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Abstract

Cognitive skills undergo protracted developmental changes resulting in proficiencies that are a hallmark of human
cognition. One skill that develops over time is the ability to problem solve, which in turn relies on cognitive control and
attention abilities. Here we use a novel multimodal neurocognitive network-based approach combining task-related fMRI,
resting-state fMRI and diffusion tensor imaging (DTI) to investigate the maturation of control processes underlying problem
solving skills in 7–9 year-old children. Our analysis focused on two key neurocognitive networks implicated in a wide range
of cognitive tasks including control: the insula-cingulate salience network, anchored in anterior insula (AI), ventrolateral
prefrontal cortex and anterior cingulate cortex, and the fronto-parietal central executive network, anchored in dorsolateral
prefrontal cortex and posterior parietal cortex (PPC). We found that, by age 9, the AI node of the salience network is a major
causal hub initiating control signals during problem solving. Critically, despite stronger AI activation, the strength of causal
regulatory influences from AI to the PPC node of the central executive network was significantly weaker and contributed to
lower levels of behavioral performance in children compared to adults. These results were validated using two different
analytic methods for estimating causal interactions in fMRI data. In parallel, DTI-based tractography revealed weaker AI-PPC
structural connectivity in children. Our findings point to a crucial role of AI connectivity, and its causal cross-network
influences, in the maturation of dynamic top-down control signals underlying cognitive development. Overall, our study
demonstrates how a unified neurocognitive network model when combined with multimodal imaging enhances our ability
to generalize beyond individual task-activated foci and provides a common framework for elucidating key features of brain
and cognitive development. The quantitative approach developed is likely to be useful in investigating neurodevelop-
mental disorders, in which control processes are impaired, such as autism and ADHD.
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Introduction

The development of increasingly sophisticated cognitive skills

relies on the maturation of control processes for orienting attention

and allocating resources for task relevant information [1,2]. Such

control processes are important for virtually every complex

cognitive task, and there is growing evidence that they rely on

functional interactions between multiple brain regions [3]. Despite

the critical role of control processes in cognitive development, little

is known about the maturation of functional brain systems

underlying control mechanisms in the developing brain. Here

we use a novel neurocognitive network approach with multimodal

imaging to investigate the maturation of functional brain systems

underlying control processes that support problem solving skills in

young children.

Based on experimental studies across a wide range of cognitive

domains, a number of cortical areas within the frontal lobe,

including the anterior cingulate cortex (ACC), ventrolateral

prefrontal cortex (VLPFC), dorsolateral prefrontal cortex

(DLPFC) and the fronto-insular cortex (FIC) have emerged as

putative sites for implementing different aspects of control

[4,5,6,7,8,9,10]. Yet, even in adults, how these brain regions

interact and implement control is poorly understood. This is

especially surprising because, almost by definition, control

processes should involve multiple interacting nodes of a network.

A key challenge in untangling the potentially complex hierarchy of

frontal control mechanisms is identifying patterns of their

interconnectivity and how causal interactions emerge during

performance of a cognitively demanding task. To date, however,

there have been few systematic investigations of network

interactions underlying control processes in adults and almost

nothing is known about how these processes mature with

development.

In this study we use a theoretically motivated approach to this

problem based on neurocognitive network models derived from

studies of intrinsic brain connectivity. Studies in adults have shown

that the human brain is intrinsically organized into distinct

functional networks [11,12,13]. Remarkably, intrinsic functional
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connectivity analysis has identified two distinct neurocognitive

networks which are particularly important for implementing

dynamic control across a wide range of cognitive tasks: a ‘salience

network’ (SN) [12], anchored in the FIC and dorsal ACC, and a

dorsal fronto-parietal ‘central executive network’ (CEN) anchored

in the DLPFC and the supramarginal gyrus within the posterior

parietal cortex (PPC) [4,12,14]. In adults the FIC node of the SN

has been shown to play a major role in attentional capture, task-

switching and generation of control signals that facilitate access to

working memory resources necessary for a wide range of cognitive

tasks [8]. The FIC consists of at least two cytoarchtectonically

distinct regions – the VLPFC and the anterior insula (AI). While

the VLPFC has been the focus of many investigations of control

[15,16,17], there is growing evidence to suggest that the AI, by

virtue of its tight coupling with the ACC, plays a critical and

distinctive role [8,14,18,19]. Notably, analysis of dynamic causal

interactions has suggested that the AI initiates control signals

which engage the ACC, DLPFC and PPC while disengaging the

default mode network during cognitively challenging tasks [8]. In

this study we use a neurocognitive network model based on the SN

and CEN for investigating fundamental mechanisms mediating

the development of dynamic control processes during cognition.

Over the past decade, several studies have examined develop-

mental changes in the recruitment of brain areas belonging to

these networks using cognitive tasks ranging from response

inhibition, attention, and memory, to decision-making, reasoning

and problem solving [20,21,22,23,24,25,26,27]. Both increased

and decreased recruitment of insula-cingulate and fronto-parietal

systems have been reported over the course of development [28].

Although developmental neuroimaging studies have provided

evidence for immature task-related activation in the VLPFC, AI,

ACC, and DLPFC [1,20,25,28], nothing is currently known

about the maturation of dynamic interactions between these

brain regions. Based on previous studies which have pointed to

developmental changes in activation of areas that overlap with

the SN and CEN we hypothesized that a neurocognitive

network model would help clarify and significantly enhance our

understanding of the mechanisms by which control processes

mature in children.

A systematic network approach has the potential for providing

insights into general development mechanisms mediating dynamic

control processes during cognition. However, in both adults and

children, the differential role and primacy of control signals has

been difficult to disentangle, partly because these areas are

typically coactivated during a wide range of cognitive tasks [12].

