer than 300 days, under appropriate
immunologic conditions. Latent TB is characterized by low
levels of extracellular bacterial load (,50 bacteria per cm3 of
granulomatous tissue), and all intracellular bacteria (Figure
1A) reside within a small number of chronically infected
macrophages (MIs) (approximately 15 MI, with 50 intra-
cellular bacteria each). The total population of T cells in
latency (CD4+ and CD8+ T cells combined, Figure 1B and
1C) is comparable with numbers found experimentally, with a
ratio of CD4+/CD8+ T cells approximately one, consistent
with experimental observations [33,34]. During latency, TNF
levels (Figure 1E) are on the order of 0.12 pg/mL (limited

Table 1. sTNF and tmTNF Effects on Lymphocytes and Monocytes/Macrophages

Cell Type sTNF tmTNF

Macrophage Activation [62] (through TNFR1 and TNFR2) Activation [42] (through TNFR1 and TNFR2)

Apoptosis [62] (through TNFR1) Reverse signaling: anergy [18]

Recruitment [6,7] Reverse signaling: apoptosis or cell loss (in pathological states) [19]

Lymphocyte Activation [62] (through TNFR1 and TNFR2) Activation [38] (through TNFR1 and TNFR2)

Apoptosis [62] (through TNFR1) Reverse signaling: activation [16,17]

Recruitment [6,7] Reverse signaling: apoptosis or cell loss (in pathological states) [51]

doi:10.1371/journal.pcbi.0030194.t001
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Author Summary

Tuberculosis (TB) is the leading cause of death due to infectious
disease in the world today. It is estimated that 2 billion people are
currently infected, and although most people have latent infection,
reactivation occurs due to factors such as HIV-1 and aging.
Antibiotic treatments exist; however, there is still no cure and the
current vaccine has proven to be unreliable. Experimental science
has uncovered a plethora of immune factors that help the host
control infection and maintain latency. One such factor, tumor
necrosis factor alpha (TNF), is a protein that facilitates cell–cell
communication during an inflammatory immune response. Animal
models have shown that TNF is necessary for control of TB infection.
Different types of anti-TNF drugs were developed for patients with
non-TB related inflammatory diseases such as rheumatoid arthritis
and Crohn’s disease. Some of these patients who had latent TB
suffered reactivation, especially with one drug type. Because these
studies cannot be performed in the mouse, and nonhuman primates
are expensive, we developed a computational model to perform
virtual clinical trials (VCTs) that predicted why reactivation occurs
and why it happens differentially between the two classes of drugs
tested. We make recommendations on how this issue can be
combated.

TB Reactivation in Anti-TNF Treatment



inflammation) as levels of MIs and MAs (activated micro-
phages) are relatively low (and these are major TNF
producers). This small amount of TNF is significant, as
neutralizing this concentration of TNF drives the system into
active TB (see the section ‘‘TNF depletion and anti-TNF
treatments’’). This indicates a critical role for even small
amounts of TNF in maintaining latency. Predicted ranges for
IFN-c and IL-10 (Figure 1D) all correlate with studies
measuring cytokine levels at the infection site [35–37]. Total
macrophage numbers do not change significantly in the first
year post-infection, and resident macrophages remain rela-
tively constant, while numbers of MIs and MAs remain below
50 (Figure 1F).

Sources of TNF during Latency
The roles played by different cellular sources of TNF

involved in protective immunity remain unclear. During
latency we evaluate and compare production of TNF by
macrophages and lymphocytes (Table S2). The model predicts
that macrophages are the main producers of TNF during the
early phase of infection, and that once latency is achieved

lymphocytes and macrophages produce similar amounts of
TNF. This supports the idea that macrophages are key in
establishing latency via TNF production, while T cell–derived
TNF is essential, but not sufficient, for protection against Mtb
infection, as shown in experimental data in mice [38].

Active TB
As discussed in the Methods section, by choosing different

sets of parameter values, the mathematical model can
simulate active infection. Active TB is characterized by
uncontrolled growth of intracellular and extracellular bac-
teria throughout the simulation (500 days), reaching a total
bacterial load of 108 per cm3 of granulomatous tissue
approximately at day 300 (Figure 2A). Resident macrophage
numbers drive cytokine dynamics in the first 300 days. When
resident macrophage populations begin to fall (because they
all become infected), a switch in bacterial populations occurs:
extracellular bacteria are continuously increasing due to MIs
bursting while intracellular bacteria reach a saturation level
(determined by the level of available macrophages). High
bacterial load is coupled to very high levels of IFN-c (Figure

Figure 1. Mathematical Model Simulation of a Latent State

Shown are intracellular and extracellular bacterial loads (A), CD4+ and CD8+ T cells (B,C) (linear scale), cytokines (D,E) (linear scale), and macrophages
(F). The volumetric unit for cell and bacteria populations is number per cm3 of a granulomatous tissue. The unit of measure for cytokine concentrations
is pg/mL of granuloma homogenate.
BE, extracellular bacteria; BI, intracellular bacteria; MA, activated M/; MI, infected M/; MR, resident M/.
doi:10.1371/journal.pcbi.0030194.g001
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2D) and TNF (;1000 pg/ml, see Figure 2E). Total macrophage
population increases within the first 200 days, and by one
year post-infection most of them are infected (see Figure 2F).
T cell numbers (Figure 2B and 2C) are comparable with
macrophage numbers during active TB (approximately 105

cells per cm3 of granulomatous tissue). IL-12, IL-10 (Figure
2D), and IL-4 levels (Figure 2 E) are also qualitatively and
quantitatively similar to those observed in murine and NHP
models as well as from limited human studies. For more
details, see [31].

Uncertainty and Sensitivity Analysis
We investigate the importance of specific TNF-dependent

mechanisms that allow for infection control via sensitivity
and uncertainty analyses (see Methods). We observe how
variations in different sets of parameters affect bacterial load.
Table 2 illustrates TNF-dependent factors that, when varied,
promote either lower bacterial levels (from latency) or
increased bacterial load and reactivation of latent TB.

TNF production. Our sensitivity analysis indicates a critical
role for TNF production by both MIs (a30) and Th1 cells (a32)

throughout the infection (negative correlation values�0.6 to
�0.2, p , 0.001, Table 2). TNF production by CD8+ T cells
(a33) is only significant in the first 250 days post-infection,
suggesting that it is important for establishing latency but not
maintaining it (see Table S2 for TNF production per cell type
during latency).

