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Abstract

The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells
(hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of
pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray
expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with
cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups
corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint
control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://
www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were
predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle
arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-
wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may
influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.
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Introduction

The differentiation of embryonic stem cells (ESCs) in vitro is a

powerful system for identifying developmental cues required for

lineage commitment. Like their in vivo counterparts, the cells of the

inner cell mass of the blastocyst, ESCs can self-renew and

differentiate into all three adult germ layers. Maintenance of

pluripotency and self-renewal depends on the expression of core

transcription factors, including Oct4, Sox2, and Nanog. Whole-

genome expression [1], microRNA (miRNA) [2], and epigenetic

analyses [3,4] of ESC differentiation have identified additional

factors that interact with these core transcription factors to

regulate pluripotency. However, the mechanisms that regulate

ESC maintenance upstream and downstream of these core

regulatory components and the steps required for proper cell fate

commitment are poorly understood, largely because of the

difficulty of obtaining pure populations of fully differentiated cells

and the lack of detailed transcript expression profiles that allow the

analysis of transcription and alternative splicing (AS).

Up to 80% of all human genes undergo AS to produce multiple

mRNA transcripts that differ in their inclusion of exons and

introns [5]. AS often results in unique proteins with biologically

distinct compositions and functions [6]. AS can alter domain

composition and cellular localization, which can confer distinct

signaling properties on the resulting protein. In untranslated

mRNA regions, AS can affect RNA stability and localization [6].

Disruption of AS of a single gene can have profound effects on

cellular development, ranging from improper neonatal cardiac

adaptation [7] to sex-determination [8] and synaptogenesis [9].

Since ESCs can differentiate into all cell lineages, characterizing

isoform expression along specific lineage paths requires efficient

methods to obtain pure cell populations. To this end, hESCs have

been differentiated into neural progenitors (NPs), isolated with an

effective neural differentiation protocol, and profiled with whole-

genome exon-arrays [10]. This technology can measure the

expression of distinct RNA regions and thus identify more

complex modes of gene regulation. This analysis revealed AS of

serine/threonine kinases and helicases, suggesting that coordinat-

ed programs in hESCs direct both cell-type-specific and general

differentiation programs. Comparative genome sequence analysis

within the vicinity of these AS events revealed putative cis-

regulatory sequences that may regulate AS in the differentiation to

NPs [10].

While these methods were an important step toward delineating

the role of AS in differentiation, profiling of other progenitor cell

types and comparisons between cell types is required to identify
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and understand common processes in differentiation and processes

that are specific to different paths of differentiation. Determining

the consequences of AS on a genome-wide basis will require tools

to predict the effects of AS on protein sequence, domain inclusion,

and protein expression.

In this study, we sought to identify AS during differentiation

into different progenitor populations by exon-level genome

profiling of homogenous populations of undifferentiated hESCs

and derived cardiac progenitors (CPs) using a new selectable

marker strategy. By comparing CP differentiation to a reported

dataset of neural differentiation [10], we identified AS events

found only in the differentiation to CPs or the differentiation to

both CPs and NPs (common). AS events with common CP-NP or

CP-specific patterns produced profound changes in predicted

protein domain/motif composition that could affect protein

function and expression. Many AS events modified the predicted

miRNA binding site composition of transcripts, suggesting that AS

may indirectly modulate protein expression.

Materials and Methods

Isolation of hESCs and CPs
The genetically engineered hESC lines and electrophysiology of

derived CPs have been described in detail in [11]. In brief, H9 ESCs

were transduced with a lentiviral preparation that encoded a

neomycin-resistance gene controlled by the REX-1 promoter and a

puromycin-resistance gene controlled by the a myosin heavy chain

promoter. Stable clonal lines were created by neomycin selection of

a homogenous population of undifferentiated hESCs. Embryoid

bodies were formed in suspension culture for 6 days from hESCs

and transferred to gelatin-coated plates. On day 13 of differenti-

ation, embryoid bodies were treated with puromycin for 36 h to

isolate CPs. Total RNA from biological triplicates of neomycin-

selected undifferentiated hESCs and puromycyin-selected day 40

CPs were extracted with Trizol and prepared for hybridization to

human 1.0 ST GeneChip arrays as described [10]. As starting

material, ,1 mg of total RNA was purified with the RiboMinus

human transcriptome isolation kit (Invitrogen), cDNA was frag-

mented and labeled with the GeneChip WT cDNA synthesis and

WT terminal labeling kits (Affymetrix), hybridized to individual

GeneChip arrays (biological triplicates), and scanned according to

the manufacturer’s instructions. The data were deposited in NCBI’s

Gene Expression Omnibus [12] database (GSE13297).

Additional Microarray Data
Human exon array CEL files for the Cythera NP differentiation

datasets (Cy-ESCs and Cy-NPs), HUES6 ESCs, HUES6 NPs, and

fetal human central nervous system stem cells were provided by

the Gage laboratory (http://www.snl.salk.edu/,geneyeo/stuff/

papers/supplementary/ES-NP) [10]. Exon array data for 11 adult

human tissues (testes, spleen, heart, thyroid, muscle, breast,

prostate, liver, kidney, pancreas, cerebellum), were downloaded

from the Affymetrix website [13].

Gene Expression Analysis
The methods and program components of AltAnalyze are

described in detail in Text S1. For this analysis, AltAnalyze

databases (stored as tab-delimited text files) were constructed with

build 49 of Ensembl [14] and human genome build 18 of the

UCSC Genome Database [15] and Affymetrix annotation files.

For all probe sets, expression values and detection above

background (DABG) p values were calculated from AltAnalyze

using the Robust Multichip Average algorithm [16] by interfacing

with Affymetrix Power Tools (APT) [17]. Exon arrays include

probe sets that overlap with both exons that are common to nearly

all mRNA transcripts for a gene and to those that overlap with

only a few mRNA transcripts. Since these common or constitutive

exons most likely indicate transcriptional activity of the gene as

opposed to a rare isoform, probe sets that overlap with the largest

number of distinct mRNA transcripts are considered constitutive

and thus most informative for calculating gene expression values.

The number of mRNAs that overlap with a probe set was obtained

from the Affymetrix annotations file HuEx-1_0-st-v2.na23.hg18.p-

robe set.csv. Only probe sets that overlap with a single Ensembl

gene (based on the start and end genomic coordinates of the probe

set and gene) are considered in AltAnalyze. For each Ensembl

gene and for each microarray, gene expression is determined by

calculating the mean expression of all constitutive probe sets. If no

constitutive probe sets are present for an Ensembl gene, gene

expression is calculated by using the mean of all exon-associated

gene-linked probe set intensities. Complete gene expression results

are provided in Dataset S1.

Alternative Exon Analysis with AltAnalyze
To identify alternative exons, AltAnalyze was run with default

parameters. This analysis consists of (A) selecting microarrays for

expression summarization with RMA, (B) defining biological groups

for each array and pairs of groups for alternative exon analysis (e.g.,

hESCs and CPs), (C) downloading/loading appropriate library and

annotation files for the microarray, (D) defining thresholds for probe

set filtering, (E) defining thresholds for alternative exon analysis

statistics (splicing-index and MiDAS [18]), (F) determining methods

used to identify predicted domains/motifs and miRNA binding sites

predicted to be regulated, (G) running the analysis, and (H)

exporting result files (Text S1). We performed two different sets of

array normalizations. The first included all aforementioned cell

lines and tissues, and the second included only cell lines. The

combined cell line and tissue normalization was only used for

combined gene expression comparison analyses (Figure 1) and

comparison of tissue and cell line splicing patterns. The cell-line-

specific normalization was used for all remaining downstream CP

and NP alternative exon analyses.

Author Summary

The reprogramming of pluripotent stem cells from adult
cells is a crucial step toward producing patient-specific
cells for transplant therapy. Critical to this goal is the ability
to reproducibly drive the differentiation of these cells to
specific fates, such as cardiac and neural cells. While gene
expression is important in tissue specific differentiation,
the impact of alternative splicing on the biology of
differentiating cells has not been fully realized. To identify
specific splicing events that may determine cell-type-
specific differentiation, we compared splicing profiles of
human embryonic stem cells (ESCs) and derived cardiac
and neural precursors using Affymetrix exon tiling arrays.
Segregation of splicing profiles into cardiac-restricted and
common cardiac/neural differentiation pattern groups
revealed unique groups of genes with clear implications
for the biology of cardiomyocyte function and the
maintenance of pluripotent ESCs. Alternative splicing of
many of these genes, notably regulators of cell death and
proliferation, were often predicted to impact protein
domain or microRNA binding site inclusion, suggesting
that the function or expression of these proteins is altered
during differentiation. These results provide further
evidence that alternative splicing is important in shaping
the functional repertoire of ESCs and differentiated cells.

