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Abstract

Following earlier studies which showed that a sparse coding principle may explain the receptive field properties of complex
cells in primary visual cortex, it has been concluded that the same properties may be equally derived from a slowness
principle. In contrast to this claim, we here show that slowness and sparsity drive the representations towards substantially
different receptive field properties. To do so, we present complete sets of basis functions learned with slow subspace
analysis (SSA) in case of natural movies as well as translations, rotations, and scalings of natural images. SSA directly parallels
independent subspace analysis (ISA) with the only difference that SSA maximizes slowness instead of sparsity. We find a
large discrepancy between the filter shapes learned with SSA and ISA. We argue that SSA can be understood as a
generalization of the Fourier transform where the power spectrum corresponds to the maximally slow subspace energies in
SSA. Finally, we investigate the trade-off between slowness and sparseness when combined in one objective function.
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Introduction

The appearance of objects in an image can change dramatically

depending on their pose, distance, and illumination. Learning

representations that are invariant against such appearance changes

can be viewed as an important preprocessing step which removes

distracting variance from a data set in order to improve

performance of downstream classifiers or regression estimators

[1]. Clearly, it is an inherent part of training a classifier to make its

response invariant against all within-class variations. Rather than

learning these invariances for each object class individually,

however, we observe that many transformations such as transla-

tion, rotation and scaling apply to any object independent of its

specific shape. This suggests that signatures of such transforma-

tions exist in the spatio-temporal statistics of natural images which

allow one to learn invariant representations in an unsupervised

way.

Complex cells in primary visual cortex are commonly seen as

building blocks for such invariant image representations (e.g. [2]).

While complex cells, like simple cells, respond to edges of

particular orientation they are less sensitive to the precise location

of the edge [3]. A variety of neural algorithms have been proposed

that aim at explaining the response properties of complex cells as

components of an invariant representation that is optimized for

the spatio-temporal statistics of the visual input [4–12].

The two main objectives used for the optimization of models of

neural representations are sparseness and slowness. While in the

context of unsupervised representation learning the two objectives

have been proposed to similarly explain the receptive field

properties of complex cells, there are important differences

between them that may help to identify the algorithms used in

biological vision. Intuitively, the slowness objective can be seen as

a measure of approximate invariance or ‘‘tolerance’’, whereas

sparseness is better interpreted as a measure of selectivity.

Tolerance and selectivity—or slowness and sparseness, respective-

ly—can be understood as complementary goals which both play

an important role for solving the task of object recognition [13]. A

prominent view that goes back to Fukushima’s proposal of the

necognitron (1980) is that these goals are pursued in an alternating

fashion by alternating layers of S and C cells where the S cells are

optimized for selectivity and the C cells are optimized for

tolerance. This idea has been inspired by the finding of simple

and complex cells in primary visual cortex which also motivated

the terminology of S and C cells.

Thus, based on the strong association between complex cells

and invariance, one would expect that slowness rather than

sparseness should play a critical role for complex cell represen-

tations. In this study, we investigate the differences between

slowness and sparseness for shaping the receptive field properties

of complex cells.

While for natural signals it may be impossible to find perfectly

invariant representations, slowness seeks to find features that at

least change as slowly as possible under the appearance

transformations exhibited in the data [16,9–12,14–27]. In contrast
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to sparse representation learning which is tightly linked to

generative modeling, many slow feature learning algorithms follow

a discriminative or coarse-graining approach: they do not aim at

modeling all variations in the sensory data but rather classify parts

of it as noise (or some dimensions as being dominated by noise)

and then discard this information. This is most obvious in the case

of slow feature analysis (SFA) [21]. SFA can be seen as a special

case of oriented principal component analysis which seeks to

determine the most informative subspace under the assumption

that fast changes are noise [28]. While it is very likely that some

information is discarded along the visual pathway, throwing away

information in modeling studies requires great caution. For

example, if one discards all high spatial frequency information in

natural images one would easily obtain a representation which

changes more slowly in time. Yet, this improvement in slowness is

not productive as high spatial frequency information in natural

images cannot be equated with noise but often carries critical

information. We therefore compare complete sets of filters learned

with slow subspace analysis (SSA) [9] and independent subspace analysis

(ISA) [4], respectively. The two algorithms are perfectly identical

with the only difference that SSA maximizes slowness while ISA

maximizes sparsity.