More specifically, it has been difficult to disambiguate the

contributions of multiple overlapping frontal lobe regions using

task-based functional magnetic resonance imaging (fMRI). Crit-

ically, the SN and CEN are often co-activated during cognitive

tasks in children and adults, and isolating focal responses in a

consistent manner from task-based fMRI activations is not

straightforward. This is especially true in developmental studies

since children tend to show more diffuse activations in the

prefrontal cortex, making it difficult to disambiguate regional

functional cortical responses [29]. To address this issue in a

principled manner, we used multimodal imaging combining

resting-state fMRI, cognitive task fMRI and DTI to examine

developmental changes in dynamic interactions between the SN

and CEN during cognition, and the underlying structural

connectivity. Resting-state fMRI (rsfMRI) data were acquired

and used to characterize the SN and CEN and to identify their five

major nodes (SN: AI, VLPFC, ACC and CEN: DLPFC, PPC). We

demarcated SN and CEN, and their nodes using analysis of

rsfMRI data. An arithmetic problem solving task was used to

investigate dynamic interactions between the SN and CEN during

cognition. The arithmetic task used is easily understood and

performed with high levels of accuracy by most 7–9 year old

children, and several previous imaging studies have shown that it

consistently activates all major nodes of the SN and CEN in both

children and adults [28,30]. DTI, performed in the same group of

children and adults, was used to examine whether maturation of

functional interactions between specific brain regions was related

to the maturation of white matter pathways that link them. We

predicted that the AI node of the SN would be a hub mediating

dynamic causal interactions in adults but not in children. We

further predicted that, compared to adults, children would have

weaker dynamic causal interactions between the SN and CEN,

and that weaker causal interactions would contribute significantly

to reduced levels of activation as well as lower levels of task

performance in children. Linking functional and structural

connectivity measures, we predicted that immature causal

interactions in children would be reflected in weaker integrity

and density of white matter pathways linking key nodes of the SN

and CEN. Together, these findings would provide novel

information on temporal hierarchy of among prefrontal and

parietal regions implicated in control processes [5,16,17] and for

immature fronto-parietal causal control signals in children.

Results

Behavior
Children (ages 7–9) and adults (19–22) did not differ on IQ

(p = 0.93) or gender (p = 0.75) (Table S1). Although both groups

performed the arithmetic problem solving task with a high level of

accuracy, children were significantly less accurate (t (38) = 5.54;

p,0.001) and slower (t(38) = 10.99; p,0.001) than adults (Figure S1).

Identification of networks and regions of interest
The two main networks of interest – SN and CEN – were

identified using ICA applied to resting-state fMRI data (Figure

S2). From the SN ICA map, we identified ROIs in the AI, ACC

Author Summary

The human brain undergoes significant maturational
changes between childhood and adulthood that are
thought to enable increasingly sophisticated thoughts
and behaviors. One of the skills that we develop over time
is the ability to problem solve, which relies in turn on the
ability to control our attention and successfully direct our
cognitive efforts. Using a novel multi-pronged neuroim-
aging approach, we identify for the first time the dynamic
brain systems underlying the maturation of problem
solving abilities. We find that the anterior insula, part of
a larger network of regions previously shown to be
important for salience processing and generating influen-
tial control signals, shows weaker influences over other key
brain regions important for task performance in children
compared to adults. In addition, structural connections
between the anterior insula and other key regions were
found to be weaker in children compared to adults.
Importantly, measures of causal influences between key
regions could be used to predict individual differences in
behavioral performance. Our study is the first to show that
the anterior insula, by virtue of its dynamic influences on
other key brain regions, shows developmental differences
in both structural and functional connectivity, which may
contribute to more mature cognitive abilities in adulthood
compared to childhood.

Maturation of Control Signals in Cognition
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and VLPFC bilaterally. From the right CEN ICA map, we identified

ROIs in the right DLPFC and right PPC. From the left CEN, we

identified the left DLPFC and left PPC. The anatomical location of

these nodes is shown in Figure S2 and Table S2. Subsequent

analyses were based on these five canonical nodes of the SN and

right CEN. Our analysis focused primarily on these five right

hemisphere ROIs. Additional analyses using ROIs based on regional

peaks selected from task-related activation (Figure S3), and findings

from homologous left hemisphere ROIs (Figure S4) and sensory

ROIs are described in Supplementary Information (Text S1).

Comparison of task-related activation in children and
adults

We first examined fMRI responses within the five SN and CEN

ROIs during the arithmetic problem solving task. Task-related

brain activation was identified using a general linear model with

arithmetic problem solving task versus rest/null condition contrast.

Only correct trials were included in the analysis. All five right-

hemisphere nodes showed significant task-related activation in

both children and adults (Figure 1A, 1B). Compared to adults,

children showed stronger activation in the rAI (t(38) = 3.23;

p,0.01 , FDR corrected) and weaker activation in the rPPC

(t(38) = 3.41 ; p,0.01, FDR corrected) (Figure 1C).

Comparison of functional connectivity in children and
adults

We then examined differences in functional connectivity

between children and adults. Functional connectivity here is

measured as instantaneous correlations between pairs of ROIs

after removal of drift and physiological noise. We found that rAI

connectivity with ACC, rDLPFC, and rPPC, and between the

rVLPFC and rDLPFC was significantly greater in adults,

compared to children (p,0.01, FDR corrected). No ROI pairs

showed greater functional connectivity in children, compared to

adults (p,0.01, FDR corrected).

Latency analysis of regional responses in the SN and CEN
We examined differences in the onset latency of the event-

related fMRI responses in the five right hemisphere ROIs. We

extracted the mean time-course in each ROI, and used a linear

basis function that is a combination of the SPM canonical

hemodynamic response function and a temporal derivative to fit

the event related BOLD response for each subject and event, and

then averaged the fitted responses across events and subjects.

Onset latencies were then computed as the time point at which the

slope of the fitted response reached 10% of its maximum positive

(or negative) slope in the initial ascending (or descending) segment

Figure 1. Brain activation in the Salience Network (SN) and Central Executive Network (CEN) during problem solving. (A) Children
and (B) Adults. (C) Task-related signal change in ROIs within the SN and CEN. Compared to adults, children showed stronger activation in the right AI
and weaker activation in the right PPC (** p,0.01, FDR corrected).
doi:10.1371/journal.pcbi.1002374.g001

Maturation of Control Signals in Cognition
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[8]. This analysis revealed that the event-related fMRI signal in

the rAI has an onset significantly earlier compared to signals in the

rVLPFC, ACC, rDLPFC and rPPC (p,0.01; FDR corrected), an

effect that was observed in both children and adults (Figure 2;

Figure 3, Figure S5). The rAI, but not the other four ROIs, had

onset latencies significantly earlier in adults, compared to children.