Splicing in hESCs to Cardiac and Neural Lineages
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After RMA expression values and gene expression statistics (e.g.,

hESC and CP group gene expression averages, fold changes, and t

test p values) are exported, AltAnalyze filters probe sets to identify

those that align to a single Ensembl gene and that match user-

defined expression and DABG p value thresholds (Text S1). Only

probe sets with a DABG p,0.05 and a non-log expression value

.70 [19] are retained for further analysis of all hESC–progenitor

pair-wise comparisons. Using the splicing index (SI) method

[19,20], AltAnalyze calculates the likelihood and extent of AS for

all Ensembl genes with one or more constitutive probe sets. Two

probability estimates for alternative exon regulation are calculated

with a one-way analysis of variance model, MiDAS [19], by

interfacing with APT (version 1.4.0) and SI, by performing a t test

of the normalized exon expression values (exon probe set

expression divided by constitutive expression) for the control and

experimental sample groups.

The primary filters for identifying alternative exons were a

conservative SI fold change .1 (equivalent to a 2-fold difference in

expression relative to constitutive expression levels), an SI t test p

value ,0.05, a MiDAS p,0.05, and constitutive gene-expression

fold change ,3 (absolute). Genes with a constitutive fold change .3

were excluded to remove potential false-positive alternative exons

that arise when only constitutive probe set variance is observed. For

this analysis, we considered only AltAnalyze ’’core’’ probe sets and

probe sets overlapping with any mRNA contained within the

AltAnalyze mRNA database (Ensembl or UCSC Genome Database).

To visualize alternative exons in the context of genes, we wrote

a prototype plugin, currently in development, for the network

visualization software Cytoscape [21]. This plugin, Subgene-

Viewer, allows colors indicating inclusion or exclusion of exons to

be mapped onto exon and splicing structures that can be

selectively viewed from protein interaction networks or pathways.

Identifying Alternative Protein Domains and Motifs with
AltAnalyze

To identify protein domains and motifs potentially modified/

disrupted by AS, a series of databases is built with each build of

AltAnalyze (stored as distributed text files). These databases consist

Figure 1. Comparison of hESC differentiation and adult tissue array profiles. Human Affymetrix exon array data were compared for REX+
hESCs and derived CPs; Cythera, HUES6 hESCs and derived NPs; fetal human central nervous system stem cells (hCNS-scns); and 11 adult tissues, processed
by RMA together. (A) Relative changes in gene expression (log2 fold, relative to the global expression mean) for all samples were clustered by array (rather
than genes) for any Ensembl gene with a relative change in gene expression .2. Biological triplicates are indicated for each tissue or cell line. (B) Gene
expression profiles for this combined dataset and for specific markers of CP-specification (columns 1 and 2) and for pluripotency (column 3).
doi:10.1371/journal.pcbi.1000553.g001

Splicing in hESCs to Cardiac and Neural Lineages
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of an aligning and nonaligning protein (competitive isoforms) for

all probe sets (Figure 2B), corresponding protein sequences,

relative comparison information for the two competitive alterna-

tive protein isoforms (e.g., alternative-N-terminal, alternative-C-

terminal sequence) (Figure 2A), protein domains/motif sequences

found in one protein but not the other (Figure 2C), and domains/

motifs whose genomic position overlaps with any probe set

(Figure 2D). In short, competitive protein isoforms are selected by

identifying exons from Ensembl or the UCSC Genome Database

that overlap with a probe set based on genomic position,

identifying mRNA competitive transcripts that contain or do not

contain that exon, comparing the exon structure of all possible

competitive transcripts and identifying a single competitive

transcript pair that contains the fewest combined distinct exons

(exons unique to either transcript) and the most exons in common

to both. Corresponding proteins for selected competitive isoforms

are identified from Ensembl and NCBI’s web services [22] or are

derived by in silico translation. Protein domain and motif sequences

are obtained directly from UniProt’s [23] sequence annotation

features or from InterPro [24] sequence annotations (alignment e-

value ,1) for every Ensembl protein. AltAnalyze reports any

InterPro sequences with a description field or any UniProt

sequence annotation feature that is not of the type CHAIN,

CONFLICT, VARIANT, VARSPLIC, or VAR_SEQ. The

competitive protein isoform analysis only considers the alternative

exon of interest and does not attempt to combine information

from other potential alternative exons. Only InterPro genomic

start and end positions are extracted to determine genomic

coordinate overlap with probe sets.

In addition to these protein annotations, putative miRNA

binding sites from PicTar [25], miRanda (http://www.microrna.

org), miRbase [26] and TargetScan (http://www.targetscan.org)

within probe set consensus sequences are stored in a database for

use by AltAnalyze. Protein and miRNA binding site annotations

for all alternatively regulated probe sets (alternative exons) are

reported in the AltAnalyze results files and are assessed for over-

representation. Over-representation is assessed by calculating an

over-representation z score, a permutation based p value (derived

by re-running the z score analysis 2000 times with random probe

set inputs) and a Benjamini-Hochberg [27] adjusted p value of the

permutation p to take account for multiple hypothesis correction

(Text S1). For all domain/motif and miRNA over-representation

analyses, only elements (domain, motif, or miRNA binding site)

with a z score .2, Benjamini-Hochberg p,0.05 and three or

more genes associated with the element are reported. To test for

differences between the number of miRNA binding sites up- and

downregulated in hESCs versus CPs, the number of genes with

alternative exons up- and downregulated and the number of genes

with these patterns of expression and predicted miRNA binding

sites are evaluated with a x2 test.

Analysis of Variance
To segregate transcriptionally regulated genes and AS events

into CP-specific and common CP-NP differentiation patterns, we

used a two-way ANOVA strategy in which the LIMMA package

in Bioconductor [28] was used to compare day 40 CP arrays with

NP arrays along with their respective pluripotent hESC controls.

The Cythera hESC line dataset was used to examine NP

Figure 2. Assigning AltAnalyze mRNA and protein annotations. Theoretical transcripts with distinct exon compositions are shown. (A)
Distinct alternative (Alt.) exon annotations for five mRNA transcripts, where the filled boxes are sequences retained in the processed mRNA transcript.
Black filled boxes are exons common to all isoforms (constitutive). AltAnalyze considers all alternative exon annotations as AS except for alternative-
N-terminal exons (expressed through alternative promoter selection). (B) All pairs of mRNA transcripts that do or do not align to an exon array probe
set are compared to identify a single pair of competitive isoforms that minimally differ in exon composition. Curved arrows indicate all possible
competitive transcript comparisons. The top selected competitive isoforms (dashed box) have the fewest exon differences and have the most exons
in common. AltAnalyze selects this transcript pair for analysis of downstream protein domain/motif composition, after corresponding protein
sequences are selected. (C) Protein domains and motifs differing between competitive isoforms. Exons for the two transcripts are labeled in order, 59
to 39, with protein sequence and Uniprot features (UPF) or InterPro regions (IPR) corresponding to each exon displayed above or below them. Yellow
filled boxes indicate domains and motifs differencing between the competitive isoforms. (D) Domains and motifs directly aligning to a probe set’s
genomic position. A theoretical probe set aligning to the intron of a gene is shown. InterPro domains/motifs whose genomic position (genomic exon
start and exon end position) overlaps with a given probe set (genomic start and end position) are shown with a yellow filled box. Rather than
comparison of two protein sequences with the competitive isoform analysis, only a single protein sequence is required for the direct genomic
alignment method.
doi:10.1371/journal.pcbi.1000553.g002

Splicing in hESCs to Cardiac and Neural Lineages
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differentiation, which had smaller sample-to-sample variability

than the HUES6 hESC line dataset when analyzed with RMA

(data not shown). Each differentiated condition (CP and NP) was

normalized to the mean of its hESC reference set and used to

calculate a p value to assess whether NP and CP profiles had a

common CP-NP or CP-specific differentiation pattern (termed

here as a differentiation or interaction effect, respectively). The

differentiation p value indicates the likelihood that CP and NP

differentiation have a common expression pattern, whereas the

interaction p value indicates the likelihood that CP and NP

differentiation have a dissimilar expression pattern for a given

exon. For both patterns, a fold difference (log2) .1 was required

for CP vs. REX+ hESCs. Additionally, for the common CP-NP

differentiation pattern group, a fold difference (log2) .0.5 was

required for Cythera NP vs. Cythera hESCs (in the same direction

as the CP comparison); and for the CP-specific group, a fold

difference (log2) ,0.5 (in the same direction as the CP

comparison) was required.

Pathway Analysis
Gene Ontology (GO) and pathway over-representation were

evaluated with the program GO-Elite (http://www.genmapp.org/

go_elite) [29]. Unlike traditional GO analysis programs, GO-Elite

prunes out related ontology terms to report a single significant

term along each branch of the hierarchy when multiple significant

terms are present. GO-Elite also analyzes pathways from http://

WikiPathways.org [30]. GO-Elite uses an over-representation

analysis similar to that applied by AltAnalyze to domains and

other elements. Only GO terms and pathways with a z score .2, a

permutation p,0.01, and three or more regulated genes for the

pathway/GO-term were reported. Complete pathway analysis

results are provided in Dataset S4.