For sparseness it is common to show complete sets of filters, but

this is not so in case of slowness. Based on the analysis of a small

subset of filters, it has been argued that SSA may generally yield

similar results to ISA [9]. In contrast, we here arrive at quite the

opposite conclusion: by looking at the complete representation we

find a large discrepancy between the filter shapes derived with SSA

and those derived with ISA. Most notably, we find that SSA does

not lead to localized receptive fields as has been claimed ([9,29] —

but see [28,30]).

Complete representations optimizing slowness have previously

been studied only for mixed objective functions that combined

slowness with sparseness [8,31–33] but never when optimizing

exclusively for slowness alone. Here we systematically investigate

how a complete set of filters changes when varying the objective

function from a pure slowness objective to a pure sparsity objective

by using a weighted mixture of the two and gradually increasing

the ratio of their respective weights. From this analysis we will

conclude that the receptive field shapes shown in [8,31–33] are

mostly determined by the sparsity objective rather than the

slowness objective. That is the receptive fields would change

relatively little if the slowness objective was dropped but it would

change drastically if the sparsity objective was removed. These

findings change our view of the effect of slowness and raise new

questions that can guide us to a more profound understanding of

unsupervised complex cell learning.

Results

The central result of this paper is the observation that the effect

of the slowness objective on complex cell learning is substantially

different from that of sparseness. Most likely this has gone

unnoticed to date because previous work either did not derive

complete representations from slowness or combined the slowness

objective with a sparsity constraint which masked the genuine

effect of slowness. Therefore, we here put a large effort into

characterizing the effect of slow subspace learning on the complete

set of filter shapes under various conditions. We first study a

number of analytically defined transformations such as transla-

tions, rotations, and scalings before we turn to natural movies and

the comparison between slowness and sparseness.

The general design common to SSA and ISA is illustrated in

Figure 1. We apply a set of filters to the input x(t) and square the

filter responses. Two filters form a 2-dimensional subspace (gray box

in Figure 1) and the sum of squared filter responses of these two

filters yield the subspace energy response. This can be seen as the

squared radial component of the projection of the signal into the 2D

subspace formed by the two respective filters. For example, if the

filters are taken from the Fourier basis and grouped such that the

two filters within each subspace have the same spatial frequency and

orientation and 900 phase difference, the output z(t) at a fixed time

instant t is the power spectrum of the image x(t). As input x(t) we

used 11|11 image patches sampled from the van Hateren image

database [34] and from the video database [35], vectorized to 121-

dimensions, and applied SSA to all remaining 120 AC components

after projecting out the DC component.

In the first part of our study, the input sequence consisted of

translations. As time-varying process for the translations, we

implemented a two-dimensional random walk of an 11|11
window over the full image. The shift amplitudes were drawn from

a continuous uniform distribution between 0 and 2 pixels, allowing

for subpixel shifts. The filters obtained from SSA are shown in

Figure 2A. Each row contains the filter pairs of 6 subspaces, sorted

by descending slowness from left to right and top to bottom. The

filters clearly resemble global sine wave functions. The wave

functions differ in spatial frequency and orientation between the

different subspaces. Within each subspace, orientation and spatial

frequency are almost identical, but phases differ significantly. In

fact, the phase difference is close to 900 (90:20+3:80), resembling

quadrature pairs of sine and cosine functions as it is the case for

the two-dimensional Fourier basis. Accordingly, the subspace

energy output z(t) of the resulting SSA representation is very

similar to the power spectrum of the image x(t).

In fact, one can think of SSA as learning a generalized power

spectrum based on a slowness criterion. While the power spectrum

is known to be invariant against translations with periodic

boundary conditions, perfect invariance—or infinite slowness—is

not achieved for the translations with open boundary conditions

studied here (see Figure 2 B). The slowness criterion is best

understood as a penalty of fast changes since it decomposes into an

average over penalties of fast changes for each individual

component (see methods). Therefore, we will always show the

inverse slowness v for each component such that the smaller the

area under the curve the better the average slowness.