Causal interaction between nodes of the SN and CEN
We used two different quantitative methods to examine causal

interactions in fMRI data. Based on our previous studies, we first

used multivariate Granger causal analysis (MGCA) [8] to

investigate dynamic interactions between all five right hemisphere

ROIs. While there are some concerns that systematic differences

across brain regions in hemodynamic lag can potentially lead to

spurious estimations of causality [31] recent analyses suggest that

when applied at the group level, MGCA has good control over

spurious results [32] [33]. Our detailed simulations [34] suggest that

MGCA is able to recover causal network structure in spite of the

presence of HRF delay confounds. In light of these considerations

and other recent discussion about the merits and limitations of

MGCA [33,35] we conducted additional analyses using Multivar-

iate Dynamical Systems (MDS) [34]. MDS is a novel state-space

model to estimate intrinsic and experimentally-induced modulatory

causal interactions between multiple brain regions that overcomes

several limitations of existing methods [34].

Briefly, MGCA detects causal interactions between brain

regions by assessing the relative prediction of signal changes in

one brain region based on the time-course of responses in another.

We performed MGCA using a multivariate model on the time-

courses extracted from each of the ROIs. We used bootstrap

techniques to create null distributions of influence terms (F-values)

and their differences. In children, MGCA revealed statistically

significant direct causal influences from the rAI to the rVLPFC,

ACC, rDLPFC, and rPPC (Figure 4A). In adults, MGCA revealed

causal influences from the rAI to these same regions (Figure 4B).

Quantitative comparison of the strength of causal influences

revealed that the strength of interactions from the rAI to rPPC was

significantly greater in adults, compared to children (p,0.01; FDR

corrected), as shown in Figure 4C. No links showed reduced causal

influence in adults, compared to children.

An identical set of analyses were conducted using MDS

methods which have the advantage of modeling causal interactions

in the latent ‘‘neuronal’’ signals, rather than in the fMRI signal

itself. Furthermore, MDS also takes into account inter-regional

variations in hemodynamic response in an explicit manner [34].

This analysis confirmed results from the MGCA and demonstrate

the robustness of our findings (Figure 4D,E,F).

Graph-theoretical network analysis
To quantify the causal interactions of each node of the network,

we performed graph-based network analyses. Analysis of the

causal network identified with MGCA revealed that the rAI had

the highest number of causal outflow connections (out-degree), the

lowest number of causal inflow connections (in-degree), and the

shortest path length among all regions. The rAI also had a

significantly higher net causal outflow (out-in degree) than all of

the other regions (p,0.05; FDR corrected). These results were

observed in both children and adults, suggesting that the rAI is an

outflow hub in both groups (Figure 5A, Figure 5B). There were no

group differences in the node-wise net causal outflow nor path

length between the groups. Similar graph-based analyses were

conducted on causal network identified using MDS. This analysis

gave results that were identical to those observed from the MGCA

and demonstrate the robustness of our findings (Figure 5C,5D).

Comparison of rAI-rPPC structural connectivity in
children and adults

We used DTI and quantitative tractography to investigate the

anatomical correlates of developmental changes in causal

interactions between the rAI and rPPC. The density of fibers

along the superior longitudinal fasciculus linking the rAI and rPPC

was significantly lower in children compared to adults (p,0.01), as

shown in Figure 6. Mean fractional anisotropy (FA) of rAI-rPPC

tracts was also significantly lower in children (p,0.01). The rAI-

rPPC fibers observed here have been previously identified to be

part of the third component of the superior longitudinal fasciculus

Figure 2. Onset latencies of event-related fMRI responses in the Salience Network (SN) and Central Executive Network (CEN) during
problem solving. Onset latencies in the five key nodes of the SN (blue bars), and CEN (green bars) are shown in (A) Children and (B) Adults. In both
groups, the rAI had earlier onset latencies compared to rVLPFC, ACC, rDLPFC, and rPPC (** p,0.01, FDR corrected). Compared to adults, rAI onset
latencies in children were significantly slower (** p,0.01, FDR corrected).
doi:10.1371/journal.pcbi.1002374.g002

Maturation of Control Signals in Cognition
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(SLF III) which connects the rostral part of the inferior parietal

lobule with the lateral inferior frontal lobe [36]. Visual inspection

of individual subject rAI-PPC SLF III fibers suggest that tracts

emanating from magno-cellular supramarginal area (PFm) [37]

connect to the mid/posterior aspect of the insula. In the absence of

anatomical atlases that clearly demarcate the subregions of insula,

a more definitive statement on the exact trajectories of the insula-

parietal fibers would require future studies that demarcate insula

subregions based on parcellation techniques [38,39,40,41,42,

43,44].

Comparison of structure-function relationships in
children and adults

We compared the relationship between functional and struc-

tural connectivity between the rAI to rPPC in children and adults.

We found that functional connectivity, measured by instantaneous

temporal correlations, and structural connectivity, measured by

fiber density, between the rAI to rPPC was significantly correlated

in adults (r = 0.44; p,0.05) but not in children (r = 0.02; p = 0.9),

as shown in Figure 7. Similarly, causal connectivity, measured by

causal influence terms were correlated with structural connectivity,

measured by fiber density in adults (r = 0.23; p,0.05) but not in

children (r = 0.06; p = 0.78).

Relating causal interaction to behavior in children and
adults

We used multivariate sparse regression analysis, based on

GLMnet [43], to investigate causal network interactions which

collectively predict behavior. Causal functional connectivity

strength between brain regions was used as predictor variables

and either reaction time or accuracy was used as the dependent

variable.