Cell Recruitment and Activation
The model predicts that enhanced recruitment of lympho-

cytes (Th1, T8, and TC) is a desirable strategy toward
establishing latency, as suggested by the strong and very
significant negative correlation of TNF-dependent recruit-
ment parameters (Sr3b and a3a) with bacterial load throughout
the course of infection. On the other hand, macrophage
activation plays a more important role in maintaining
latency: the correlation between macrophage activation rate
(k3) and bacterial load is significant only after latency is
achieved (,1 year). TmTNF effects on macrophage (f3) and
lymphocyte activation (d) are not significant in either
achieving or maintaining latency.
Among all TNF-related mechanisms, the uncertainty and

Figure 2. Mathematical Model Simulation of an Active TB State

Shown are intracellular and extracellular bacterial loads (A), CD4+ and CD8+ T cells (B,C) (linear scale), cytokines (D) (linear scale) and (E) (linear-log
scale), and macrophages (F) (linear scale). See Figure 1 for measure units and abbreviations. The main differences in parameter value choices used to
distinguish active TB from latency in this simulation are the following: decreased lymphocyte TNF-dependent recruitment, increased macrophage TNF-
dependent and independent recruitment, decreased CTL killing (k52), and increased extracellular bacteria growth rate (a20).
doi:10.1371/journal.pcbi.0030194.g002
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sensitivity analyses indicate that lymphocyte recruitment and
macrophage activation are the most influential toward
controlling bacterial levels when compared with TNF-
induced apoptosis (which is not significant, Table 2). This is
consistent with experimental evidence that TNF-induced
apoptosis accounts for only 5%–10% killing of MIs [39,40].
Our virtual deletion and depletion experiments are consis-
tent with TNF gene knockouts and TNF neutralization studies
(Methods), further supporting that TNF is necessary toward
both achieving and maintaining latency.

A Crucial Role of sTNF in Achieving and Maintaining
Latency

Little or no data are available to indicate the fraction of
TNF (Fa) that is cleaved into sTNF in vivo. We introduce a
parameter r to indicate the fraction of TNF cleaved. The
remaining (1 � r )Fa represents tmTNF (where sTNF +
tmTNF ¼ r Fa + (1 � r )Fa ¼ Fa. Considering the relative
transient expression of tmTNF in vitro [41], we assume that r
is approximately 95% (i.e., only 5% TNF is transmembrane)
so that the majority of tmTNF is cleaved and released in its
bioactive soluble form. We test variations on levels of r
(percent sTNF) and report results in two settings in Figure 3.
First we explore different percentages of sTNF (r) and look at
the effects on bacteria load, and then we deplete different
levels of r after latency has been attained.

Figure 3A shows bacterial load for different percentages r
cleaved TNF. The system gradually shifts to higher bacterial
loads with decreasing amounts of sTNF. This transition arises
through oscillations that push the system to active TB when
sTNF is almost completely deleted (where sTNF is ,3% of
total TNF). We obtain a similar dynamic during a depletion

experiment where at day 500 (after latency is attained) we
deplete varying levels of sTNF from the system (Figure 3B).
The system reactivates when almost no sTNF is released. This
suggests sTNF is necessary to control active TB and to
maintain latency, likely because of its crucial role in
lymphocyte and macrophage recruitment, and that tmTNF
is not sufficient to maintain latency in humans, as seen in
mice [42,43]. Figure S3 numerically shows how the stability of
the latency state is dependent on r and partially explains why
sTNF is necessary to maintain latency (as shown in Figure 3B).

Anti-TNF Therapies
We use the mathematical model to simulate three virtual

clinical trials (VCT) of anti-TNF treatments (protocols are
described in detail in Tables S3 and S4). The first two VCT are
designed to explore which factors contribute most to
reactivation of latent TB during two types of anti-TNF
treatment. The third VCT explores the effects of exposure to
Mtb after anti-TNF treatment is initiated.
Two classes of biological inhibitors were tested in the VCT:

anti-TNF antibody and TNF receptor fusion (TNFR2Fc). We
define each drug as having a specific ability to neutralize TNF
at the granuloma site; these data are not currently known (i.e.,
the drug neutralizing power). We define TNF bioavailability as
the amount of total TNF available for use in the granuloma
during anti-TNF treatment. Since we model TNF concen-
trations in granulomatous tissues, high bioavailability of TNF
during therapy translates into a low neutralizing power of the
drug or low penetration of the drug into granulomatous
tissue.
As shown above (Figure 1), our simulation of the latent TB

state predicts TNF levels at 0.12 pg/mL. This is the same order

Table 2. Uncertainty and Sensitivity Analyses of the Model for TNF-Related Parameters

Parameters Description Correlation with Total

Bacterial Load

Significance

TNF production a30 Rate of production by MIs Negative (�0.5 to �0.3) Always very significanta

a31 Max rate of TNF production by MA

(induced by either IFN or BT)

Positive NS

s10 IFN-c Negative NS

a32 Rate of production by Th1 cells Negative (�0.6) Always very significant

a33 TNF production by T8 Negative (�0.2, �0.1) Significant in the first 250 days

Macrophage

activation

k3 Activation rate of macrophages Negative (�0.15) Significant after 300 days

c8 Half-saturation of second stimulus for

macrophage activation (by bacteria or TNF)

Positive (0.1, 0.2) Significant after 200 days

TNF-dependent

recruitment

scaling1 Rate of TNF-independent recruitment

of lymphocytes

Negative (�.1) Significant in the first week

and between 120 and 160 days

a3a (TNF-independent recruitment of Th1) Negative (�0.7, �0.9) Always very significant

scaling2 Rate of TNF-dependent recruitment of lymphocytes Negative (�0.8) Always very significant

Sr3b (TNF-dependent recruitment of Th1) Negative (�0.7, �0.9) Always very significant

a3a (TNF-dependent recruitment of T8 and TC) Negative (�0.7, �0.9) Always very significant

r Proportion of sTNF and tmTNF Negative (�0.8) Always very significant

Apoptosis (MI) k14a Rate of CD4-dependent apoptosis
Negative

(�.6 to �.4)

Always very significant

k14b Rate of TNF dependent apoptosis Negative NS

Reverse signaling (RS) f3 Direct ‘‘downregulation’’ effect of macrophage

activation through tmTNF-reverse signaling

Negative NS

d Extra T cell activation induced by RS Positive (0.3) NS

*NS, not significant; significant (p , 0.05); very significant, p , 0.001.
doi:10.1371/journal.pcbi.0030194.t002
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as those obtained via our granuloma homogenate data of 0.5
pg/ml derived from a nonhuman primate model (see Text S2).
When performing deletion and depletion experiments, we
determined that only a small percentage of the total latency
TNF was required to maintain latency (see Methods). At levels
of TNF below that minimum, the system always reactivated.
We assume treatment affects TNF bioavailability such that
only a percentage of the latency level is bioavailable. We
define reactivation threshold (RT) as a level (percent of TNF in
latency) of bioavailable TNF below which results in reactiva-
tion (see Methods). Thus, during anti-TNF treatment we can
predict whether the bioavailable TNF is pushed below this

threshold, leading to reactivation. If the RT is high, then more
bioavailable TNF is required to maintain latency; if RT is low,
only very low levels of bioavailable TNF are needed to
maintain latency.