Confirmation of Alternative Exon Expression
Alternative exons were selected for confirmation with RT-PCR

using the following criteria: (1) prior evidence of AS or presence of

predicted miRNA binding sites, (2) a small number of alternative

exons per gene, and (3) predicted domain/motif changes. The

second criterion was applied to favor splice events where both

isoforms could be amplified in a single reaction and where

domain/motif-level changes could be attributed to the splicing

event examined. Fifty alternative exon sequences were selected for

confirmation. Optimal flanking, isoform-specific, or constitutive

primers designed with a custom implementation of primer 3 called

AltPrimer (http://conklinwolf.ucsf.edu/tools/ picoprimer.html).

For RT-PCR, total RNA was diluted to ,10 ng/ml and amplified

with the OneStep Superscript III RT-PCR kit (Invitrogen) for 28,

35, or 40 cycles at annealing temperatures of 55 or 58uC using

isoform-specific or constitutive flanking primers. The reaction

products were separated on a 2–2.5% DNA-agarose gel and

stained with ethidium bromide. An RT-PCR reaction that

produced the correct amplicon sizes was considered to confirm

alternative exon expression. Primer sequences are available in a

Table S1.

Results and Discussion

Comparison of hESC-Derived Cardiac and Neural
Progenitors to Adult Tissues

To identify genes with common CP-NP differentiation or CP-

specific AS patterns, we isolated homogenous populations of

hESCs and cardiac precursors and compared them to a dataset of

neural precursor differentiation [10]. To determine the relation-

ship between undifferentiated, progenitor and adult tissues, we

performed an unbiased analysis using expression clustering and an

analysis of cell-specific marker gene expression.

Homogenous populations of undifferentiated hESCs and CPs

were isolated by modifying the H9 ESC line to stably express

neomycin-and puromycin-resistance genes, driven by the plurip-

otent-cell-specific REX-1 and CP-specific myosin heavy chain

alpha (MHCa or MHY6) promoters, respectively (see Materials

and Methods). In embryoid bodies that underwent puromycin

selection and were differentiated for 40 days, the action potentials

and axial force measurements of the resulting CPs were similar to

those of normal fetal cardiomyocytes [11]. RNA harvested from

REX+ hESCs and CPs was analyzed with Affymetrix human exon

1.0 arrays; these data were combined with a dataset of two

published hESC lines (Cythera and HUES6) and NPs derived

from these hESCs [10] and a dataset of 11 adult human tissues

[13].

Gene expression values from these exon arrays were determined

for constitutive aligning or all probe sets for each Ensembl gene

(Materials and Methods)(Dataset S1). As shown by hierarchical

clustering [31] of these gene expression profiles, the three hESC

lines (H9, Cythera, and HUES6) were more closely correlated to

each other than to their differentiated progenitors or adult tissues

(Figure 1A). However, CPs and NPs, while more closely correlated

to each other and undifferentiated hESCs, were less correlated to

their in vivo tissue counterparts (heart and cerebellum). For several

reasons, such differences are not unexpected; adult tissues are

composed of a variety of cell types, passaged cell lines were

compared to adult cells, the arrays were processed in different

laboratories, and the cells are of distinct genetic origins. Although

gene expression profiles of CPs were not closely correlated with

samples from adult heart, CP gene expression levels were similar

to those of adult heart for all cardiac markers examined

(Figure 1B). Both NP lines express neuron-specific markers [10].

Thus, these progenitor cells are closely related to hESCs but retain

cell-type-specific marker expression and therefore are appropriate

cell systems for assessing AS and differentiation into cardiac and

neural lineages.

AS Is a Key Feature of CP Differentiation
To identify alternative exons in day 40 CPs versus REX+

hESCs and link the results to predicted sequence changes that

might alter protein expression/function, we created a free, open-

source application called AltAnalyze (http://www.AltAnalyze.org)

(Materials and Methods). For exon array analysis, AltAnalyze uses

the SI approach [19,20] to calculate a probe set fold change

corrected for gene-expression and corresponding SI t test and

MiDAS p values. To identify higher-confidence alternative exons,

only regulated probe sets overlapping with exons in annotated

mRNAs (Ensembl or UCSC Genome Browser, including retained

introns) were used for further analyses.

Of the 13,583 genes with evidence of expression, 16% (2,106)

were predicted to have at least one alternative exon in the

differentiation to CPs, as compared to 3,044 genes with up- or

downregulated gene expression (Table 1). Of the alternatively

regulated genes (ARGs) containing one or more alternative exons,

42% (876) had alternative exons with prior evidence of AS

(defined here as alternative or mutually exclusive cassette exons,

alternative splice sites, exon-bleeding [15], alternative-C-terminal

exons or retained introns; see Figure 2A), 8% (170) had an

alternative promoter (AP), and 7% (152) had both; the remainder

occurred in constitutive exons (Dataset S2). Thus, our analysis

predicts that 3% of all Ensembl genes examined (876 of 29,151)

are alternatively spliced relative to 10% (3,044 of 29,151)

differentially expressed during the differentiation of hESCs to CPs.

Splicing in hESCs to Cardiac and Neural Lineages
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As in earlier studies of NP differentiation [10], pathway analysis

of all alternative exons showed that serine/threonine protein

kinases and genes with helicase activity were highly enriched

during differentiation to CPs. We also found over-representation

of actin cytoskeleton, RNA splicing, cell-cell adherens junction,

chromatin binding, regulation of muscle contraction, and cell cycle

checkpoint genes, among others, using the program GO-Elite

(Dataset S4).

Assessing the Impact of AS on Protein Domain and
miRNA Binding Site Architecture

Although analysis of protein composition determined by AS is

not entirely novel [32,33], AltAnalyze has many novel features.

For example, it incorporates protein, domain, and motif

information from multiple protein annotation databases (UniProt,

InterPro), detailed information on the competitive isoforms

analyzed, and analyses of miRNA binding site predictions from

multiple databases (PicTar, miRbase, miRanda and TargetScan).

By default, domain/motif predictions are derived by comparing

two protein isoform sequences—one that aligns to the alternative

exon and another in which the exon is absent from the

corresponding mRNA sequences (competitive isoforms). Since

many aligning and nonaligning mRNAs can exist for each

alternative exon, an algorithm is used to identify isoform pairs

with the smallest differences in exon composition (Figure 2B).

Identification of the corresponding protein (Ensembl or NCBI) or

in silico translation of these competitive isoforms allows AltAnalyze

to identify protein domain or motif sequences (InterPro and

UniProt) that differ in the inclusion of a target exon between the

two isoforms (competitive isoform analysis) (Figure 2C). An

alternative method analyzing domain/motif regulation is also

used, whereby the genomic coordinates of probe sets that

correspond to an alternative exon are compared to the genomic

position of all InterPro domains and motifs for that gene (direct

genomic alignment) (Figure 2D and Text S1). Since AltAnalyze is

a freely distributed software package, these analyses can easily be

applied to any exon-array dataset.

AS Modifies Predicted Protein Domain and miRNA
Binding Site Architecture during Cardiac Differentiation

For alternative exons regulated during CP differentiation,

predicted changes in domain/motif and miRNA binding site

composition were examined with AltAnalyze. The majority of

alternative exons during CP differentiation (79%), corresponded to

competitive mRNA isoforms (sharing some exons, but not the

probed exon) (Materials and Methods) (Dataset S2). Competitive

isoform analysis predicted that one or more protein domains/

motifs would be modified or absent in 62% of alternative exons.

But with the direct genomic alignment method, only 32% of the

alternative exons were predicted to affect domains/motifs.

Although 27% of the direct genomic alignment predictions only

occurred with this prediction method, these typically occurred in

constitutive regions with no competitive isoforms identified. Thus,

many of the domain/motif changes predict by competitive isoform

analysis occurred as result of indirect protein differences (e.g.,

protein truncation), while others could only be identified with the

direct genomic alignment method.

To determine whether certain domains or motifs were over-

represented by both methods, we examined the associated over-

representation z scores and permutation-based p values for all CP

differentiation ARGs (Materials and Methods). Using either the

competitive isoform or direct genomic alignment methods,

AltAnalyze identified over-representation of the laminin globular

domain, myosin head motor region, and spectrin, plectin, collagen

triple helix and rho-binding repeats. In addition, competitive

isoform analysis alone identified the KCNQ, C-terminal and

metalloprotease regions, and the actin-binding, spectrin-actin

binding, KH, CUB, FERM, IQ, SH3, and protein kinase

domains. Direct genomic alignment identified the START lipid-

binding, semaphorin and Dbl homology domains, among others.

Several of these same elements were also enriched with the

AltAnalyze analysis of NP differentiation, including spectrin

repeats and CUB, FERM, IQ, SH3, and the laminin globular

and actin-binding domains (Datasets S2 and S3).

In addition to protein domains/motifs, 12.5% of ARGs

associated with CP differentiation (264 of 2,106) resulted in the

predicted gain or loss of at least one miRNA binding site (Table 2).

Table 1. Alternative gene regulation during CP
differentiation.