Compared to random subspaces, the decrease in v, i.e. the

increase in slowness, is substantial: the average inverse slowness

Author Summary

A key question in visual neuroscience is how neural
representations achieve invariance against appearance
changes of objects. In particular, the invariance of complex
cell responses in primary visual cortex against small
translations is commonly interpreted as a signature of an
invariant coding strategy possibly originating from an
unsupervised learning principle. Various models have been
proposed to explain the response properties of complex
cells using a sparsity or a slowness criterion and it has been
concluded that physiologically plausible receptive field
properties can be derived from either criterion. Here, we
show that the effect of the two objectives on the resulting
receptive field properties is in fact very different. We
conclude that slowness alone cannot explain the filter
shapes of complex cells and discuss what kind of
experimental measurements could help us to better asses
the role of slowness and sparsity for complex cell
representations.

Slowness and Sparseness in Complex Cell Learning
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SvT decreases approximately by a factor of three. The low

frequency subspaces are clearly the slowest subspaces, and

slowness decreases with increasing spatial frequency. At the same

time, however, the inverse slowness of all learned subspaces is still

larger than 0, i.e. even for the slowest components, perfect

invariance is not achieved. This is not surprising, as perfect

invariance is impossible whenever unpredictable variations exist as

it is the case for open boundary conditions.

In Figure 2 C, we show that SSA can indeed find perfectly

invariant filters starting from a random initial filter set if one

imposes periodic boundary conditions. To this end, we created

11|11 pink noise patches with circulant covariance structure, i.e.

the pixels on the left border of the image are correlated with pixels

on the right border as if they were direct neighbors. As time-

varying process, we implemented a random walk with cyclic shifts

where the patches were translated randomly with periodic

boundary conditions. As in the previous study, the shift amplitudes

were drawn from a continuous uniform distribution between 0 and

2 pixels. Since the Fourier basis is the eigenbasis of the cyclic shift

operator it should yield infinite slowness for the cyclic boundary

conditions. Indeed, the filters learned from these data recover the

Fourier basis with arbitrary precision. Perfect invariance is

equivalent with the objective function converging to 0. This

means that the response of each subspace is identical for all shifts.

Figure 2D shows the inverse slowness v of the individual

components. For all filters, v is very small (v10{3), close to

perfect invariance and infinite slowness.

Given that the SSA representation learned for translations is

very similar to the Fourier basis and since the Fourier basis

achieves perfect invariance for cyclic shifts we proceeded to

investigate whether the Fourier basis is optimal even for non-cyclic

translations as well. We created three different data sets, with

random translations as in the first study, but the maximal shift

amplitude of the 2D random walk was 1, 2, and 3 pixels,

respectively. As initial condition, we used the Fourier basis

(Figure 3, ‘F ’) instead of a random matrix. The optimized bases

are denoted as Ui where i indicates the maximal shift amplitude.

We show the 2D-Fourier amplitude spectrum of the filters rather

than the filters in pixel space because it is easier to assess the

differences between the different bases. The DC component is

located at the center of the spectrum.

During optimization, the basis slightly departs from the initial

condition but remains very localized in the Fourier domain

(Figure 3, ‘U1’). The low frequency filters become sensitive to

higher frequencies while the high frequency filters become also

sensitive to lower frequencies as the initial filters blur out towards

the border or center, respectively. The objective function is

improved for the optimized filters not only on the training but also

on the test set (cf. Table 1). The slowness of the 60 individual

components zi evaluated on identically created test sets (x1, x2,

and x3, respectively) is shown in Figure 3. The Fourier filters are

slower than the optimized filters for the first 20–30 components,

then about equal for 10 components, and significantly faster for

the remaining components. Apparently, the SSA objective

sacrifices a little bit of the slowness of the low frequency

components to get a comparatively larger gain in slowness from

modifying the high frequency components. The optimization of

average inverse slowness in contrast to searching for a single

maximally slow component is a characteristic feature of SSA.

Even though we expect changes in natural movies to be

dominated by local translations, it is instructive to study other

global affine transforms as well. Therefore, we applied SSA to 3

additional data sets: The first data set contains 11|11 patches

from the van Hateren image set which were rotated around the

center pixel. The second data set consists of 14|14 patches from

the van Hateren image set which were also rotated around the

Figure 1. Model structure for both independent subspace analysis (ISA) and slow subspace analysis (SSA). The input signal, e.g. a
movie sequence, is applied to several filters. Two filters form a subspace. The output of each filter is passed through a quadratic nonlinearity and
summed within each subspace. The output corresponds to the radial component of the 2D subspace. The n=2 responses zi(t) then form the
multidimensional output signal z(t). If the filters are the discrete Fourier transform basis where each subspace consists of the two filters which only
differ in phase, then the output z(t) is the power spectrum of the input signal x(t).
doi:10.1371/journal.pcbi.1003468.g001