Virtual Clinical Trial 1
A series of VCT were simulated assuming different TNF

bioavailability ranges induced by the two different treatments
and a natural biological variation of r (percentage of total
TNF cleaved and released as sTNF). Considering the transient
expression of tmTNF in vitro [41], we assume r varies
between 50% and 100%. Table 3 illustrates the results in

Table 3. Virtual Clinical Trial 1 (VCT1)

r: Percent of Total

TNF Cleaved

TNF Bioavailability during

Treatment: Percent Left of

Latency Level

Reactivation per 100

Patients Given Anti-TNF

Antibody

Reactivations per 100

Patients Given TNF

Receptor Fusion

50%–100% ,20% 100 100

20%–30% 100 83

30%–50% 34 4

.50% None None

Number of reactivations per 100 virtual patients using both TNF receptor fusion and anti-TNF antibody treatments.
doi:10.1371/journal.pcbi.0030194.t003

Figure 3. Comparing the Roles of sTNF and tmTNF

(A) Mathematical model simulations of total bacterial load corresponding to different proportions r (percent sTNF versus tmTNF); all the other
parameters are fixed to parameters yielding a latent state (see Table S6).
(B) Simulated depletion of variable levels of sTNF. Until day 500, the system is in latency and r ¼ 0.95. Then at day 500, the depletion of sTNF is
performed. Different values of r are shown, where r is the percent cleaved TNF (sTNF). Total bacterial loads are shown corresponding to different
percentages of sTNF after day 500.
doi:10.1371/journal.pcbi.0030194.g003
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terms of number of reactivations per 100 latently infected
virtual patients.

If TNF bioavailability at the granuloma site is ,20% of
baseline latency level (at the initiation of therapy at 500 days),
both treatments induce 100% reactivation. In the range
20%–30%, anti-TNF antibody always causes reactivation,
while TNFR2Fc reactivates 83/100 virtual patients. At higher
bioavailability ranges (30%–50%), the differential risk of
reactivation goes down to 34 or 4 per 100 virtual patients for
anti-TNF antibody versus TNFR2Fc, respectively. No reac-
tivation occurs for both treatments if more than 50% of TNF
is bioavailable. The prediction that anti-TNF antibody treat-
ment has a stronger impact on reactivation risk than
TNFR2Fc in the bioavailability range of 20%–50% suggests
that other factors may be playing a role in reactivation in
addition to bioavailability. To explore this, we simulated
another clinical trial.

Virtual Clinical Trial 2
In addition to bioavailability, the percentage of total TNF

cleaved (r) may also be an important variable. First, we will
assume that both molecules equally affect TNF bioavail-
ability so we can explore independently the effects of sTNF
versus tmTNF levels. Table 4 shows results for evaluating RT
for different r to investigate the role of tmTNF in TB
reactivation during anti-TNF therapy. If we assume that r is
not very variable in the population and approximately equal
to 95% (the baseline value that we used to generate our
latency results), and we vary TNF bioavailability in the same
range for both treatments (between 20% and 50%), our
model predictions show that the differential reactivation
risk is 34 per 100 anti-TNF antibody-treated virtual patients
versus 28 per 100 TNFR2Fc-treated virtual patients (Table
4). RTs are not significantly different for this first experi-
ment (25.11% versus 24.19%). However, if r is allowed to
vary from 50% up to 100%, as in VCT1, the VCT now
predicts a differential reactivation risk of 46 per 100 anti-
TNF antibody-treated virtual patients versus 30 per 100
TNFR2Fc-treated virtual patients (Table 4). RTs are now
significantly different (28.62% versus 25.01%, p , 0.001). So,
a lower r (more tmTNF and less sTNF) has a negative impact
on maintaining latency during anti-TNF antibody treatment.

To determine other factors that contribute to reactivation
differences between the two therapies, we now fix both TNF
bioavailability and r. Since the RTs were not significantly

different between the two treatments when r is fixed at 95%,
we isolate the effect of TNF bioavailability by fixing it at 28%.
We chose this value of bioavailability specifically because it
allows us to determine other factors responsible for more
reactivation in the anti-TNF antibody therapy when no
reactivations occur for the TNFR2Fc therapy (Table 4).
Our sensitivity analysis (Table S5) demonstrates that by

varying all 12 parameters in the model that are affected by
anti-TNF antibody treatment, only three contribute signifi-
cantly to the observed reactivation. Cell loss rates of IFN-c
producing CD8+ cell (T8 [31]) and MA induced by anti-TNF
antibody therapy positively correlated with total bacterial
load (ltmTNF-MA and ltmTNF-T8).
The cell loss rate of MI negatively correlated with total

bacterial load (ltmTNF-MI). Thus, anti-TNF treatment reduces
the number of MAs and T8 cells and increases bacterial levels,
increasing risk of reactivation. Although anti-TNF antibody
also reduces the number of MIs, this is not sufficient to
maintain latency. This may explain why a higher percentage
of tmTNF has a negative impact on infection containment
during anti-TNF antibody treatment: with more tmTNF,
more MAs and T8 cells are lost from the granuloma.
Duration of treatment also affects risk of reactivation for

both therapies. Table 5 shows simulation results where we
varied simultaneously TNF bioavailability (between 20% and
50%) and r (between 50% and 100%), setting different
protocols for treatment duration. There is a significant
difference in average RTs between a 12-month regimen and
18- or 24-month regimen for both treatments. We tested
whether bacterial load at treatment initiation affects reac-
tivation risk. If the total bacterial load is ,500 CFU, no
reactivation is observed for both treatments. If total bacterial
load is 2–3 fold higher than latency level (; 3–4e3 CFU), the
system always reactivates for both treatments (unpublished
data).

Virtual Clinical Trial 3
If treatment starts before infection with Mtb occurs, we

assume that drug penetration is not relevant because the
granuloma has not yet formed. We assume instead that a
certain concentration of anti-TNF molecules are present in
the lung where granulomas would begin to form in response
to infection. Average serum concentrations of anti-TNF
molecules are published [44] but no data are available for
lung. It takes 300 days to achieve latency with TNF at 0.12 pg/

Table 4. Virtual Clinical Trial 2 (VCT2)

TNF Bioavailability during Treatment:

Percent Left from Latency Level

r: (Percent sTNF) Anti-TNF Antibody TNF Receptor Fusion

Reactivations per 100

Virtual Patients

Reactivation

Threshold

Reactivations

per 100 Virtual Patients

Reactivation

Threshold

20%–50% 95% 34 25.11% 28 24.19%

50%–100% 46 28.62* 30 25.01%

29% 95% 95 — 0 —

*Very significant (p , 0.001)
Number of reactivations and RTs per 100 virtual patients using both TNF receptor fusion and anti-TNF antibody treatments. The reactivation threshold (RT) is defined in the Methods
section. It represents a threshold where reduction of bioavailable TNF below that percent of latency value leads to reactivation.
doi:10.1371/journal.pcbi.0030194.t004
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mL (see Figure 1). We capture changes in TNF bioavailability
during anti-TNF therapy by dynamically lowering TNF levels
by a constant percentage throughout treatment (Figure S1).
For level of total TNF 50% lower than baseline latency levels,
treatment with either drug leads to disease, following acute
infection, with no significant differences between them
(Figure S2).