Genes (n)
Genes
examined (n)

Differentially expressed genes 3,044 29,151

Genes with alternative exons (ARGs) 2,106 13,583

Alternative splicing (AS) 876

Alternative promoter (AP) 170

AS and AP 152

No evidence of AS or AP 908

Number of genes differentially expressed and alternatively spliced. Gene
expression values were calculated for 29,151 Ensembl gene identifiers, of
which only 13,583 were examined for AS. Genes examined for AS were
required to have constitutive annotated probe sets expressed in both
undifferentiated H9 ESCs and derived CPs. Transcriptional activity of genes
was determined by using either constitutive probe sets, if present, or all probe
sets, when not present. Genes with alternative exons are unique Ensembl
genes reported by AltAnalyze with alternatively expressed probe sets. Genes
with alternative exons only aligning to AS annotations or only to AP
annotations are reported along with genes that associate with both AS and AP
(multiple exons or one exon with multiple annotations) and no evidence of AS
or AP.
doi:10.1371/journal.pcbi.1000553.t001

Table 2. Regulation of miRNA binding sites during CP
differentiation.

Genes (n) Total genes (n)

Differentially expressed miRNAs 26 216

ARGs with miRNA binding sites 264 11,085

Upregulated in hESCs 202

Downregulated in hESCs 60

Up- and downregulated in hESCs 2

Transcriptionally regulated genes annotated as miRNAs and genes containing
alternative exons overlapping with predicted miRNA binding sites. Analysis of
gene transcription data from the Affymetrix exon array, highlights 26 Ensembl
annotated miRNA genes differentially expressed with CP differentiation (up- or
downregulated .2 with a t test p,0.05) out of 216 probed on the array and in
Ensembl. Of the 13,583 genes analyzed for alternative exon expression, 11,085
had probe sets containing at least one predicted miRNA binding site. The
pattern of alternative exon expression is indicated for hESCs relative to CPs.
Upregulation indicates that the alternative exon containing a putative miRNA
binding site is expressed at a higher level in hESCs than CPs, relative to
constitutive expression levels. Genes with up- and downregulation of miRNA
binding sites indicates that more than one alternative exon with miRNA binding
site(s) was present having opposite expression patterns.
doi:10.1371/journal.pcbi.1000553.t002
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Nearly half of the miRNA binding site changes (129 of 264) were

in an exon with evidence of AS, often as a result of intron

retention, exon bleeding, or an alternative C-terminus; the

remainder were in a constitutive exon with a variable 39 length

and thus are not likely due to AS (Dataset S2).

Interestingly, a recent study also observed alternative expression

of exon regions containing miRNA binding sites, when these cells

began to actively divide [34]. This study was performed with the

mouse Affymetrix exon array and revealed shorter untranslated

regions (UTRs) and fewer miRNA binding sites in the mRNAs of

proliferating CD4 positive T lymphocytes. Similarly, fewer

predicted miRNA binding sites were found in pluripotent REX+
hESCs than in CPs (204 downregulated alternative exons with

binding sites in hESCs out of 264, x2 p,0.01). The same trend

was observed for NPs versus hESCs (Datasets S2 and S3). Thus, a

loss of miRNA binding sites may be common to actively dividing

cells. Using the same analysis applied to domains and motifs, only

one miRNA binding site was over-represented among ARGs in

CP differentiation (hsa-miR-219) and only one for NP differen-

tiation (hsa-miR-487a). Neither miRNA has previously been

associated with ESC differentiation.

AltAnalyze Identifies Known Differentiation Splicing
Events That Correlate with Altered Protein Function

Several predicted splicing events identified in CPs were verified

in previous analyses of hESC differentiation. These included genes

that underwent AS in the differentiation to NPs (SLK, SORBS1

[10], and NFYA [35]) and in cardiac/muscle differentiation

(ATP2A2 [36,37], NF1 [38], PKM2 [39], and ANXA7 [40]). SLK

had one of the largest exon inclusion SI scores in hESCs, and

ANXA7 had one of the largest in CPs. RT-PCR analysis of six of

these AS events (ANXA7, ATP2A2, NF1, PKM2, SLK, and VCL)

in REX+ hESCs and CPs verified the expected changes in isoform

expression (Figure 3A–C).

At least three of these verified AS events correspond to modified

protein function/expression, producing differences in cell metab-

Figure 3. Analysis of verified AS events identifies novel functional associations. (A) Expression of splice isoforms confirmed by RT-PCR of
genes with prior evidence of AS. ANXA7, SLK, NF1, and VCL were confirmed with flanking primers, and PKM2 and ATP2A2 with isoform-specific
primers. DNA agarose gel images, with REX+ hESCs RNA on the left side of the gel and CPs on the right. (B–C) Exon structure (top graphic) and
expression profiles (bottom graphic) for ANXA7 and ATP2A2. (B) SI fold changes are shown for probe sets aligning to exons and introns in the
prototype Cytoscape plugin SubgeneViewer. Light red boxes indicate upregulation for CP versus hESC; blue boxes, downregulation; gray boxes no
significant change; white boxes no probe set detected above expression thresholds. Probe set expression values (log2) are displayed for both CP (top
graphs) and NP differentiation (bottom graph), ranked in order of genomic position on the x-axis. Blue data points indicate hESC expression; red data
points indicate CP expression; green data points indicate NP expression. (D) Domain/motif annotations for each PKM2 alternative isoform (M1 and
M2). The two mutually exclusive isoforms produce proteins differing in the predicted inclusion of an FBP binding region and intersubunit contact
(ISC) sequence as defined by UniProt. Yellow and green mutually exclusive exons are shown relative to the translated position of these exons in
resulting proteins. (E) miRNA binding sites that overlap with the last intron of ATP2A2. Exons for ATP2A2 transcripts (solid dark blue, red, and black
boxes) are displayed 59 to 39 (forward strand) along with UCSC splicing annotations (purple box), and aligning probe sets, downregulated in CPs
versus hESCs (blue boxes). These downregulated probes sets correspond to those shown in panel C. ATP2A2 isoforms 2a and 2b are indicated. The
term ’’multiple algorithms’’ indicates that two or more miRNA binding site prediction algorithms (PicTar, miRanda, miRbase or TargetScan) predicted
a binding site in aligning probe sets.
doi:10.1371/journal.pcbi.1000553.g003
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olism (PKM2) [41,42], signaling (VCL) [43], or mRNA stability

(ATP2A2) [36]. In each case, AltAnalyze predicted the regulation

of protein domains or motifs previously associated with these

differences. In the case of PKM2 or pyruvate kinase, two isoforms

(M1 and M2) are expressed through mutually exclusive splicing

(mutual gain and loss of a cassette exon) [39]. Although the two

alternatively spliced exons are the same length (167 base pairs) and

have 60% protein sequence identity to each other, they differ in

their tissue developmental expression patterns, protein motif

composition, and in vivo functions [39]. M1 is largely present in

normal adult heart, skeletal muscle, and brain and is not

allosterically regulated by fructose-1,6-bisphosphate (FBP). M2 is

present only during embryonic development and in tumors, is

regulated by FBP, and promotes proliferation [41,42]. Isoform

expression levels and protein predictions by AltAnalyze matched

the previously identified motif changes corresponding to function-

ally relevant differences in these proteins (loss of the UniProt-

defined FBP binding region and intersubunit contact and

upregulation of the M1 exon in CPs) (Figure 3D).

For vinculin (VCL), the gain of a vinculin/alpha-catenin

sequence by AS is associated with altered ligand binding properties

of the muscle form of the protein [43]. For this same alternative

exon, AltAnalyze predicted the same previously reported protein

sequence difference. For ATP2A2 (cardiac sarco/endoplasmic

reticulum calcium ATPase), intron retention of 4068 base pairs

before the last exon increases the length of the cytoplasmic

topological domain (45 amino acids [aa]) and 39 UTR. Expression

of the long C-terminal form (isoform 2b) of ATP2A2 (hESC-

enriched) increases mRNA degradation of this transcript in vitro

[36]. AltAnalyze similarly predicted that this AS event would

increase the length of the cytoplasmic topological domain

(UniProt), in addition to the inclusion of several putative miRNA

binding sites (hsa-miRNA-429, 200b, and 182), each supported by

evidence from multiple miRNA binding site prediction algorithms

(Figure 3E). CPs had decreased expression of the retained intron

containing these miRNA binding sites relative to hESCs.

Interestingly, two of these miRNAs, miRNA-200b and miRNA-

182, were highly enriched in CPs derived from mouse ESCs [44],

suggesting a possible mechanism for the increased degradation of

the long 39UTR form. Thus, AltAnalyze suggested a new

mechanism for the regulation of ATP2A2 expression by AS.

Regulation of Distinct Pathways for Cardiac- and
Differentiation-Associated Splicing Events

The combination of cardiac and neural differentiation data

provides a unique opportunity to define molecular profiles unique

to or in common to specific differentiation paradigms. To identify

AS events during CP differentiation that correspond to CP-

specification or inhibition/promotion of differentiation, we used

two-way ANOVA to compare alternative isoform expression

between cardiac and neural differentiation (Materials and

Methods). Considering the large number of well-characterized

cardiac, neural, and hESC markers, we initially applied this

method to transcriptionally regulated genes for the two differen-

tiation paradigms. Of 3,044 differentially expressed CP genes,

1,962 had a common CP-NP differentiation expression pattern in

cardiac and neural differentiation (differentiation p,0.05), and

951 were preferentially regulated during CP differentiation

(interaction p,0.05). As predicted, genes with the lowest ANOVA

differentiation (common to CP and NP differentiation) p value

corresponded to key pluripotency factors (e.g., LIN28, OCT3/4)

and pathways (cell cycle control and regulation of pluripotency).