Reaction time. In children, strength of directed causal

influences from rAI to rDLPFC, rAI to ACC, and rAI to rPPC

cumulatively predicted reaction time. The remaining seven

connections were non-significant (zero) i.e. they did not

contribute to the prediction of reaction times. In adults, the

strength of directed causal influences from rAI to rPPC and rAI to

rVLPFC cumulatively predicted reaction time. The remaining

eight connections were non-significant. Comparison of model fit

revealed that causal network interactions better predicted reaction

time in adults (R2 = 0.66, p,0.001; mean square error = 0.54),

than in children (R2 = 0.50, p,0.001; mean square error = 0.75)

(Table 1).

Accuracy. In children, strength of directed causal influences

from rAI to ACC, rAI to rPPC, and rAI to rVLPFC cumulatively

predicted accuracy. The remaining seven connections were non-

significant. In adults, the strength of directed causal influences

from rAI to rACC, and rAI to rPPC cumulatively predicted

reaction time. The remaining eight connections were non-

significant. Comparison of model fit revealed that causal

network interactions better predicted accuracy in adults

(R2 = 0.47,p,0.01; mean square error = 0.76) than in children

(R2 = 0.43, p,0.01; mean square error = 0.83) (Table 1).

Similar results were observed when participant age was included

as an additional predictor variable. More specifically, causal

network interactions outcompeted age in the prediction of reaction

time and accuracy in both children and adults.

Discussion

We used a novel neurocognitive network approach with

multimodal imaging to investigate the maturation of control

processes underlying problem solving skills in 7–9 year-old

children. Task-independent rsfMRI was first used to identify

prominent nodes of the insula-cingulate salience and fronto-

parietal central executive networks, two neurocognitive networks

implicated in fundamental control processes. Functional connec-

tivity and dynamic causal interactions between the major nodes of

these networks were examined during arithmetic problem solving

using multiple analytic procedures. The strength of both directed

and undirected connections between five key nodes of the SN

and CEN was compared between children and adults. Both

Figure 3. Fitted event-related fMRI responses in the Salience Network (SN) and Central Executive Network (CEN) during problem
solving. (A) Children and (B) Adults. The fMRI BOLD response was fitted using a linear basis function that is a combination SPM canonical
hemodynamic response function and a temporal derivative in each of the key nodes of SN and CEN. The fitted responses were averaged across
subject for each node plotted against time for each group. Error bars at each TR show standard error of the fitted responses across subjects.
Expanded view shows time of onset (shown as filled circle) for each of the key nodes. Onset time was defined as the time at which the slope of the
fitted response exceeded 10% of the maximum slope of the ascending part of the response. It can be seen that the rAI had earlier onset latencies
compared to rVLPFC, ACC, rDLPFC, and rPPC in children and adults.
doi:10.1371/journal.pcbi.1002374.g003

Maturation of Control Signals in Cognition
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instantaneous and causal functional connectivity analysis identified

the rAI as a locus of immature control signals in children.

Furthermore, our study provides novel converging evidence from

structural connectivity analysis for weaker white matter pathways

underlying fronto-parietal (rAIRrPPC) control signals in children.

Remarkably, weaker control signals were associated with lower-

levels of task performance in children. Below we describe findings

from our quantitative analysis of dynamic functional interactions

between key brain areas of insula-cingulate salience and fronto-

parietal central executive networks and discuss their implications

for understanding the maturation of fundamental control

processes in the developing brain [8].

rAI is a causal outflow hub by age 9
The rAI showed strong causal influences on the ACC node of

the SN and the DLPFC and PPC regions of the CEN in children

and adults, suggesting that the role of the rAI as a primary node

that drives the CEN is established early in development. Two

additional analyses were performed to confirm these findings.

First, we used a novel state-space MDS model, which estimates

causal interactions in latent neuronal signals, rather than the

recorded fMRI signals, after taking into account inter-regional

variations in hemodynamic response [34]. This analysis con-

firmed findings based on the MGCA that the rAI has significant

causal interactions with several other nodes of the SN and the

CEN (Figure 4). Second, a completely different analysis based on

the temporal profile of event-related fMRI responses revealed

that, in both children and adults, the rAI had the shortest onset

latency of all brain regions examined. Graph-theoretic analyses

using causal connectivity patterns estimated by MGCA and MDS

confirmed that the rAI had the highest net causal outflow and

shortest path length of all nodes examined in this study. By

definition, nodes which have a higher number of outgoing

edges and the shortest path from all other nodes in a graph are

referred to as hubs and are thought to play a key role in

coordinating information flow [45]. Together, these findings

Figure 4. Developmental changes in causal network interactions during problem solving. Top row. Multivariate Granger Causal Analysis
(MGCA) of the five key nodes of the Salience network (blue rectangles), and Central Executive network (green rectangles) are shown in (A) Children
and (B) Adults. (C) Weaker causal interactions in Children, compared to Adults. Bottom row. Converging evidence from a state-space Multivariate
Dynamical Systems (MDS) model [34].
doi:10.1371/journal.pcbi.1002374.g004

Maturation of Control Signals in Cognition
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provide converging evidence that the rAI is established as a major

causal outflow hub by age 9.

Our findings further suggest a novel pattern of temporal

hierarchy among prefrontal and parietal regions implicated in

control processes [5,16,17]. The rAI emerged as a major source of

signals to attentional and working memory systems anchored in

the ACC, DLPFC and PPC. Additional follow-up exploratory

latency and causal analyses including a sensory ROI along with

SEN and CN ROIs suggest that the rAI receives weak input from

the sensory cortices, which it further amplifies by exerting top-

down control on attentional and working memory systems (see

Supplementary Text S1 for details). Critically, our findings

indicate that the rAI is the initial locus of control signals, as

revealed by converging evidence from causal analysis of ongoing

task activity and by onset latency analysis. These results are

consistent with previous findings in adults performing auditory and

visual attention tasks [8], and extend them to higher-order

cognition for the first time in both children and adults. Taken

together, these findings suggest that the rAI plays a crucial role as a

hub that initiates key control signals during higher-order cognition

not only in adults but also in children as young as 9 years of age.