Discussion

The major findings from this study are that bioavailability
of TNF following anti-TNF therapy is the primary factor for
causing reactivation of latent infection, that anti-TNF
therapy will likely lead to numerous incidents of primary
TB if used in areas where exposure is likely, and that sTNF—
even at very low levels—is essential for control of infection.

Our model predictions (see Figure 3) recapitulate recent
murine studies that tmTNF is sufficient to provide acute but
not long-term control of Mtb infection [42,43]. We predict
that .2% of total TNF needs to be released in soluble form to
control acute infection and maintain latency. Bacterial loads
increase as the percentage r of total TNF cleaved is
decreased, i.e., allowing more tmTNF in the system.

We use the model to analyze the effects of anti-TNF
therapy by simulating anti-TNF antibody and TNFR2Fc. The
reported measure unit for a steady state or average
concentration of anti-TNF drugs in serum is on the order
of lg/ml. Data on soluble TNFRs concentration in serum are
on the order of ng/ml [45]. We use and predict concentrations
of sTNF within the order of pg/mL based on our granuloma
homogenate data (see Text S2). Given these predicted and
reported concentrations, both treatments can systemically
neutralize most if not all TNF. We can speculate that both
TNFR2Fc and antibody will likely neutralize most if not all
TNF at the granuloma site, if each penetrates granulomatous
tissue equally well. An alternative way to interpret bioavail-
ability is in terms of drug penetration into granulomatous
tissues. However, our studies in murine models suggest that
anti-TNF antibody penetrates or remains in the granuloma at
higher levels than receptor fusion molecules [46]. The
pharmacodynamic differences between these two agents
include increased dissociation rate of TNF from TNFR2Fc
compared with antibody [47]. Whether these differences play
a role inside the granuloma is not known. However, one can
imagine that increased dissociation in the context of high

concentrations of endogenous TNF receptors could lead to
better TNF signaling in the granuloma.
The VCT simulations suggest that TNF bioavailability is the

main factor leading to reactivation by anti-TNF treatments in
latently infected patients. Reactivation always occurs if both
drugs penetrate the granuloma equally well (TNF bioavail-
ability less than 20%). High bacterial load at treatment
initiation increases the likelihood of reactivation. This
suggests that a complete regimen of antibiotic treatment
for Mtb infection prior to anti-TNF treatment could reduce
the risk of reactivation. If TNF bioavailability is equally
affected by the two treatments, differential cell level losses
induced by anti-TNF antibody therapy accounts for higher
reactivation rates: activated CD8+ T cells and MA loss are not
compensated by the apparently beneficial effect of MI loss.
We speculate that the intracellular bacteria released after MI
death induced by antibody binding to tmTNF (whether
dependent on tmTNF reverse signaling or complement
cascade) can only facilitate bacterial clearance by the host
and does not enhance dissemination. Further, our results
show that the longer patients are exposed to anti-TNF drugs
through longer duration treatment protocols, the risk of
reactivation increases. If infection with Mtb occurs after
treatment is initiated, chances of developing active infection
are very high if we assume reasonable levels of drug
penetration into lungs (TNF bioavailability ,50%). This is
particularly important if anti-TNF treatments are imple-
mented in regions of the world where infection risk is
elevated. Bacteria grow uncontrolled when both sTNF and
tmTNF are depleted (anti-TNF antibody therapy).
These data suggest that tmTNF plays a key role in

controlling active infection, where tmTNF preserves a subset
of the beneficial mechanisms of TNF while lacking detri-
mental effects. Our predictions and recent experimental data
[42] support the hypothesis that selective targeting of sTNF
may offer several advantages over complete blockade of TNF
in the treatment of chronic inflammatory diseases.
Current studies in both murine and NHP animal models by

our group are now following up on these predictions. Our
recent data from a mouse model showed that treatment with
anti-TNF Ab in the chronic phase rapidly resulted in
fulminant TB, while treatment with an etanercept-like
molecule (receptor fusion) allowed mice to maintain control
of the infection [46]. In contrast, following treatment with
either antibody or receptor fusion during initial infection
caused mice to succumb rapidly to the infection. This clearly

Table 5. Duration of Treatment study for VCT2

TNF Bioavailability during

Treatment: Percent Left

from Latency Level

r: (Percent sTNF) Duration

(Months)

Anti-TNF Antibody TNF Receptor Fusion

Reactivations per 100

Virtual Patients

Reactivation

Threshold

Reactivations per 100

Virtual Patients

Reactivation

Threshold

20%–50% 50%–100% 12 46 28.62% 30 25.01%

18 82 33.21%* 67 30.34%*

24 85 33.2%* 72 30.98%*

Number of reactivations per 100 virtual patients using both TNF receptor fusion and anti-TNF antibody under conditions of VCT2. The reactivation threshold (RT) is defined in the Methods
section.
*Very significant (p , 0.001).
doi:10.1371/journal.pcbi.0030194.t005
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demonstrated, in a mouse model, that there are differences
between the two TNF neutralizing drugs depending on the
phase of infection [46]. Our studies in NHP model are
ongoing. Finally, this work focuses on reactivation based on
bacteria harbored in the lungs. But data exist suggesting that
bacteria do not reside only in granulomas, but in other places
in the body during latency. For example, recent data by
Neyrolles et al. [48] support the presence of nonreplicating
bacteria in adipose tissue during latent TB infection. In the
future we can consider the role of reseeding of the lungs from
other body sites as a possible feature in reactivation.

Methods

To better understand underlying dynamics of TNF production and
function, we build on our mathematical model of Mtb in humans
using 16 nonlinear ordinary differential equations. The updated
model tracks three macrophage populations (resting, activated, and
infected) and multiple T cell (Th0, Th1, Th2, and CD8+ T cell subsets)
populations [31]. The model also includes five cytokine concen-
trations (IFN-c, IL-12, total TNF, IL-10, and IL-4) and two bacterial
(intracellular and extracellular) populations with numbers represent-
ing temporal dynamics of these populations in the lung (our
modeling environment). The biological assumptions and the equa-
tions of the updated human Mtb model are outlined and described in
the following section.