Likewise, genes with the lowest ANOVA interaction (differing in

CP and NP differentiation) p value corresponded to well-described

cardiac markers (e.g., TNNC1, TNNI1, TNNI3, MYH6, MYH7,

PLN, GATA4, GATA6, NPPA, TBX5, TBX20) and pathways

(early cardiac developmental, muscle proliferation, cardiac muscle

contraction) when analyzed with GO-Elite (Figure S1).

When applied to alternative exons regulated during CP

differentiation, this ANOVA method identified 565 genes with a

common CP-NP differentiation expression pattern and 414 genes

with a CP-specific expression pattern (Figure 4A, B). In both

groups, we considered only alternative exons associated with AS

annotations by AltAnalyze. Three AS events identified from

previous studies (SORBS1, SLK, and ATP2A2) were among the

top 26 ranked genes (ANOVA p) in the two expression pattern

groups examined.

When pathway analysis was applied to AS genes with a

common CP-NP differentiation splicing pattern, the most enriched

ontology categories/pathways were water binding, RNA and

chromatin binding, integrin-mediated signaling, microtubule

binding, extracellular matrix, and lipid transport (Figure 4C). In

contrast, AS genes with a CP-specific pattern were enriched in

pathways for phosphatidylinositol binding, sarcoplasmic reticu-

lum, negative regulation of neurogenesis, regulation of heart

contraction, Wnt receptor signaling, and regulation of cyclin-

dependent protein kinase activity. Both sets were enriched in

serine/threonine kinases, helicases, actin cytoskeletal, RNA

splicing, and cell cycle checkpoint genes (Figure 4D and Dataset

S4). These results imply that the loss of pluripotency corresponds

to AS of genes that regulate transcription, cell-cell contact

formation, and metabolism, while cardiac-enriched events favor

contractile pathways, inhibition of neurogenesis, and Wnt

signaling (Dataset S4).

Confirmation of CP Differentiation AS by RT-PCR
Fifty alternative exons with a CP-specific or common CP-NP

differentiation pattern were selected for further confirmation and

in-depth analysis of domain/miRNA binding sites. When applied

to a previously described dataset with comprehensive validation

(knockdown of the splicing factor PTB) [45], AltAnalyze identified

a high percentage of true-positive splicing events (Text S2). To

better assess the impact of splicing on predicted domain/miRNA

binding site composition, genes containing such predictions with

few alternative exons were preferentially tested. RT-PCR analysis

confirmed 44 of the 50 target alternative exons, with 37 displaying

significantly larger shifts in isoform expression than the rest

(Figure 5 and Figure S2). The six failed primer sets produced

either inconclusive results or missing PCR products. For all genes

except VCL, only one alternative exon per gene was tested, even if

multiple exons were predicted.

Genes with some of the most pronounced confirmed changes

and a common CP-NP differentiation AS pattern included those

encoding serine/threonine kinases (SLK, FER, FYN, MARK3),

spectrin-actin binding (SPTBN1, ADD3), cell cycle (MADD,

PCBP4, SEPT6), and cell-cell communication (TJP1) proteins.

Similarly regulated genes with a CP-specific AS pattern included

those encoding calcium signaling (ASPH, ANXA7, ATP2A2), cell

metabolism (PKM2, OGDH), cell cycle (NUMB, UBE4B,

CSDE1, NF1, ANXA7), and double-stranded RNA binding

(STAU1) proteins. Several of these confirmed AS events appeared

to have cardiac/muscle-specific and common CP-NP differentia-

tion patterns when examined with the entire adult tissue/cell line

exon-array panel. This was the case for the genes KIF13A and

CSDE1, each of which showed the highest alternative exon

expression for hESCs or cardiac/muscle cells, respectively, when

compared to all other tissues and cells (Figure 6A–B). Thus, most

of the examined alternative exons have expression patterns
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consistent with those predicted by AltAnalyze and appear to

mimic those in adult tissues.

Identifying Splicing Events Predicted to Modify Protein
Function

The possible effects of AS on protein function are diverse and

therefore challenging to predict bioinformatically. Since AltAna-

lyze identified confirmed domain/motif changes that correlate

with changes in protein function (e.g., PKM2 [41,42] and VCL

[43]), we chose to further explore AltAnalyze’s predictions for the

44 confirmed alternative exons. These analyses are useful for

evaluating how splicing may impact protein domain/motif

inclusion and composition for future validation studies.

High Degree of Specificity of Domain-Level Protein
Predictions

Of the 44 confirmed splicing events for CP differentiation, 34

were initially predicted to alter protein domain or motif

composition (Table 3). Although validation of these events requires

careful in vitro analyses, to evaluate the specificity of AltAnalyze

Figure 4. Genes with common CP-NP or CP-specific AS patterns associate with distinct pathways. AS predictions with evidence of (A) a
common CP-NP differentiation or (B) a CP-specific expression pattern, relative to undifferentiated hESCs. Adjacent to each heatmap are alternative
exons, ranked according to the ANOVA false-discovery rate (FDR) p value. Next to this p value, are the SI fold changes reported by AltAnalyze
(negative values indicate increased alternative exon expression in CPs and vice versa). Gene names in blue have prior evidence of AS during hESC
differentiation; genes in red have prior evidence of AS during cardiac differentiation. Genes associated with GO terms and WikiPathways are graphed
that are overrepresented in genes with a (C) common CP-NP or (D) CP-specific AS pattern.
doi:10.1371/journal.pcbi.1000553.g004
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protein predictions, we examined the genomic overlap of an

alternative exon with domains/motifs (direct genomic alignment)

and performed a more exhaustive competitive protein analysis to

determine whether any comparisons yield an absence of changes

in domain/motif composition (Text S1). This exhaustive method

examines all possible competitive protein isoform pairs and selects

the pair that produces the smallest overall differences in protein

sequence and domain/motif predictions.

Twenty-two of the 34 alternative exons were predicted to have

domain/motif changes with both direct genomic alignment and

competitive isoform analysis. These alternative exons should

directly change the sequence or disrupt a domain/motif and thus

represent higher-confidence predictions. Only one gene, LEFTY1,

was predicted to alter the sequence of a domain (transforming

growth factor b) with direct genomic alignment and not the

competitive isoform analysis. In all but four of these 34 alternative

exons, changes in domain/motif composition were also predicted

by the exhaustive comparison method. Three of these four

alternative exons were present in both untranslated and coding

regions of the different possible isoforms. Since the exhaustive

method is biased towards selection of competitive isoforms that

produce no change in domain/motif composition, only compet-

itive isoforms where the alternative exon was present in an

untranslated region were selected. Of the remaining 30 alternative

exons, 17 had identical domain/motif predictions with the

exhaustive and the original competitive isoform analysis and 13

had almost identical predictions (largely the same but sometimes

fewer domain/motif changes) with the exhaustive method (Dataset

S2). Thus, several of the domain/motif changes were only found

with the competitive isoform analysis and not with direct genomic

alignment or the exhaustive methods. However, it is unclear which

predictions are false positives, since AS of a single exon could

theoretically co-segregate with other AS or AP events in the same

transcript.

Impact of Domain-Level Predictions on Known Biology
Predicted changes in protein domain/motif composition for

confirmed splice events could be classified into four groups:

truncation, disruption, exchange, and modification (Figure 5). For

protein truncation or disruption, we can infer potential functional

consequences of the domain/motif change based on known

biology of the protein and its interactions. For exchange or

modification, we can only speculate that the protein function

differs from that of the characterized isoform(s).

Protein Truncation with CP Differentiation
Nine of the confirmed AS events (CDC42, CLK1, EWSR1,

FER, HDAC9, LRRFIP1, OGDH, VCL (exon 10-2), and

WNK2) were predicted to introduce a premature stop-codon into

the transcript, causing either protein truncation (.30% decrease

in protein length) or absence of translation (e.g., nonsense-

mediated decay) [6]. In the majority of cases, except for FER

and LRRFIP1, no protein sequence was found in public databases

for the truncated isoform; therefore, AltAnalyze produced

theoretical protein sequences based on in silico translation. In four

cases (WNK2, CLK1, HDAC9, EWSR1), the in silico predicted

Figure 5. Genes with confirmed AS events have distinct domain-level changes. RT-PCR results for a panel of predicted CP differentiation-
splicing events with both a common CP-NP differentiation and CP-specific ANOVA pattern. Genes are categorized based on predicted domain/motif
changes: truncation, disruption, modification, exchange or no associated predictions. The higher band in each gel image is the longer isoform with
exon inclusion (in); the lower band is the shorter isoform with exon exclusion (ex), unless indicated as a constitutive (cs), mutually exclusive (mx), or
miRNA (miR)-containing exon. Additional confirmed genes are shown in Figures 3 and 7 and are further described in Table 3.
doi:10.1371/journal.pcbi.1000553.g005
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protein was 2–30% of the length of the competitive isoform and

thus likely not to be translated. In addition to these C-terminally

truncated proteins, N-terminal truncation of CDC42BPA, HIF3A

and NAV2 resulted in substantially shorter protein sequences (35–

39%) with a resulting loss in domain/motif predictions. There did

not appear to be a bias towards increased protein truncation in

CPs or hESCs.