Slowness and Sparseness in Complex Cell Learning
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center pixel but where we kept only the pixels within a predefined

circle. Specifically, we reduced the number of dimensions again to

121 pixels by cutting out the corners which left an 11|11 circular

image patch. The patches in the third data set were sampled with

sizes ranging from 9|9 to 13|13 pixels and then rescaled to

11|11 pixels, in order to obtain a patch-centered anisotropic

scaling transformation. The preprocessing was identical to the

previous studies and the initial filter matrix was a random

orthonormal matrix. The filters and the objective of the individual

subspaces of the 11|11 rotation data are shown in Figure 4A.

The filters resemble the rotation filters found with steerable filter

theory [28]. The slowness of all components is significantly larger

than for random filters, but with clearly decreasing slowness for the

last subspaces. Notably, the last subspaces have no systematic

structure. This can be explained by the fact that when rotating a

square patch, the pixels in the 4 corners are not predictable unless

for multiples of 900 rotations. Therefore the algorithm cannot find

meaningful subspaces that would preserve the energy for the pixels

in the corners. The filters in Figure 4B from the disc shaped

patches do not show these artifacts. Here, all filters nicely resemble

angular wave functions as expected from steerable filter theory and

also exhibit better slowness. Finally, the scaling filters are shown in

Figure 4C. All filters resemble windowed wave functions that are

localized towards the boundaries of the patch. This indicates that a

scaling can be seen as a combination of local translations which go

inward for downscaling and outward for upscaling. All subspaces

defined by the learned filters are significantly slower than the

random subspaces.

After characterizing the result of slow subspace learning for

analytically defined transformations we now turn to natural movies

and the comparison between slowness and sparseness. Specifically,

we compare slow subspace analysis (SSA) to independent subspace

analysis (ISA) in order to show how the slowness and the sparsity

objective have different effects on the receptive field shapes

learned. To this end, we combine the two objectives to obtain a

weighted mixture of them for which we can gradually tune the

trade-off between the slowness and the sparseness objective. In this

way, we obtain a 1-parametric family of objective functions

Eb : ~bEsparsez(1{b)Eslow ð1Þ

for which the parameter b determines the trade-off between

slowness and sparseness. Specifically, we obtain SSA in case of

b~0 and ISA for b~1. As one can see in Figures 5 the filters

learned with SSA (b~0) look very different from those learned

with ISA (b~1). This finding contradicts earlier claims that the

Figure 2. SSA on translations with open and cyclic boundary conditions. The complete set of filters learned from translated images with
open and cyclic boundary conditions are shown in (A) and (C), respectively. Each row shows the filters of 6 subspaces with 2 dimensions. The
subspaces are ordered according to their slowness, with the slowest filter in the upper left corner and decreasing slowness from left to right and top
to bottom. The inverse slowness v for the individual subspaces after learning (black dots) and for the initial random filters (gray squares) is shown in
(B) and (D), respectively. For open boundary conditions (B), the inverse slowness does not converge to 0, hence perfect invariance is not achieved. For
cyclic shifts, however, the inverse slowness approaches 0 with arbitrary precision (D), indicating convergence to perfect invariance.
doi:10.1371/journal.pcbi.1003468.g002

Slowness and Sparseness in Complex Cell Learning
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filters learned with SSA are comparable to those learned with ISA.

The most obvious difference is that the slowness objective works

against the localization of filters that is brought forward by the

sparsity objective.