Model equations. The nonlinear ODE model is based on [31] and
simulates interactions between two bacterial subpopulations, eight
cell populations, and five cytokines. The new terms related to TNF
dynamics are represented in bold and are described in the Methods
section. Submodel diagrams are illustrated in Figures 4–6. They show
macrophage, lymphocyte, and bacteria dynamics, capturing the terms
represented for each of our equations. Cytokine production
dynamics are superimposed on each diagram.

Macrophage dynamics. The equations describing dynamics for the
macrophage subpopulations are given by:

dMR

dt
¼ srM+a4AðMA+w2MI Þ+sr4B

rFa

rFa+f8I10+s4b

� �

�k2MR
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� �
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Figure 4 shows a descriptive diagram of macrophage dynamics, with
the terms captured for each of our equations.

Rate of change of resting macrophages (Equation 1) includes a
source term (srM) and a natural death term (-lMRMR). In the course of
infection, additional resting macrophages are recruited in a TNF-
dependent fashion at a rate Sr4B, and this process is downregulated
by IL-10. We also account for TNF-independent recruitment
mechanisms (for both macrophages and lymphocytes) with a term
that indirectly represent chemokines secreted primarily by MAs and
MIs (a(MA + w MI), 0 , w , 1): the magnitude of recruitment (a)
varies from macrophages to lymphocytes. Resting macrophages at the
site of infection can become chronically infected at a maximum rate
k2 (dependent on the extracellular bacterial load) and activated at
rate k3 (dependent on two signals from IFN-c and either bacteria or
TNF). Note that due to differences in measurement units, TNF is
scaled by a factor b. IFN-c induction is downregulated by IL-4.

MIs (Equation 2) can be cleared by one of several different
mechanisms. Given an average maximal intracellular bacterial
carrying capacity of N, we assume that one-half of the MIs burst

Figure 4. Macrophage Dynamics

Descriptive diagram of macrophage dynamics implemented in the mathematical model in Equations 1–3.
doi:10.1371/journal.pcbi.0030194.g004
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when the intracellular bacterial load reaches NMI. This mechanism
has a maximal rate k17, and is described by a Hill process. Immune
responses also contribute to MI killing by several mechanisms. Both
CD8+ and CD4+ T cells can use the Fas-FasL apoptotic pathway to
induce apoptosis in these cells at a maximum rate k14a. The half-
saturation constant c4 describes the effector-target ratio (Tt:MI) at
which this process is half maximal. TNF can also induce apoptosis by
binding to the TNFR1 receptor. This process is downregulated by IL-
10 and occurs at a rate k14b. Finally, CTL killing by CD8+ and CD4+
T cells happens at a rate of k52. Specifically, CD4+ T cells have a
limited contribution and this is accounted for by scaling the CD4+ T
cell numbers (0 , w1 ,1). CD8+ T cell numbers are scaled by a
Michaelis-Menten term accounting for the indirect dependence on
CD4+ T cells for their killing capability. MAs are generated from the
term in Equation 1 and undergo natural death at a rate proportional
to their number (-lMAMA). MAs can be deactivated by IL-10 at a rate k4.

T cell dynamics.

dT0

dt
¼ a1AðMA+w2MI Þ+sr1B
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Figure 5 shows a descriptive diagram of CD4+ lymphocyte
dynamics, with the terms captured for each of our equations. A
similar diagram can capture the dynamics of CD8+ lymphocytes
(Equations 7–9).

Similar to resting macrophages, recruitment of T cells occurs in
both a TNF-independent and a TNF-dependent manner. The terms
are similar, using different rates for the different T cell subsets (a1A,
Sr1B for Th0 and T80 cells; a3A, Sr3B for Th1 and Th2 cells; a3Ac, Sr3Bc
for CD8+ T cells, respectively). We assume that CD4+ T cells can
arrive at the site of infection either as Th0 (majority), or a small
fraction may arrive already differentiated intoTh1 or Th2 cells (see
Wigginton et al. [28] for a complete discussion).

Upon arriving at the site of infection, Th0 cells (Equation 4) can

Figure 5. CD4+ T Cell Dynamics

Descriptive diagram of lymphocyte dynamics implemented in the mathematical model in Equations 4–6.
doi:10.1371/journal.pcbi.0030194.g005
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proliferate further in response to signals released by MAs at a rate a2.
Th0 cells can also differentiate into Th1 (Equation 5) and Th2
(Equation 6) cells. Th1 differentiation is controlled by IL-12 and IFN-
c and opposed by IL-4 and IL-10. Th2 differentiation is induced by
IL-4 and inhibited by IFN-c. Th0 cells undergo natural death at a rate
(-lT0T0). Th1 cells can be killed due to IFN-c induced apoptosis in the
presence of MAs at a rate lTc. Both Th1 and Th2 cells die naturally at
rates lT1 and lT2, respectively. As is the case for CD4+ T cells, we
assume that CD8+ T cells can arrive at the site of infection as T80
(majority) (Equation 7), or a small fraction may arrive already
differentiated into effector cells of either T8 (Equation 8) or TC
(Equation 9) type. T80 cells are activated due to interaction with Th1
cells and cytokines and have a natural half-life.

CD8+ T cells also undergo IFN-c induced apoptosis at a peak rate
lTcc, and die at a rate lTc. Since the T8s (Equation 8) and Tcs
(Equation 9) are functional subsets of the CD8+ T cell population
(see Introduction), the equations are identical for both. We introduce
a parameter m that accounts for possible overlap between T8 and TC
subsets. This assumption is studied further in the CD8+ T cell
kinetics section of Sud et al. [31].

Cytokine Dynamics.
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TNF (Equation 10) is produced primarily by MIs at a rate a30. MAs
make TNF at a rate a31 in response to IFN-c or bacteria and this
process is inhibited by IL-10 and IL-4. Other sources of TNF are Th1
cells (rate a32) and CD8+ T cells (rate a33) in response to antigen, and
TNF has a given half-life.

Th0, Th1, and CD8+ T cells produce IFN-c (Equation 11) in
response to antigen presentation by MAs at rates a5A and a5B,
respectively. Production by Th0 and T80 cells is further enhanced by
IL-12, and inhibited by IL-10. Other sources of IFN-c, such as NK
cells, are also believed to play a role in TB infection. Since these are
not accounted for in the model, we include an extra source term (sg)
dependent on extent of infection and IL-12 level.

Resting macrophages produce IL-12 (Equation 12) in response to
infection at a rate a23. MAs also produce IL-12, and this process is
downregulated by IL-10. Dendritic cells are the primary source of IL-
12 upon Mtb infection and are accounted for by an infection-
dependent source term, s12. Finally, there is a natural half-life for IL-
12.