Immature fronto-parietal causal control signals in
children

An important novel finding of our study is that the strength of

causal influence from rAI to rPPC was significantly weaker in

Figure 5. Net outflow of causal network interactions during problem solving in children and adults. Top row. Net causal outflow (out –
in degree) in the five key nodes of the Salience Network (blue bars), and Central Executive Network (green bars) derived using Multivariate Granger
Causal Analysis (MGCA) are shown (A) Children and (B) Adults. In both groups, the rAI had significantly higher net causal outflow than the rVLPFC,
ACC, rDLPFC, and rPPC (** p,0.01, FDR corrected). Bottom row. Converging evidence from a state-space Multivariate Dynamical Systems (MDS)
model [34].
doi:10.1371/journal.pcbi.1002374.g005

Maturation of Control Signals in Cognition

PLoS Computational Biology | www.ploscompbiol.org 7 February 2012 | Volume 8 | Issue 2 | e1002374



children, compared to adults. Notably, this group difference was

observed using both MGCA and MDS, two different and

complementary methods for estimating causal interactions in

fMRI data. In addition to differences in the causal interaction

between the rAI and rPPC, MDS analysis revealed that the

strength of causal influence from rAI to ACC was also significantly

weaker in children. Here, we focus on the convergent findings

from the two analyses on developmental differences in the causal

link from the rAI to the rPPC. The only previous study to have

examined developmental changes in causal interactions during

cognition did not examine rAI connectivity and no connectivity

differences were reported between the extended FIC or any

regions of the inferior frontal gyrus with the PPC [46]. In parallel

with the causal interactions differences observed in our study,

instantaneous functional connectivity between rAI and rPPC

regions was also weaker in children. Critically, weak control signals

from rAI predicted lower rPPC activation in children. Children

showed higher rAI activation and lower rPPC responses than

adults, suggesting that the strength of causal interactions from the

rAI, rather than overall signal level, is more important for

regulating rPPC responses. The PPC node of the CEN examined

here was anatomically localized to the supramarginal gyrus, part

Figure 6. Developmental changes in white matter tracts linking rAI and rPPC. (A) Fiber density, the number of fibers per unit area, between
the rAI (yellow) to rPPC (red) is significantly lower in children, compared to adults (** p,0.01). Tracts connecting rAI to rPPC (cyan tracts) are shown in
(B) Children and (C) Adults.
doi:10.1371/journal.pcbi.1002374.g006
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of the posterior association cortex that helps to maintain task-

related representations in working memory during problem

solving [47,48]. In particular, arithmetic problem solving tasks

involve dynamic integration of symbolic information within

working memory [49,50,51], and the right supramarginal gyrus

is consistently activated during tasks involving visuo-spatial

working memory in both children and adults. Right supramarginal

gyrus involvement in working memory is also known to undergo

protracted developmental changes from childhood to adulthood

[24,25,52]. Taken together, these findings suggest weak signaling

Table 1. Causal network interactions predict behavior differently in children and adults.

Reaction time Accuracy

Predictive causal
connections R2

Mean square
error p

Predictive causal
connections R2

Mean square
error p

Children rAIRrDLPFC 0.50 0.75 ,0.01 rAIRrACC 0.43 0.83 ,0.01

rAIRrACC rAIRrPPC

rAIRrPPC rAIRrVLPFC

Adults rAIRrPPC 0.66 0.54 ,0.01 rAIRrACC 0.47 0.76 ,0.01

rAIRrVLPFC rAIRrPPC

Relationship between cumulative directed causal influences between nodes of the salience and central executive networks and behavior assessed using a multivariate
GLMnet model. rAI = right Anterior Insula, ACC = Anterior Cingular Cortex, rVLPFC = right Ventrolateral Prefrontal Cortex, rDLPFC = right Dorsolateral Prefrontal Cortex,
rPPC = right Posterior Parietal Cortex. Analysis of GLMnet model fits revealed that causal network interactions better predicted reaction times and accuracy in adults
than in children.
Note: Connections ordered in decreasing order of importance.
doi:10.1371/journal.pcbi.1002374.t001

Figure 7. Relation between functional network interactions and underlying white matter tracts in children and adults. Functional
interactions is correlated with structural white matter connectivity in Adults (r = 0.44; ** p,0.05) but not in Children (r = 0.02; p = 0.9). Functional
interactions were assessed using fMRI time-series correlations between the rAI and rPPC. Fiber density was based on DTI tractography.
doi:10.1371/journal.pcbi.1002374.g007
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within the fronto-parietal nodes of the CEN in children negatively

impacts the ability to maintain task-relevant representations

needed for achieving adult-like levels of performance. Our results

extend previous research by showing for the first time that both

causal and instantaneous cross-network connectivity is immature

in children and that the rAI is a major locus of immature cross-

network frontal control signals to the parietal cortex.

Linking functional and structural connectivity between
the rAI and rPPC

Multimodal analysis of fMRI and DTI data revealed that

functional connectivity differences between the rAI and rPPC were

associated with weak structural links between these areas.

Quantitative DTI-based tractography showed that the density of

white-matter fiber tracts connecting the rAI and rPPC was

significantly lower in children, compared to adults. This result is

consistent with previous studies showing slow maturation of long-

distance white matter tracts [53,54], including those linking

prefrontal and posterior parietal cortices [55,56,57]. We also

found that children had lower FA along tracts linking the rAI and

rPPC, indicating slow development of microstructural integrity of

white matter. Thus, both functional and structural connectivity

between rAI and rPPC is significantly weaker in children

compared to adults. Notably, we found that both causal and

instantaneous measures of functional connectivity between these

regions were correlated with structural connectivity in adults. No

such relation was observed in children suggesting that function-

structure relationships between the rAI and rPPC become more

stable with development, consistent with previous evidence of

similar patterns of function-structure relationships [58]. Our

findings provide the first direct evidence that the development of

structural connectivity between the rAI and rPPC may play an

important role in the maturation of fronto-parietal control signals.