For 0vbv1 we will refer to the resulting algorithm as

independent slow subspace analysis (ISSA). If a representation is

optimized for Eb its performance with respect to the slowness

objective Eslow decreases monotonically with b. At the same time,

Figure 3. Deviations from the Fourier basis for translations with open boundary conditions. Here, we started the optimization with the
Fourier basis (F ) as initial condition. We used 3 different data sets sampled from the van Hateren image database using 2D translations with a shift
amplitude of maximally 1, 2, or 3 pixels. The optimized filters Un , where n is the maximal shift amplitude, do not deviate dramatically from the initial
condition. The amplitude spectra of all filters are shown in the upper panel with the DC component being at the center. The amplitude spectra of the
optimized filters blur out towards the lower frequencies except for the lowest frequencies, which blur out towards the higher frequencies. Only the
highest frequencies show additional sensitivity at the lowest spatial frequencies which cannot be explained by spatial localization. The slowness of
the individual components is shown in the lower panel. The black lines indicate the performance of the Fourier basis applied to test data with shift
amplitudes of up to 1 (solid), 2 (long dashes), or 3 (short dashes) pixels. The gray lines show the performance of the optimal filters. SSA sacrifices
slowness on the slower filters to gain a comparatively larger amount of slowness on the faster filters. In this way, overall SSA achieves better slowness.
doi:10.1371/journal.pcbi.1003468.g003

Slowness and Sparseness in Complex Cell Learning
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its performance with respect to Esparse increases with b. The

percentages shown indicate the increase in slowness and sparseness

relative to the maximal gain that can be achieved if one optimizes

solely for one of the two objectives. Note that the shapes of these

curves depend on the objective functions used and are not

invariant under pointwise nonlinear transformations. The values

shown here are determined directly by the objective functions

without any additional transformation (see Eqs. 3,11). Remark-

ably, it is possible to derive a representation which performs

reasonably well with respect to both sparseness and slowness

simultaneously. At an intermediate point where both objectives,

Eslow and Esparse, are reduced by the same factor in our units, the

performance is still larger than 80% for each. Interestingly, for this

trade-off the receptive fields look quite similar to those obtained

with ISA. This may explain why previous work on unsupervised

learning with combinations of sparseness and slowness did not

reveal that the two objectives drive the receptive fields towards

very different shapes.

The trade-off in performance with respect to slowness and

sparsity for natural movies, translation, rotation, and scaling is

summarized in Figure 6. It shows the ISA filters (A), the ISSA

filters at the intermediate point of slowness and sparsity for natural

movies (B), translation (C), rotation (D), and scaling (E) and in the

same order the SSA filters in (F,G,H,I). The concave shape of the

curves (upper left) indicates that the trade-off between the two

objectives is rather graceful such that it is possible to achieve a

reasonably good performance for both objectives at the same time.

Discussion

Unsupervised learning algorithms are a widespread approach to

study candidate computational principles that may underly the

formation of neural representations in sensory systems. Slowness

and sparsity both have been suggested as objectives driving the

formation of complex cell representations. More specifically, it has

been claimed that the filter properties obtained from slow subspace

analysis would resemble those obtained with independent

subspace analysis [9] and that the optimal stimulus for SFA is

localized [29]. Here, we showed that there is a striking difference

between the sets of SSA and ISA filters: While the sparsity

objective of ISA facilitates localized filter shapes, maximal slowness

can be achieved only with global receptive fields as found by SSA.

The different implications of slowness and sparseness are most

notable in filters containing high spatial frequencies. For low

spatial frequency filters the number of cycles is small simply

because it is constrained to be smaller than the product of spatial

frequency and simulation window size. Since previous studies have

inspected only low spatial frequency filters the different effect of

sparseness and slowness has gone unnoticed or at least not been

sufficiently appreciated [6,9,29]. A signature of the drive towards

global filters generated by slowness can be found in the bandwidth

statistics presented in [6]. Global filter shapes correspond to small

bandwidth. While the authors mention that the fraction of small

bandwidth filters exceeds that found for physiological receptive

Table 1. Control for overfitting.

Fourier basis optimized basis

training test training test

1 pixel shift 0.17838 0.17725 0.13801 0.15359

2 pixel shift 0.29469 0.29185 0.24680 0.27570

3 pixel shift 0.41521 0.41943 0.36569 0.40423

Objective on training and test set for optimized filters and Fourier basis.
doi:10.1371/journal.pcbi.1003468.t001

Figure 4. SSA filters for local rotation and scaling. Illustration of the filters obtained from patch-centered rotation sequences (A,B) and patch-
centered scaling sequences (C) with the slowness of the individual filter subspaces before (random) and after the optimization (learned). The filters are
ordered in ascending inverse slowness v (row-wise) with the slowest feature in the upper left and the fastest feature in the lower right corner. The
data in (A) and (C) consist of 11|11 square patches from the van Hateren data set while the data for (B) consist of 121-dimensional round patches
which are, for visualization, embedded in a 14614 square patch. The rotation filters match those found in steerable filter theory [28]. The filters of the
patch-centered anisotropic scaling exhibit localized edge filters centered towards the patch boundaries.
doi:10.1371/journal.pcbi.1003468.g004