IL-10 (Equation 13) is produced mostly by MAs, and this process is
opposed by IFN-c and IL-10 itself at rate d6. Other sources such as
Th1 cells, Th2 cells, and CD8+ T cells produce IL-10 at rates a16, a17,
and a18, respectively. IL-4 is produced by Th0, and Th2 cells produce
(Equation 14) at rates a11 and a12, respectively. IL-4 has a given half-
life of li4.

Bacterial dynamics. Figure 6 shows a descriptive diagram of
bacteria dynamics, with the terms captured for each of our equations.

Intracellular bacteria (Equation 15) grow at a maximal rate a19 with
logistic Hill kinetics accounting for a maximal carrying capacity of a
macrophage. Extracellular bacteria (Equation 16) become intra-
cellular when a macrophage becomes chronically infected at an
assumed threshold of N/2 bacteria, and hence this represents a gain
term for the intracellular bacteria. Bursting of macrophages (k17)
adds to the extracellular subpopulation. To account for loss of
intracellular bacteria due to various killing mechanisms, we assume
each killed MI to hold an ‘‘average’’ number of bacteria, given by
NAVG (,¼N). The corresponding gain in extracellular bacteria
depends on the mechanism of killing: while Fas-FasL–induced
apoptosis (k14a) releases all intracellular bacteria, TNF-induced
apoptosis (k14b) eliminates approximately 50% of the bacteria within
the macrophage, and this is shown by the Nfraca multiplier in the BE
(extracellular bacteria) equation (Equation 16). CTL activity (k52) kills
virtually all the intracellular bacteria, and does not add on to the BE
(extracellular bacteria) population. Lastly, we assume that natural
death of MIs also releases all intracellular bacteria, and this is
modeled as a constant turnover of the bacteria (lIBI) from intra-
cellular to extracellular. Extracellular bacteria grow at a maximum
rate a20. They are taken up and killed by activated and resting
macrophages at rates k15 and k18, respectively.

Figure 6. Bacteria Dynamics

Descriptive diagram of bacteria dynamics implemented in the mathematical model in Equations 15–16.
doi:10.1371/journal.pcbi.0030194.g006
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Representing soluble and transmembrane TNF in the model. sTNF
is produced predominantly by cells of the macrophage lineage upon
infection or exposure to bacteria or bacterial products [49]. Other
cell types producing sTNF include T cells and NK cells [50]. Stimuli
for sTNF production also include chemokines or cytokines (CCL3, IL-
1) and also cellular stress responses such as hypoxia, oxygen radicals,
and temperature shock.

Our previously published models of Mtb infection simulated cell
recruitment as a function of MAs and MIs, the main producers of
chemokine and sTNF. In our most recent model [31], TNF was
explicitly modeled in its soluble form. A TNF-dependent recruitment
term for both macrophages and T cells was included, while
maintaining previous terms to account for additional recruitment
not dependent on TNF [6]. Here we modify the existing model to
include tmTNF and its effects (see Table 1). TNF (labeled as Fa)
represents the dynamics of total sTNF and tmTNF in the system.
Using the model, we investigate how different percentages of total
TNF cleaved (i.e., sTNF) affect infection progression. We updated the
model equations to address tmTNF effects on cell activation and
apoptosis, based on Table 1. A direct effect of tmTNF in T cell
activation (both through TNF receptors and tmTNF reverse signal-
ing) is included in the equation for T0 and T80 (bold term):
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:

The strength of tmTNF effect on T cell activation through TNFR1
and TNFR2 is represented in the model by the coefficient d.

We also add new terms representing apoptosis or cell loss induced
by anti-TNF antibody binding to tmTNF on macrophages [19,20] and
T cells [51]. The cell-loss terms for both MIs and MAs, as well as
lymphocytes, are implemented as follows

�ltmTNF
ð1� rÞFa

ð1� rÞFa+stmTNF

� �
½MA;MI or ef f ector Ts�

These terms are present in the mathematical model only during
anti-TNF antibody treatment simulations. The fraction of intra-
cellular bacteria released in the extracellular domain due to tmTNF-
induced apoptosis of MIs is likely very small [25]. A new term
describes it by multiplying the number of MIs that die by a fraction of
intracellular bacteria being released.

Under pathological conditions (chronic inflammatory states), the
presence of anti-TNF antibodies (and not TNF receptor fusion
molecules) and subsequent binding to tmTNF can induce activation
of the complement cascade (due to high concentration of Abs) [52]
and apoptosis induced by reverse signaling through tmTNF binding
[19]. Activation of complement cascade is supported by data on
Crohn’s disease, and it might not be a mechanism shared among all
the TNF-related pathologies (such as rheumatoid arthritis and
ankylosing spondylitis). The likely consequence of triggering the

complement cascade is the release of intracellular bacteria, while
apoptosis kills most of the intracellular bacteria [53]. A direct
‘‘downregulation’’ effect of macrophage activation through tmTNF
reverse signaling (macrophage anergy or LPS resistance) is included
in the macrophage activation term (k3) as follows (bold term):

k3MR
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:

We do not directly include LTa in the model, but we indirectly
account for LTa-dependent recruitment of macrophages and
lymphocytes during anti-TNF therapy (namely TNF receptor fusion
protein), since TNF receptor fusion protein binds LTa while anti-TNF
antibody does not (see Table S3). We differentiate the two treatments
by downregulating all TNF-independent recruitment terms during
receptor fusion treatment simulations

Computer simulations. Once we derive the model and estimate
parameters, we solve the system of 16 nonlinear ordinary differential
equations to obtain temporal dynamics for each variable. To this end,
we used Matlab version 7.1.0.183 (R14) Service Pack 3 (The
Mathworks) platform and its numerical methods together with a
computer code using a different solver written by our group.

As discussed previously [28,29,31], we chose total bacterial load as a
marker of disease, where bacterial levels can distinguish between two
different scenarios: latent infection (steady state, low stable bacterial
levels) and active disease (unchecked bacterial growth).

Parameter estimation. Before simulations can be performed,
parameters must be estimated from literature sources or by
mathematical means. Values for most model parameters are
estimated from published experimental data or data generated from
our group. Data from human studies and Mtb experiments are
favored over mice and other mycobacterial species, respectively.
Where no appropriate data is available for a given parameter, we
conduct uncertainty analysis to obtain a range within orders of
magnitude. A detailed description of techniques used to evaluate
model parameters, as well as a listing of parameters already estimated
can be found in work previously published by our group [31]. All
parameters newly estimated for the purpose of this work are listed in
Table S6, together with parameters previously estimated. All
parameters have been estimated using approaches similar to those
described in Wigginton et al. [28].