Casual network interactions moderate performance
As noted above, children were significantly slower and less

accurate than adults. We examined whether this behavioral

difference was the result of weak network interactions. We found

that the strength of causal network interactions collectively were

strongly predictive of reaction times; in contrast, the rAIRrPPC

link by itself was only weakly correlated with response latency in

children and adults. Using multivariate sparse regression analysis,

we found that network interactions better predicted reaction time

in both children and adults. In children, the strength of

rAIRrPPC along with rAIRrVLPFC collectively predicted

reaction times, while in adults the strength of rAIRrPPC along

with rAIRACC and rAIRrDLPFC collectively predicted reaction

times. It is noteworthy that even though a different set of links

predicted reaction times in both groups, the rAIRrPPC link was

common to both. We also found that reaction times were better

predicted in adults, compared to children. These results suggest

that it is the multiple network interactions as a whole, rather than

individual links by themselves, that moderate performance.

Critically, similar results were observed when accuracy instead

of reaction time was used as the performance measure. Thus,

casual interactions between the rAI and rPPC are an important

factor for mediating performance improvements in higher-order

cognition with development.

Dissociating primacy of rAI and rVLPFC in control
It is noteworthy that the rAI showed the strongest causal signals,

even though the rVLPFC has been most commonly implicated in

control [10]. Previous studies, have not however, directly

examined causal influences from these two distinct regions of the

FIC, and quite often have mislabeled what are clearly AI

activations as VLPFC or IFG. To address this issue, in the

present study, we separated the FIC into two distinct nodes, one

centered in the rAI and the other in the rVLPFC. Our analysis

showed that the rAI has an earlier onset and a stronger causal

influence on other nodes than the rVLPFC. These results show

unequivocally that the AI has strong causal influences on the

rVLPFC, reiterating its role as a principal source of prefrontal

control signals that precedes the rVLPFC. Furthermore, onset

latencies did not significantly differ between rVLPFC and rPPC,

although they were significantly different between rAI and

rVLPFC and between rAI and rPPC. These results provide

further evidence for the primacy of control signals from the rAI,

and suggest that systems involved in detecting saliency [12] also

play an important role in control. Our findings are consistent with

the hypothesis that the rAI plays a more primal role in initiating

control signals [18]. We propose that in young children, as in

adults, the rAI is critically involved in attentional capture, task-

switching and generation of control signals that facilitate access to

working memory resources necessary for cognition. From a

neurodevelopmental point of view, it is noteworthy that such a

control system is already in place by age 9, even though the

forward causal paths are not fully mature. Further research is

needed to clarify the extent to which these findings hold for other

cognitive domains such as response inhibition.

A neurocognitive network perspective on the
development of control

Efficient control requires the concerted coordination between

multiple brain regions and there is growing evidence to suggest

that this is implemented via dedicated neurocognitive networks

[3]. In this study, we used a neurocognitive model for examining

the role of key nodes within the insula-cingulate SN and fronto-

parietal CEN in fundamental control processes. Importantly, the

key nodes of these networks were determined independently using

task-free rsfMRI data. The locations of the five major nodes were

virtually identical in children and adults and all five right

hemisphere frontal and parietal ROIs in the SN and CEN

showed significant task-related activation in both groups. The

profile of causal interactions observed in our study is particularly

noteworthy because the CEN and SN are often co-activated

during cognitive tasks in children and adults, and isolating focal

responses in a consistent manner from task-based fMRI activations

is not straightforward. This is especially true in developmental

studies since children tend to show diffuse activations in the

prefrontal cortex, making it difficult to disambiguate functional

interactions within this cortical region [29]. To circumvent this

problem we demarcated specific networks and their nodes using

intrinsic connectivity analysis of rsfMRI data [8]. In principle, the

nodes of the two networks, and in particular, the AI and PPC

could have been chosen in several different ways. Indeed, multiple

additional analyses with alternate choices of brain regions

demonstrated the same pattern of the results reported here. The

network perspective allows us to not only examine developmental

changes using a principled approach for characterizing brain

systems but also has the advantage of integrating the present study

with an emerging literature on insula-cingulate and fronto-parietal

circuits involved in fundamental aspects of control in the human

brain [4,8,18].

A unified network approach – wherein we first specify intrinsic

brain networks using rsfMRI data and then analyze interactions

among anatomically discrete regions within these networks during

cognitive information processing – enhances our ability to
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generalize beyond individual task activated foci and also provides

a common framework for comparing brain response and

connectivity in children and adults. Our findings are likely to

have important implications for understanding the development of

control mechanisms subserved by dynamic interactions between

neurocognitive networks. Further studies are needed to examine

whether similar control mechanisms underlie the functional

maturation of specific cognitive processes involving inhibition,

memory and decision-making. The quantitative approach devel-

oped here is likely to be useful in the investigation of

neurodevelopmental disorders, such as autism and attention

deficit/hyperactivity disorder, in which control processes are

impaired.

Materials and Methods

Participants
Twenty-three children and twenty-two IQ-matched adults

participated in this study after providing written informed consent.

For those subjects who were unable to give informed consent,

written, informed consent was obtained from their legal guardian.

The study protocol was approved by the Stanford University

Institutional Review Board. Children (10 males, 13 females)

ranged in age from 7 to 9 (mean age 7.95) with an IQ range of 88

to 137 (mean IQ: 112). Adults (11 males, 11 females) ranged in age

from 19 to 22 (mean age 20.4) with an IQ range of 97 to 137

(mean IQ: 112).

Functional MRI
The fMRI experiment consisted of 52 arithmetic problems

presented in a jittered event-related design along with ‘‘rest’’ or

‘‘null’’ trials in which participants passively viewed a cross on the

screen. In the arithmetic trials, participants were presented with an

equation involving two addends and a resultant and were asked to

indicate via a button box whether the resultant was correct or

incorrect. Half the addition trials consisted of problems with

addends different from ‘1’ (e.g. 3+4 = 7). One operand ranged

from 2 to 9, the other from 2 to 5 (tie problems such as ‘5+5 = 10’,

were excluded), and resultants were correct in 50% of the trials.

Incorrect answers deviated by 61 or 62 from the correct sum.

The other half of the addition trials had the same format but one

addend was ‘1’ (e.g. 5+1 = 7). Stimuli were displayed for 5 seconds

with an inter-trial interval of 500 msec followed by a blank screen

for 500 msec and an inter-trial jitter that varied between 0 to

3500 msec with an average duration of 1814 msec. Each subject

underwent a math task scan and 8-min resting-state scan.

fMRI data acquisition, preprocessing, analysis of task data with

General Linear Model (GLM), Independent component analysis

(ICA) of resting data, and functional connectivity analysis

procedure is described in detail in Supplementary Information

(Text S1). Here we describe methods specifically related to analysis

of causal interactions.