Since these splicing events are predicted to significantly reduce

protein size and domain/motif composition, there is a much

higher likelihood that these changes would disrupt protein function

or prevent protein translation. For example, in cardiomyocytes,

the large upregulation (,8-fold by AltAnalyze) of a cassette exon

in the histone deacetylase HDAC9 protein is predicted to truncate

the reference isoform from 1066 to 21 aa. HDAC9 typically

represses expression of myocyte enhancer factor 2 (MEF2), a

potent cardiac inducing transcription factor [46]. Truncation or

more likely absence of translation should thus alleviate HDAC9’s

repressive action on MEF2 transcription factors to promote

cardiogenesis. Among the four MEF2 family members examined

in this analysis, three were transcriptionally upregulated, with

MEF2C increased 51-fold in CPs versus ESCs. In the case of

hypoxia-inducible factor-3a (HIF3A) (common CP-NP differenti-

ation pattern), the putative truncated isoform (lower band by RT-

PCR) was expressed in both hESCs and CPs, while the full-length

isoform was largely restricted to CPs. The truncated form of

HIF3A, resulting from selection of an alternative 59 splice site, is

predicted to disrupt the DNA-binding, PAS, and nuclear

translocation domains and the helix-loop-helix motif. HIF3A

participates in the adaptive response to hypoxia as a transcrip-

tional regulator of downstream genes [47]. The precise function of

this variant is unclear, but its exon and domain structure are

similar to those of a mouse variant of this gene called inhibitory

PAS domain protein, a dominant-negative regulator of HIF3A

transcription [47]. Thus, splicing of HIF3A may play a critical role

in regulating hypoxic responses in pluripotent versus differentiated

cells.

Disruption of Domains and Motifs with CP Differentiation
In addition to protein truncation, removal of protein sequences

was also predicted to disrupt domains and motifs in 10 of the

confirmed AS events (ABI2, ANXA7, ASPH, ATP2A2, KIF13A,

NEDD4, PCBP4, SPTBN1, STAU1, and UBE4B). In CPs, these

predictions include the disruption of the C2 calcium-dependent

membrane targeting domain in the NEDD4 protein with

exclusion of a 72-aa block of exons; intron retention in the

PCBP4 gene, which produces a shorter N-terminus that disrupts a

KH domain; and the disruption of a phosphopantetheine

attachment site in the UBE4B protein with the insertion of a

cassette exon encoding 129 aa. In hESCs, the disruption of

presumptive domains was observed with the exclusion of 61-aa-

encoding exon in the ABI2 protein that eliminated the predicted

presence of a neutrophil cytosol factor domain; and removal of the

first 9 aa from the double-stranded DNA binding domain in the

STAU1 gene.

Since these domains are crucial for the annotated functions of

these genes, the predicted sequence loss or disruption could affect

their function considerably. An example is PCBP4, an RNA-

binding protein and regulator of apoptosis characterized by

presence of a KH domain. PCBP4 with an intact KH domain can

suppress cell proliferation by inducing apoptosis, but is largely

absent in hESCs. Since PCBP4 has a common CP-NP

differentiation-splicing pattern, AS of this gene may be important

in maintaining pluripotency in hESCs.

Two other, genes aspartyl beta-hydroxylase (ASPH) and

spectrin, beta, non-erythrocytic 1 (SPTBN1) both had prior

evidence of functionally distinct splice variants, linked in this case

to the regulation of cardiac physiology. In the case of ASPH, the

cardiac-enriched form specifically complexes with cardiac con-

Figure 6. Comparison of differentiation and tissue AS patterns. (A) For the genes KIF13A and CAPZB, log2 expression values for exon
aligning probe sets are shown; probe sets are ranked in order of genomic position on the x-axis and expression values are plotted on the y-axis. (B)
For both genes, relative exon-inclusion is assessed for CP and NP differentiation conditions and 11 adult tissue conditions by plotting the mean
constitutive gene expression (y-axis) against the expression of the interrogated alternative exon (x-axis). Each diamond represents a distinct tissue.
For KIF13A, exon 41 (E41) is most highly expressed in the hESC lines (H9 and Cythera), suggesting E41 inclusion is greatest in hESCs. For CAPZB, exon
12 (E12) is most highly expressed in muscle (CP, heart and muscle). H9 = REX+ hESC, Cy = Cythera hESCs, Mus = muscle, Hrt = heart.
doi:10.1371/journal.pcbi.1000553.g006
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Table 3. AltAnalyze functional predictions for confirmed CP differentiation AS events.

Gene symbol
ANOVA
pattern SI Exon ID GE fold D Exon annotations

D protein
length Primary functional change

CSDE1 cardiac 24.01 E3 0.05 cassette exon 767-.767

MADD diff 22.04 E28 0.24 cassette exon 1608-.1581

NF1 cardiac 22.28 E57 1.07 cassette exon 2127-.2145

NUMB diff 1.59 E14 20.1 cassette exon 651-.603

SAPS2 diff 22.27 E3|E4 0.17 cassette exon 932-.966

Transcript Truncation

CDC42 diff 21.94 E9-1 0.25 alt-C-term 116-.191 miRNA (gain), GTPase Rab/Ras/Rho (gain)

CDC42BPA cardiac 21.8 E37 0.28 cassette exon 1719-.1045 Kinase (loss), PAK box Rho BIND (gain/loss)

CLK1 cardiac 22.83 I7 0.4 intron-retention 454-.134 Kinase, H+ acceptor (loss)

EWSR1 cardiac 22.03 E16-2 20.3 intron-retention 600-.146 DNA BIND, RRM (loss)

HDAC9 cardiac 23.12 E4 0.78 cassette exon 1066-.21 Interaction w/MEF2, HDAC region (loss)

HIF3A diff 21.67 E8-3 0.06 Alt-59 237-.363 DNA BIND, HLH, PAS, Nuc_translocat (gain)

LRRFIP1 cardiac 23.34 E5 to E9 0.68 cassette exon 752-.640 DNA BIND, PT, PS (loss)

NAV2 diff 22.96 E21|E22 0.77 cassette exon 1493-.2429 Calponin_act_bd, Na_channel4 (gain)

OGDH cardiac 23.14 E6 20.04 cassette exon 1023-.567 2 oxoglutarate_DH_E1, Transketo_Cen_R (loss)

WNK2 diff 22.16 E28 20.28 cassette exon 45-.1004 Kinase, H+ acceptor, PS (gain)

FER diff 1.47 E4 1.54 cassette exon 163-.822 Kinase, H+ acceptor, SH2 (gain)

Disrupted Domains/Motifs Sequences

ABI2 cardiac 21.8 E9 20.19 cassette exon 401-.513 Neu_cyt_fact_2 (gain)

ANXA7 cardiac 24.04 E6 20.32 cassette exon 466-.488 Annexin (gain/loss), Pro-rich (loss)

ASPH cardiac 21.66 E7|E8 0.96 cassette exon 313-.225 miRNA, Asp-b-hydro N-term (gain/loss),
Cytoplasmic/Lumenal Topo, PS (loss)

ATP2A2 cardiac 1.42 E20|E22 1.38 bleedingExon 1042-.997 miRNA, Cytoplasmic Topo (loss)

KIF13A diff 2.03 E41 1 cassette exon 1805-.1770 PS (loss)

NEDD4 diff 1.12 E7 20.02 cassette exon 1000-.1247 C2 Domain (loss)

PCBP4 diff 1.35 E6-3 0.39 intron-retention 369-.397 KH 1 (loss)

SPTBN1 diff 21.96 E34-2 0.45 bleedingExon 2377-.2155 miRNA (gain), Carbohyd-O-linked, Spectrin, PH (loss)

STAU1 diff 21.52 E7 20.04 cassette exon 496-.577 dsRNA BIND (gain)

UBE4B cardiac 21.97 E9 20.41 cassette exon 1173-.1302 Phosphopantetheine attachment (loss)

Exchanged Domain/Motif Sequences

FYN diff 1.57 E12 20.1 cassette exon 534-.482 Kinase (gain/loss)

PKM2 diff 22.64 E12 0.32 cassette exon 531-.531 Kinase (gain/loss), ISC, FBP, PT (loss)

TCF3 diff 21.33 E18 20.75 cassette exon 654-.651 AnnexinVII (loss), bHLH (gain/loss)

Modified Domain/Motif Sequences

ADD3 diff 2 E16 0.26 cassette exon 706-.674 Oxred_Ald_Fedxn_C-term (gain/loss)

CAPZB cardiac 23.77 E12 20.21 cassette exon 272-.277 Factin_cap_beta (gain/loss)