Parameter values represent mechanisms in the host–pathogen
system, and these were estimated from many different experimental
sources. There is great variation that likely exists among them. In
previous work [31], we explored wide ranges on these parameter
values to determine how the system changes when values change. A
group of parameters were identified as being key determinants
between the host–pathogen system achieving latency or going to
active disease (see Table I and II in [31]). These different infection
states are obtained by varying parameter values, as discussed in the
next section. The set of parameters that we used to generate the
simulation of latency (Figure 1) is given in Table S6. Here, we vary
only a small subset of these parameters to obtain an active disease
simulation (see legend of Figure 2 for details).

Uncertainty and sensitivity analysis. There is an intrinsic biological
and experimental variability in rates measured from in vivo or in
vitro studies. Further, some interactions in the Mtb–host system are
not currently measurable, particularly at the level of the lung
granuloma. This complicates accurate estimation of model parame-
ters (baseline values are unknown).

We quantify the importance of each TNF-related mechanism
involved directly and indirectly in the infection dynamics using both
uncertainty and sensitivity analyses as described previously [31]. The
statistical techniques of latin hypercube sampling (LHS) and partial
rank correlation (PRC) [54–57] when combined guide our under-
standing as to how and to what extent variability in parameter values
affects infection outcomes. We employ the LHS method to control
effects of uncertainties in our parameter estimation by varying all the
TNF-related parameters simultaneously. LHS allows for simultaneous
random, evenly distributed sampling of each parameter within a
defined range (stratified Monte Carlo technique). The sampling is
done by varying each parameter over a wide range (up to a factor of
1,000 above and below reported literature data or mathematical
estimates) and performing a large number of computer simulations (n
is significantly large). The stochastic approach allows for a global
sensitivity study as compared with a deterministic analysis that gives
local results based on the sensitivity equations. One major drawback
of the deterministic approach is that the results are based on baseline
values (often unknown) for the parameters involved in the sensitivity
equations. The LHS approach does not suffer from this limitation.
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The PRC method allows us to correlate the variability observed
using the LHS method and to determine which parameters are
responsible for the variation in outcomes. PRC coefficients (PRCCs)
are between �1 and 1 and have a standard p-value that indicates
significance. A negative PRC coefficient indicates that a decrease in
the value of that parameter results in an increase of the bacterial
load. A positive PRC coefficient indicates that a decrease in the value
of that parameter results in a decrease of the bacterial load. PRC
coefficients also evaluate temporal changes in the significance of
these parameters as they relate to bacterial load at different times
during the infection. Statistical significance of these correlations is
assessed by a generalized t-test (see the ‘‘Statistical analysis’’ section).
For example, the rate of TNF production by Th1 cells (a32) is always
very significant and negative (see Table 2): if we lower TNF
production by Th1 cells, bacterial load increases.

Virtual deletion and depletion. As a way to validate the
mathematical model, we recapitulate experimental approaches such
as TNF gene knockouts and TNF neutralization studies. These can be
simulated with our mathematical model as virtual deletion and
depletion simulations, respectively. Virtual deletions remove an
element from the system at day zero while virtual depletions mimic
experimental conditions where an element can be depleted or
neutralized via antibody treatment at any time during the infection.
We can selectively delete or deplete sTNF or transmembrane TNF
(tmTNF) by varying the parameter r prior to infection (Figure 3A) or
after latency is achieved (i.e., at day 500 post-infection, Figure 3B).
Setting r to zero mimics sTNF deletion/depletion, while tmTNF
deletion/depletion is obtained by setting r to 1. We restrict our results
to virtual TNF deletion/depletion studies to investigate the role of
TNF during active and latent TB. Previous deletion and depletion
experiments were performed for all of the relevant cells and
cytokines in the mathematical model (see [31] for details).

When all the TNF is deleted from the system on the same day that
infection is initiated, the system goes to active disease (see Figure 7,
TNF-/-). This occurs with low-level cellularity, i.e., macrophage
numbers are almost an order of magnitude lower (mainly infected
and activated) than when disease occurs in the wild-type scenario (see
Figure 2). This is consistent with studies that report diffuse infection,
where disease is spread throughout a large lung area, resulting in an
overall lower cellular density and widespread tissue damage [2–4,11].
Upon total TNF depletion (performed at day 500 post-infection), the
system progresses to a disease state in fewer than 100 days (see Figure
7, TNF depl). Depletion reduces the total number of macrophages to
25% (unpublished data), consistent with recent studies [6]. T cells are

depleted upon TNF removal mainly because they turn over and are
not quickly replenished: they then recover due to compensatory
recruitment by other TNF-independent mechanisms in response to
high bacterial levels. Thus, the depletion simulations suggest that
although TNF is present at extremely low levels during latency (;0.12
pg/mL of granuloma homogenate, see Figure 1), this low level is
necessary and sufficient for control and maintenance of infection.
This finding is further confirmed later in the anti-TNF treatment
simulations. Our results also indicate that control of infection is a
dynamic, TNF-dependent process involving continual cell turnover,
an outcome that is consistently observed across experimental studies
[8].

Simulated TNF blockade in tuberculosis infection: Anti-TNF
antibody versus TNF receptor fusion. The US Federal Drug
Administration monitors the safety of TNF inhibitors through its
Adverse Event Reporting System (AERS), a surveillance system to
which drug manufacturers are required to submit reports of adverse
events and to which health care professionals and consumers
voluntarily send adverse event reports. Wallis et al. [27] published a
systematic study of granulomatous infections associated with inflix-
imab and etanercept contained in AERS, using reports from 1998
(when the two drugs were approved) through the third quarter of
2002. TB is the most frequent disease, reported in ;144 per 100,000
patients (infliximab-treated patients) and in ;35 per 100,000 patients
(etanercept-treated patients). Although the clustering of adverse
events reported shortly after initiation of infliximab treatment is
consistent with reactivation of latent infection, the number of
infected individuals with latent TB is not reported in the AERS
database for both treatments. There is a possibility that some TB
cases result from infection after therapy is initiated. Anti-TNF
antibody treatment (such as with infliximab) targets both sTNF and
tmTNF. We also account for additional cell loss due to tmTNF
engagement by the drug. TNF receptor fusion treatment (such as with
etanercept) targets sTNF and LTa3. We capture the action of these
two TNF neutralizing drugs by including an additional loss term in
the TNF equation. This term accounts for concentration-dependent
loss of TNF as a function of a drug’s half-life, dissociation rate,
bioavailability, and treatment regiment. Table S3 shows data for
pharmacokinetics (PK), pharmacodynamics (PD), and treatment
protocols (doses and administration) for both drugs. Since our
modeling approach describes average dynamics within a granulom-
atous tissue sample in the lung (see the section ‘‘Measure units and
modeling space’’ for details), we define percentages of neutralized

Figure 7. Simulations of Total TNF Deletion and Depletion

Mathematical model simulations of bacterial loads during TNF deletion (TNF�/-) and depletion (TNF depl). The y-axis represents total bacterial load.
Latency is our wild-type control (see Figure 1). Note, r¼ 0.95 for these simulations.
doi:10.1371/journal.pcbi.0030194.g007
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sTNF and/or tmTNF (bioav) that capture the overall neutralizing
power of either receptor fusion or antibody in granulomatous tissue.