Regions of Interest selection. We defined regions of

interest (ROIs) in five key nodes of the SN, right CEN, and left

CEN based on the peaks of the ICA clusters. ROIs were selected

from respective combined-group ICA clusters: in the rAI, VLPFC

and ACC (on the SN ICA map); in the rDLPFC and rPPC (on the

right CEN ICA map); in the lDLPFC and lPPC (on the left CEN

ICA map). After visually selecting a voxel with the highest Z score

within each cluster on the functional map, the ROIs were

constructed by drawing spheres with centers as the seed-point and

a radius of 8 mm.

Multivariate Granger causal analysis. MGCA was

performed in accordance with the methods of Seth et al. [59].

First, the mean time course from each ROI was extracted for all

subjects. Each time series was then detrended and its temporal

mean was removed. MGCA was performed to test for causal

influences between ROIs using difference of influence (doi) terms

(FxRy – FyRx). We performed statistical inferencing on the causal

connections using non-parametric analysis. Empirical null

distribution of influence terms and their differences were

estimated by generating surrogate datasets under the null

hypothesis that there are no causal interactions between the

regions. Those directed connections whose mean (across subjects

in the group) was significantly different from the mean of the null

distribution were identified using statistical tests and a stringent

threshold (p,0.01, FDR corrected). The stringent threshold was

chosen to avoid potentially spurious causal links introduced by the

low temporal resolution and hemodynamic blurring in the fMRI

signal. Between group differences in the causal connectivity graphs

were determined as links whose mean difference in the doi term

significantly differed from mean of the null distribution of

difference of doi terms (p,0.01, FDR corrected).

Multivariate Dynamical Systems (MDS) analysis. Mul-

tivariate Dynamical Systems (MDS) is a novel state-space

Multivariate Dynamical Systems (MDS) model to estimate intrinsic

and experimentally-induced modulatory causal interactions between

multiple brain regions [34]. It overcomes several limitations of

existing methods. First, the mean time course from each ROI was

first extracted for all subjects. Each time series was then detrended

and its temporal mean was removed. From the regional fMRI

timeseries data, the MDS model estimates the contextually induced

causal interactions between brain regions while accounting for

variations in hemodynamic responses in these regions. Notably,

the MDS model can be seen as an extension of the multivariate

granger causal analysis (GCA) wherein a vector autoregressive

model for latent, rather than BOLD-fMRI, signals are used to

model the causal interactions among brain regions. Furthermore,

the MDS model also takes into account variations in the HRF as

well as the influences of modulatory and external stimuli in

estimating causal interactions between brain regions. In brief, the

MDS approach models the multivariate fMRI time series by the

following state-space equations:

s tð Þ~As t{1ð Þz
XJ

j~1

vj tð ÞCjs t{1ð ÞzDu tð Þzw tð Þ ð1Þ

xm tð Þ~ sm tð Þsm t{1ð Þ::::sm t{Lz1ð Þ½ �0 ð2Þ

ym tð Þ~bmWxm tð Þzem tð Þ ð3Þ

In Equation (1), s tð Þ is a M|1 vector of latent signals at time t of

M regions, A is an M|M connection matrix wherein Cj is an

M|M connection matrix ensued by modulatory input vj tð Þ, J is

the number of modulatory inputs. The non-diagonal elements of

Cj represent the coupling of brain regions in the presence of

modulatory input vj(t). Cj(m,n) denotes the strength of causal

connection from n-th region to m-th region. Therefore, latent

signals s(t) in M regions at time t is a bilinear function of

modulatory inputs vj(t) and its previous state s(t21). D is an

M|M diagonal matrix wherein D(i,i) denotes external stimuli

strength to i-th region. u tð Þ is an M|1 binary vector whose

elements represent the external stimuli to m-th region under

investigation. w tð Þ is an M|1 state noise vector whose
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distribution is assumed to be Gaussian distributed with

covariance matrix Q(w tð Þ*N(0,Q)). Additionally, state noise

vector at time instances 1,2,….,T (w 1ð Þ,w 2ð Þ . . . w(T)) are

assumed to be identical and independently distributed (iid).

Equation (1) represents the time evolution of latent signals in M

brain regions. More specifically, the latent signals at time t, s tð Þ, is

expressed as a linear combination of latent signals at time t21,

external stimulus at time t (u tð Þ), bilinear combination of

modulatory inputs vj tð Þ, j~1,2::J and its previous state, and

state noise w tð Þ: The latent dynamics modeled in Equation (1)

gives rise to observed fMRI time series represented by Equations

(2) and (3).

We model the fMRI time series in region ‘‘m’’ as a linear

convolution of HRF and latent signal sm tð Þ in that region. To

represent this linear convolution model as an inner product of two

vectors, the past L values of sm tð Þ are stored as a vector. xm tð Þ in

equation (2) represents an L|1 vector with L past values of latent

signal at m-th region.

In Equation (3), ym tð Þ is the observed BOLD signal at t of m-th

region. W is a p|L matrix whose rows contain bases for HRF. bm

is a 1|p coefficient vector representing the weights for each basis

function in explaining the observed BOLD signal ym tð Þ.
Therefore, the HRF in m-th region is represented by the product

bmW. The BOLD response in this region is obtained by convolving

HRF (bmW) with the L past values of the region’s latent signal

(xm tð Þ) and is represented mathematically by the vector inner

product bmW xm tð Þ. Uncorrelated observation noise em tð Þ with

zero mean and variance s2
m is then added to generate the observed

signal ym tð Þ. em tð Þ is also assumed to be uncorrelated with w tð Þ, at

all t and t .Equation (3) represents the linear convolution between

the embedded latent signal xm tð Þ and the basis vectors for HRF.

Here, we use the canonical HRF and its time derivative as bases,

as is common in most fMRI studies. Equations (1–3) together

represent a state-space model for estimating the causal interactions

in latent signals based on observed multivariate fMRI time series.