DNM1L cardiac 22.18 E3 20.1 cassette exon 736-.751 Dynamin GTPase (gain/loss)

HISPPD2A diff 1.68 E49-1 20.17 alt-59|cassette exon 1433-.1412 HisAc_phsphtse (gain/loss)

MARK3 diff 21.52 E19 0.04 cassette exon 729-.744 Kinase (gain/loss)

SLK diff 2.44 E15 0.64 cassette exon 1235-.1204 Kinase like (gain/loss)

TJP1 diff 22.27 E24 20.03 cassette exon 1676-.1748 ZU5 Domain (gain/loss)

VCL diff 21.08 E23 20.1 cassette exon 1066-.1134 Vinculin/catenin (gain/loss)

VCL Diff 21.64 E10-2 20.1 alt-59 1066-.222 Vinculin/catenin, PS, PT (loss)

VPS39 Diff 21.53 E3 0.08 cassette exon 875-.886 Citron homology, WD40 (gain/loss)

miR binding site(s)

C6orf134 Cardiac 21.37 E11 0.19 alt-C-term 398-.300 miRNA (gain)

DERP6 Diff 21.68 I8 20.45 intron-retention 316-.279 miRNA (gain)

LEFTY1 Diff 1.19 E4 20.68 366-.366 miRNA (loss)

MAFB Diff 21.01 E1-5 0.41 323-.323 miRNA (gain)
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tractile components (calsequenstrin, triadin, and the ryanodine

receptor) [48] in the release of sarcoplasmic calcium; in contrast,

the hESC-enriched form is highly expressed in neoplastic cells, has

a distinct cellular localization, and has an additional enzymatic

domain that regulates growth factor activity [49,50]. Proteins

encoded by SPTBN1 are found in the sarcomere along the muscle

Z-line and likely contribute to structural stability [51]. Consistent

with AltAnalyze predictions, upregulation of a short form of

SPTBN1 in CPs and NPs is associated with the loss of the

pleckstrin homology domain (producing a loss of inositol-1,4,5

triphosphate binding) [52] and when associated with spectrin

alpha 2, the shorter protein forms more stable tetramers than the

longer protein [53]. Other splicing events had less clear functional

implications on protein sequence, such as the microtubule-

dependent motor protein KIF13A, in which removal of an exon

encoding 35 aa results in the loss of one of three phosphoserine

sites indicated by UniProt. If modulated directly by a protein

kinase, however, such a change could alter the regulation of the

resulting protein.

Exchange of Domain Sequences by Mutually Exclusive AS
Unlike the disruption of a critical protein domain, the functional

impact on a domain with an altered sequence is less clear. As

shown in the case of PKM2, mutual-exclusive splicing can alter the

presence of functionally important protein residues without

significant changes in overall protein sequence. This was also the

case for the E2A immunoglobulin enhancer-binding factor TCF3

and for the serine/threonine and protein-tyrosine kinase FYN, in

which a DNA-binding or kinase domain is specifically altered by

the mutually exclusive exchange of a cassette exon of similar

lengths, respectively. Interestingly, the mutually exclusive isoforms

of TCF3 and the FYN have different biochemical properties

[54,55], suggesting that the domain-level alterations predicted by

AltAnalyze correlate with function. In the case of TCF3, although

the DNA-binding domain is 76% identical between the mutually

exclusive isoforms, the hESC-enriched isoform (E12) has less

DNA-binding affinity than the differentiation-enriched form (E47).

Thus, AS of mutually exclusive exons is a potent means to modify

specific residues within a sequence block without significantly

changing overall protein length.

Modification of Domain/Motif Composition with AS
Although some confirmed AS events significantly changed a

domain sequence, the domain was still called present in both

alternative isoforms. This was the case for nine genes with

confirmed alternative exons (ADD3, CAPZB, DNM1L,

HISPPD2A, MARK3, SLK, TJP1, VCL, and VPS39). Specific

examples include the removal of 32 aa in the C-terminal aldehyde

ferredoxin oxidoreductase domain of the ADD3 protein, insertion

of 13 aa into the dynamin GTPase region of DNM1L,

modification of the C-terminal end of the F-actin capping beta

subunit region of CAPZB, and removal of 11 aa from the N-

terminal Citron homology domain (CNH) of VPS39. In each case,

except VSP39, altering the sequence has unknown consequences

for protein function. VPS39 is a putative adaptor protein that

displays downregulation of a cassette exon in hESCs relative to

CPs. The CNH domain in this protein is required for the

clustering and fusion of late endosomes and lysosomes [56].

Interestingly, the TRAP-1 homologue, the isoform that lacks this

exon, does not mediate lysosomal clustering. Rather, it specifically

associates with the transforming growth factor b signaling

pathway, suggesting that modification of the CNH domain can

alter its signaling properties.

Missing Domain Annotations Affect the Sensitivity of
AltAnalyze Prediction

At least two confirmed AS events (NUMB and MADD) had no

difference in domain-level predictions, but did have known

functional isoform differences associated with the AS events

[57]. NUMB or the Drosophila orthologue NUMB is involved in

early cell-fate decisions [57] and MADD (MAP-kinase activating

death domain) protein is a membrane-bound cytoplasmic adaptor

protein that interacts with the TNF-a receptor 1 to transduce

apoptotic signals [58]. Both genes affect pathways of proliferation

and apoptosis. The CP-enriched isoform of NUMB is antiprolif-

erative, whereas the hESC-enriched form (p71), with a longer

proline-rich region (PRR), retains its proliferative properties

[59,60]. Likewise, expression of the CP-enriched MADD isoform

(IG20) promotes apoptosis, whereas the hESC-enriched isoform

(DENN) is anti-apoptotic and is typically over-expressed in

tumors. These missing annotations were likely due to either an

absence of the domain annotation (PRR) or lack of an annotated

domain/motif. These examples illustrate the dependence of

AltAnalyze’s domain/motif predictions on up-to-date and valid

annotations.

Developmental Regulation of miRNA Binding Site
Inclusion by AS

A number of recent studies demonstrated a critical connection

between miRNA expression and the maintenance of pluripotency

or the differentiation of cardiac cells from hESCs. In our exon-

array gene expression analysis, genes for 26 miRNAs were up- or

downregulated during differentiation to CPs and NPs, including

previously implicated pluripotency (mir-302a, 302b) [61] and

cardiac (mir-133, 23b, 26a) [44] regulated miRNAs (Dataset S1).

Gene symbol
ANOVA
pattern SI Exon ID GE fold D Exon annotations

D protein
length Primary functional change

SEPT6 Diff 2.4 E11 0.59 cassette exon 427-.429 miRNA (loss)

Splicing, protein, and miRNA binding site annotations are shown for alternative exons confirmed by RT-PCR. For each alternative exon, the corresponding gene name
(Gene symbol), ANOVA AS differentiation pattern (ANOVA pattern: diff = common CP-NP differentiation, cardiac = CP-specific), splicing index (SI) fold change, relative
AltAnalyze exon/intron position in the gene structure (Exon ID), gene-expression (GE) fold change (D) for the gene, AS annotations that correspond to the Exon ID,
change in predicted protein length (length of the competitive protein isoforms in hESC-.CP), and top corresponding domain/motif or miRNA binding site annotations
(Primary functional D). Negative SI fold changes indicate increased alternative exon expression in CPs and vise versa. For primary function D annotations, gain indicates
the increase in the expression of an alternative exon overlapping with that domain in CPs versus hESCs, a loss indicates a relative decrease in expression and a gain/loss
indicates that the domain/motif is present in both protein isoforms but with different sequence. PS = phosphoserine modified residue, PT = phosphotyrosine modified
residue, miRNA = miRNA binding site. Complete annotations can be found in Dataset S2.
doi:10.1371/journal.pcbi.1000553.t003

Table 3. Cont.
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Each of these miRNAs was appropriately segregated by ANOVA

pattern analysis (Figure 7A).

Although much effort has been devoted to defining the

expression patterns and novel targets of miRNAs, little is known

about the role of AS in miRNA binding site inclusion in processed

mRNA transcripts. Traditional gene expression microarrays focus

on the coding regions of transcripts and ignore the noncoding

exons, which can be alternatively spliced to produce different C-

terminal exons or 39UTRs of different lengths. However, exon-

tiling arrays allow us to assess mRNA features in tandem with

existing predictions for miRNA binding site position on a global

basis.

Our analysis identified 264 genes with putative miRNA binding

sites that overlap with alternative exons, including those

undergoing AS. We tested 10 of these alternative exons by RT-

PCR and confirmed nine, including the SPTBN1 and ASPH

variants described earlier. Putative miRNA binding sites were

included or excluded as a result of alternative cassette exons

(ASPH, SEPT6), alternative C-terminal exons (CDC42,

C6orf134), bleeding exons (SPTBN1), intron retention (ATP2A2,

DERP6), or 39UTRs with a longer or shorter sequence (LEFTY1,

MAFB) (Figure 7B–D). At least one of these alternative exons

(MAFB), with predicted regulation of a mir-130a binding site, is a

known target of the predicted miRNA [62] (Figure 7C). In

addition to MAFB, several of the putative regulated binding sites

were independently predicted by multiple miRNA binding site

algorithms (ATP2A2, C6orf134, CDC42, LEFTY1).