Anti-TNF antibody. Infliximab is a human–mouse chimeric
monoclonal TNF antibody that binds potently and essentially
irreversibly to monomeric and trimeric TNF, both soluble and
membrane-bound, but does not bind to soluble LTa3 [47]. Further,
due to the nature of its interaction with tmTNF, infliximab induces
apoptosis in TNF-producing cells (including MIs and MAs, CD4+ and
CD8+ T cells) via a caspase-dependent pathway [52]. Binding of
infliximab to one subunit of trimeric TNF leaves additional subunits
free to bind other anti-TNF antibodies, raising the possibility of
formation of immune complexes, under certain conditions (i.e., high
TNF levels).

TNF receptor fusion. Another anti-TNF drug, etanercept, is a TNF
receptor p75-IgG fusion protein rather than an antibody. It binds
selectively to human trimeric sTNF and LTa3, with a 4-fold lower
affinity for tmTNF with respect to infliximab [47]. As a result, the
effect of a receptor fusion drug is depletive of sTNF, but is less potent
in binding tmTNF; thus, little or no apoptosis has been observed in
clinical data with this drug. The frequency of reactivation of TB in
etanercept-administered patients appears to be lower than for
infliximab [27], although head-to-head comparison of the two drugs
in human studies have not been performed. While it is possible that
differences in apoptotic activity of infliximab and etanercept yield
these contrasting results, it is more likely that apoptosis coupled with
concentration and timing of TNF neutralization leads to the different
outcomes between the two drugs.

Receptor fusion has a fast dissociation rate: it sheds 50% of sTNF
and 90% of tmTNF in only 10 minutes, but can bind TNF again
immediately [47]. Thus it is possible that the TNF-neutralizing effect
is intermittent: molecules of sTNF and LTa3 are engaged for very
short time intervals, allowing for a redistribution of TNF throughout
the system. However, if receptor fusion concentration is relatively
high, those released molecules will quickly be reassociated with the
receptor fusion and are therefore not free in the system. In contrast,
under situations where TNF is released from the receptor fusion
molecule and there are high numbers of cell associated TNF
receptors present (such as in a granuloma) and possibly a lower level
of receptor fusion (due to poor penetration), TNF might bind to the
cell-associated TNFR1 or TNFR2 instead of back onto the receptor
fusion. This contributes even more to lowering levels of bioavailable
TNF in granulomas during receptor fusion treatment.

We indirectly test LTa-neutralization in the model by lowering all
the TNF-independent recruitment parameters using the bioavail-
ability coefficient (bioav): we assume that LTa-neutralization is of the
same magnitude as sTNF neutralization.

Virtual clinical trials. We perform three VCTs to investigate what
factors contribute most to reactivation during anti-TNF treatments if
patients are latently infected or if exposure/infection occurs after
anti-TNF treatment is initiated.

Several factors and mechanisms hypothesized to be involved in TB
reactivation by anti-TNF drugs can be tested. These include the
differential power of the drugs to neutralize TNF bioavailability [47],
differential inhibition of TNF signaling events (TNFR1/TNFR2
protein ratio expressed on cell surfaces can serve as a possible path
for a cell to direct the consequences of TNF signaling [58]), and
differential induction of target cell death induced by anti-TNF
antibody binding to tmTNF [19,52]. Using the model, we can directly
test the power of the drugs to neutralize TNF by varying the
bioavailability parameter bioav. We can simultaneously explore
differential cell level losses by varying tmTNF-related parameters.
Since we do not model TNF receptors, we currently cannot address
the other hypothesis (TNFR1/R2 protein ratio). Finally, we investigate
both the role of different bacterial loads during latency at treatment
initiation and the duration of therapy as additional factors affecting
risk of reactivation. To test whether bacterial levels play a role in
reactivation rates, we vary two parameters that yield latency scenarios
with higher bacterial levels before initiation of treatment (i.e.,
maximal rates of macrophage activation and CTL killing). The
duration of both anti-TNF antibody and receptor fusion treatments
varies between 12 and 24 months. We classify a virtual patient as
undergoing TB reactivation when the bacterial load grows larger than
105 (latency level) during or after the end of the treatment. See Table
S4 for details on the VCT settings.

Reactivation threshold. We define a reactivation threshold (RT) as a
threshold where reduction of bioavailable TNF below this threshold
level leads to reactivation. This value is expressed as a percentage of
the TNF concentrations defined from the latency value.

Each VCT comprises 100 simulations, where TNF bioavailability is
varied in a specified interval. Each run is classified based on the

bacterial load level, and reactivation is defined when bacterial loads
grows uncontrolled. We define the reactivation subset of the 100 runs
as the collection of all the reactivation cases with their bioavail-
abilities (from the uncertainty analysis). We obtain our RT as the
average TNF bioavailability calculated on the reactivation subset. We
statistically compare RTs between different trials by a standard t-test
(see the ‘‘Statistical analysis’’ section).

Measure units and modeling space. Contradictory data exist
regarding levels of sTNF and sTNF receptors in lung epithelial lining
fluid obtained by bronchoalveolar lavage [45,59] in active pulmonary
TB and healthy subjects. Very limited data are available on
concentration profiles of TNF antagonists outside serum. We can
assume that the concentration of the drug in the plasma (or serum) is
proportional to the average drug concentration in its whole volume
of distribution. The lung is highly vascularized, so average concen-
trations in plasma could be reasonable proxies for the average
concentration of the drugs in the lung. This could be accomplished
mathematically by finding a physiological value that translates blood
to lung (i.e., volume to space) to account for bioavailability. However,
this may not adequately represent diffusion of drug from blood
vessels into consolidated granuloma tissue/caseum.

Average steady-state concentrations of anti-TNF antibodies [60]
and TNF receptor fusion molecules [61] in serum are a function of
the protocol (dose and administration) and type of pathology (see
Table S3). TNF receptor fusion ranges from approximately 1 lg/ml up
to 6 lg/ml. Anti-TNF antibody ranges from 8 lg/ml to 60 lg/ml (see
[44] for details). The modeling space of our most recent model [31] is
the whole human lung. Here we adapted that model to represent
cellular and bacterial dynamics as number of cells or bacteria per cm3

of granulomatous tissue and we describe cytokine concentrations in
pg/mL of granuloma homogenate.

Statistical analysis.We perform PRC (partial Spearman correlation
on rank-transformed data) and t-test (one-tail, two-sample unequal
variance) with Matlab. See the Uncertainty and Sensitivity Analyses
section for more details.
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