Estimating causal interactions between M regions specified in

the model is equivalent to estimating the parameters Cj ,j~1,2::J.

In order to estimate Cj ’s, the other unknown parameters D, Q,

fbmgM
m~1 and fs2

mg
M
m~1 and the latent signal fs(t)gT

t~1 based on

the observations fys
m tð ÞgM,S

m~1,s~1,t~1,2::T , where T is the total

number of time samples and S is number of subjects, needs to be

estimated. We use a variational bayes approach (VB) for

estimating the posterior probabilities of the unknown parameters

of the MDS model given fMRI time series observations for S

number of subjects.

The statistical significance of the causal connections was

assessed by using non-parametric analysis. Empirical null

distribution of the parameters Cj ,j~1,2::J was estimated by

generating surrogate datasets under the null hypothesis that there

are no causal interactions between the regions. Those directed

connections whose mean (across subjects in the group) was

significantly different from the mean of the null distribution were

identified using statistical tests and a stringent threshold (p,0.01,

FDR corrected). Between group differences in the causal

connectivity graphs were determined as links whose mean

difference in the Cj significantly differed from mean of the null

distribution of difference of Cj (p,0.01, FDR corrected).

Graph-theoretical network analysis. To describe the

interactions between brain regions in the causal network

generated by MGCA, we examined the following graph metrics:

(1) Out-degree: Number of causal outflow connections from a

node in the network to any other node. (2) In-degree: Number of

causal in-flow connections to a node in the network from any

other node. (3) (Out – In) degree: Difference between out-degree

and in-degree is a measure of the net causal outflow from a node.

(4) Path length: Shortest path from a node to every other node in

the network (normalized by the number of nodes minus one).

Shorter path lengths indicate a more strongly interconnected or

‘‘hub-like’’ node. A two-sample t-test was then applied on two key

network metrics, the (out-in) degree and the path length to identify

those nodes whose network metrics were significantly different

from the other nodes.

Regression analysis. To investigate whether causal network

interactions predict behavior differently in children and adults, we

examined causal connectivity patterns in the two groups. The

causal functional connectivity patterns – strength of causal

connectivity of 10 pairs of anatomical regions – along with

behavioral measures were used as the input to a sparse regression

algorithm. The sparse regression algorithm identifies causal

network connections that predict behavior by modeling the

relationship between the dependent variable (RT) and the

independent variables (strength of pair-wise causal connectivity).

An added advantage of using a sparse regression algorithm, as

opposed to traditional regression, is that it performs feature

selection wherein the coefficients of independent variables that do

not contribute to the prediction of the dependent variable are set

to zero. In our case, this entails that the regression analysis would

identify the causal network connections that predict behavior

while the non-contributing connections would be set to zero. Such

sparse methods are particularly elegant when the number of

possible predictor variables is large. In sum, we used sparse

regression analysis instead of the more conventional regression

analysis so that we could not only investigate whether causal

connectivity predicts behavioral measure(s) but also identify in a

purely data-driven manner which subset of causal connections, if

any, predicts behavior. GLMNet [43], a widely used sparse-

regression algorithm was used in our analysis. Mean square error

was used to measure the performance of the regression algorithm

in predicting behavior. The sparse regression analysis was

performed separately for each group.

Diffusion Tensor Imaging
DTI data was obtained from 18 of the 23 children subjects and

15 of 22 adults. Acquired images underwent the following

preprocessing steps: eddy-current correction, alignment with T1-

weighted anatomical images, resampling, and tensor computation.

Fiber tracts between the rAI and rPPC were computed as

previously described [58]. For each subject, the density and mean

fractional anisotropy of the fibers connecting the rAI to the rPPC

was measured, in native space (see Supplementary Text S1 for

details). In this study, we used fiber density and mean FA as

measures of the integrity of the fiber tracts of interest.

Supporting Information

Figure S1 Accuracy and reaction time during problem
solving. (A) Accuracy was significantly lower in children,

compared to adults (** p,0.01). (B) Reaction times were

significantly higher in children, compared to adults (** p,0.01).

Mean and standard error are shown.

(TIF)

Figure S2 Major nodes of the Salience Network (SN) and
Central Executive Network (CEN). SN and CEN networks

were derived from combined group ICA of resting-state fMRI

data. 8 mm spheres depicting (A) Key nodes of the SN include the

right anterior insula (rAI), right ventrolateral prefrontal cortex

(rVLPFC), and anterior cingulate cortex (ACC). (B) Key nodes of
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the CEN include the right dorsolateral prefrontal cortex (rDLPFC)

and right posterior parietal cortex (rPPC).

(TIF)

Figure S3 Developmental changes in network interac-
tions during problem solving. In this case, ROIs were

derived from peak task-related activation. Multivariate Granger

Causal analysis (MGCA) of the five key nodes of the Salience

Network (blue rectangles), and Central Executive Network (green

rectangles). ROIs were derived from peak task-related activation

(A) Children, (B) Adults and (C) Weaker causal interactions in

Children, compared to Adults.

(TIF)

Figure S4 Developmental changes in network interac-
tions during problem solving. In this case, left hemisphere

ROIs were used. Multivariate Granger Causal analysis (MGCA) of

the five key left hemisphere nodes of the Salience Network (blue

rectangles), and Central Executive Network (green rectangles) are

shown in (A) Children and (B) Adults. (C) No differences were

observed in any of these left hemisphere regions.

(TIF)

Figure S5 Mean raw event-related fMRI signal time-
series in the Salience Network (SN) and Central
Executive Network (CEN) during problem solving. (A)

Children and (B) Adults. Error bars show standard error of the

raw event-related fMRI signal timeseries across trials and subjects.

(TIF)

Table S1 Participant characteristics. Children and adults

did not differ on IQ or gender, while age and years of education

were significantly different (** p,0.01).

(DOC)

Table S2 Regions of interest. ROIs were chosen based on

nodes identified in the Salience Network (SN) and the right

Central Executive Network (CEN). SN and CEN networks were

derived from combined group ICA of resting state fMRI data.

(DOC)

Text S1 Experimental procedures.
(DOC)
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