Examination of miRNAs with previously established hESC or

cardiac differentiation expression patterns identified binding sites

for mir-302a, 302c (ESC), and mir-26a (cardiac) in the alternative

bleeding exon of SPTBN1 and the afore mentioned binding sites

in the 39UTR of ATP2A2. These data suggests a new, largely AS-

dependent mechanism for miRNA regulation of such genes. Since

miRNAs can promote and inhibit the translation of targets

dependent on cell cycle stage [63], there is the opportunity for

complex modes of regulation by these predicted targets in vivo.

Figure 7. Both miRNAs and miRNA binding sites are regulated with hESC differentiation. (A) Expression profiles of two previously
characterized miRNAs, mir-302a and mir-133-1, from combined tissue/cell-line gene expression data. (B) RT-PCR isoform expression of genes with
putative miRNA binding sites within the regulated probe set. The presence of one or more putative miRNAs is indicated by the notation miR. (C–E)
The 39 region of genes corresponding to three genes are shown, where the regulated isoforms are displayed from the UCSC genome browser along
with regulated probe sets and putative miRNA binding site locations. Exons are indicated by thin boxes, UTR regions by thinner boxes and introns by
a line with overlapping arrows. Each gene (MAFB, SEPT6, and CDC42) represents distinct possible modes of exon regulation that lead to altered
miRNA binding site inclusion: shorter 39UTR, alternate cassette exon inclusion, and alternate C-terminal exon. Both MAFB and SETP6 are on the
reverse genomic strand, where orientation is 39 to 59. The term ’’multiple algorithms’’ indicates that two or more miRNA binding site prediction
algorithms (PicTar, miRanda, miRbase or TargetScan) predicted a binding site in aligning probe sets.
doi:10.1371/journal.pcbi.1000553.g007
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Future studies will be aided by a global profile of miRNAs

expression in hESCs and CPs, to determine which miRNAs are

most likely to target these alternative mRNAs.

Summary and Conclusions
Using high-density expression profiling, a new method for

isolating cardiomyocytes, and novel bioinformatics methods

(AltAnalyze), we characterized AS along distinct developmental

pathways that influence both pluripotency and the commitment to

cardiac and neural lineages. In addition to new insights into these

processes, these results offer novel targets for driving the

expression of pluripotent cells to distinct lineages and inducing

pluripotency from adult cells at the level of specific splice isoforms.

We identified genes that undergo AS during differentiation and

observed several global trends which suggest that functional

elements, such as protein domains and miRNA binding sites, are

coordinately regulated by AS. Many alternative exons highlighted

in our analysis were predicted to disrupt or modify functionally

important sequences, such as DNA-binding and protein kinase

domains that are likely impact protein function. Several of our

domain-level predictions also correlated with known changes in

protein isoform function or expression as a result of AS [36,41–43].

Thus, AltAnalyze may be useful for identifying AS events that alter

protein function/expression by disrupting or modifying protein

domains, motifs, or miRNA binding sites.

We identified and confirmed many splicing events that occurred

along pathways of apoptosis and proliferation. Two genes

confirmed by RT-PCR encode the apoptosis activators PCBP4

and MADD. Isoforms for both genes that induce apoptosis, were

downregulated in hESCs but not CPs. Conversely, the prolifer-

ation-promoting isoform of NUMB is expressed in hESCs but is

undetectable in CPs, while the anti-proliferation isoform is

upregulated in CPs, as shown by RT-PCR. These results suggest

the intriguing possibility that splicing may coordinately alter the

functional repertoire of distinct members of the same pathway to

elicit a biological effect, in this case, self-renewal in hESCs. We

also observed AS of the apoptotic regulators CSDE1 and UBE4B

along with previously demonstrated tumor suppressor genes

ANXA7 [40], EWSR1 [64], and PKM2 [41]. Since both PKM2

and the proto-oncogene EWSR1 directly interact with the

pluripotency transcription factor OCT3/4 to promote OCT3/4

activity [41,64], specific isoforms of these genes may also be critical

in the regulation of hESC maintenance.

Although only one confirmed CP-specific AS event (ASPH) was

clearly linked to the regulation of cardiac physiology, several other

novel CP-specific AS events were predicted to alter the

composition of critical protein domains (CAPZB, UBE4B, HIF3A,

HDAC9). One of the most intriguing was AS of the cardiac

inhibitor HDAC9, which results in a highly truncated or

nonexpressed form specifically in CPs. These data further support

a role for AS in the direct specification of cardiac precursors.

Finally, analysis of the overlap between predicted miRNA

binding sites and alternative exons revealed a potential mechanism

by which specific cell types may regulate miRNA activity

independently of miRNA expression. Such regulation involves

AS of exons and differential expression of distal terminal exons,

where the mechanism regulating exon length is unclear. Two

recent analyses have further demonstrated the interaction between

miRNAs and alternatively spliced isoforms [65] or UTRs of

different length [34]. Since miRNA expression is thought to fine-

tune protein expression downstream of transcription, alternative

exon inclusion may be a parallel means of regulating miRNA

binding site selection while still retaining full-length protein

expression.

While we present several new analyses in this study, it will be

essential to experimentally validate these protein and miRNA-level

predictions. Additional computational analyses, such as compar-

ative genomic sequence analysis, will also be important for

delineating common and distinct cis-regulatory sequences that

may regulate cardiac and neuronal splicing. Further refinement of

our algorithm to decrease false negatives, similar to other

approaches [45,66], will also be important in identifying additional

AS events. Finally, future application and refinement of these

analyses to additional cell lineages and time points may yield

greater resolution of AS events that will likely provide insights into

the mechanisms of cell-fate commitment and maintenance of

hESC pluripotency.

Supporting Information

Figure S1 Segregation of transcriptional profiles by comparison

of neural and cardiac differentiation. Patterns of gene expression

are shown for two analyzed pattern groups, (A) common to neural

and cardiac differentiation or (B) specific to CPs. Adjacent to each

heatmap are the top-ranked genes based on ANOVA p values for

each specific pattern; genes highlighted in blue are associated with

ESCs or self-renewal, and genes in red with cardiac-specification.

Gene Ontology (GO) terms and pathways enriched in the (C)

common or (D) cardiac-specific differentiation pattern groups are

displayed as compared to the number of associated gene changes

in each of the two pattern groups. Asterisks indicate significant

GO-Elite scores (permute p,0.01) in the alternate pattern group.

Found at: doi:10.1371/journal.pcbi.1000553.s001 (0.55 MB

DOC)

Figure S2 The first column in each gel is for RNA from REX+
hESCs and the second is CPs. The numbers listed under these

columns are the predicted amplicon lengths for those reactions.

Left adjacent tick marks indicate predicted amplicon positions.

Mx-mx = mutual-exclusive splicing, bleeding = exon bleeding,

miR = miRNA binding site (predicted), ex = exon exclusion

isoform, in = exon exclusion isoform, cs = constitutive mRNA

region.

Found at: doi:10.1371/journal.pcbi.1000553.s002 (3.97 MB EPS)

Table S1 Primer sequences for confirmed and non-confirmed

AS events.

Found at: doi:10.1371/journal.pcbi.1000553.s003 (0.02 MB PDF)

Text S1 Supplemental methods file. Includes detailed descrip-

tions of algorithms, expression filtering and database architecture

of AltAnalyze.

Found at: doi:10.1371/journal.pcbi.1000553.s004 (0.35 MB

DOC)

Text S2 Analysis of sensitivity and specificity of AltAnalyze

predictions with a publicly available alternative splicing validation

dataset (PTB knockdown).

Found at: doi:10.1371/journal.pcbi.1000553.s005 (0.07 MB

DOC)

Dataset S1 Gene expression results from the human exon array

analysis for all conditions examined. Gene annotations, statistics,

ANOVA patterns and log2 expression values provided for all

Ensembl genes.

Found at: doi:10.1371/journal.pcbi.1000553.s006 (9.48 MB ZIP)

Dataset S2 Alternative exon results for CP differentiation.

Multiple spreadsheets are included. Complete probeset- and gene-

level results along with microRNA binding site and protein

domain/motif over-representation analysis results from AltAna-
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lyze are provided. Additional ANOVA pattern, splicing calls and

cross-tissue comparison information is included.

Found at: doi:10.1371/journal.pcbi.1000553.s007 (5.20 MB ZIP)

Dataset S3 Alternative exon results for NP differentiation.

Multiple spreadsheets are included. Complete probeset- and gene-

level results along with microRNA binding site and protein

domain/motif over-representation analysis results from AltAna-

lyze are provided.

Found at: doi:10.1371/journal.pcbi.1000553.s008 (5.18 MB XLS)

Dataset S4 Gene Ontology and pathway over-representation

analyses. The top-scoring terms from GO-Elite are provided for all

comparisons.

Found at: doi:10.1371/journal.pcbi.1000553.s009 (0.17 MB XLS)
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