Slowness and Sparseness in Complex Cell Learning
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fields they rather suggested that this may be an artifact of their

preprocessing, specifically referring to dimensionality reduction

based on principal component analysis. However, the opposite is

the case: the preprocessing rather leads to an underestimation of the

fraction of small bandwidth filters. Principal component analysis

will always select for low spatial frequency components and thus

reduce the fraction of small bandwidth filters because it is the high

spatial frequency components which have the smallest bandwidth.

While it is difficult to make rigorous statements that are model-

independent, there are general arguments why the lack of

localization is likely a generic consequence of slowness rather

than a spurious property that was specific to SSA only: By

definition a neuron cannot be driven by stimuli outside of its

receptive field (RF). Therefore, whenever a stimulus is presented

that drives the neuron inside its RF, the neuron must stop firing

when the stimulus is shifted outside the RF. This suggests very

generally, that in the presence of motion the objective of slowness

or invariance necessarily requires large RFs. Sparsity, in contrast,

encourages neurons to respond as selectively as possible. One

obvious way to achieve this is to become selective for location

which directly translates into small RF sizes.

In addition, analytical considerations suggest that slowness is

likely to generate global filters with small bandwidth. For small

image patches it is reasonable to assume that the spatio-temporal

statistics are dominated by translational motion. Thus, it is not

surprising that the filter properties of SSA found for natural movies

resemble those for translations. In computer vision, there is a large

number of studies which derive features that are invariant under

specific types of transformations such as translations, scalings and

rotations. An analytical approach to invariance is provided by

steerable filter theory [36,37] which allows one to design perfectly

invariant filters for any compact Lie group transformation [38].

The best known example is the power spectrum which is perfectly

invariant under translations with periodic boundary conditions

[28]. For the other Lie group transformations studied in this paper,

the symmetry was broken due to discretization and boundary

effects. In these cases the representations found with SSA can be

seen as a generalization of the Fourier transform whose subspace

Figure 5. Filters of slowness, independence and mixture objective learned on movies. The lower panel shows the performance with
respect to both the slowness objective Eslow (blue) and the sparsity objective Esparse (red) and the upper panel displays four sets of filters as obtained
for different values for the trade-off parameter b: The leftmost case (b~0) is equivalent to SSA and the rightmost case (b~1) is equivalent to ISA.
There is a large difference between the two that can easily be grasped by eye. The example for b~0:5 reflects the crossing point in performance (see
lower panel) meaning that the representation performs slightly better than 80% of its maximal performance with respect to both objectives
simultaneously. The case b~0:15 was hand-picked to represent the point where the filters perceptually look similarly close to ISA and SSA.
doi:10.1371/journal.pcbi.1003468.g005

Slowness and Sparseness in Complex Cell Learning
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energies are not perfectly invariant anymore but at least maximally

stable under the given spatio-temporal statistics. A very similar

argument has also been made for SFA [30].

The receptive fields of complex cells determined from physio-

logical experiments rarely exhibit multiple cycles as predicted by

SSA. This indicates that complex cells in the brain are not fully

Figure 6. Trade-off in the performance with respect to slowness and sparsity. When optimizing the filter set for a weighted superposition
of the slowness and sparsity objectives the performance with respect to Esparse decreases monotonically with Eslow (upper left). The steepness of
decay indicates the impact of the trade-off. The different colors correspond to different datasets (see legend). While the performance with respect to
Esparse for the rotation data falls off quickly (green), the differences between scaling, translation and movie data (cyan, blue, red) are not significant.
The concave shapes of the curves indicate a rather gentle trade-off. The dashed diagonal line indicates an intermediate point for this trade-off. We
chose it such that both objectives are reduced by the same factor relative to their optimal performance in the units used here. The corresponding
filters are shown in the adjacent panels: The ISA filters are shown in (A) which are independent of the temporal statistics. The ISSA filters at the break
even point are shown in (B) for movies, in (C) for translations, in (D) for rotations, and in (E) for scalings. The last row shows the SSA filters in the same
order: (F) for movies, in (G) for translations, in (H) for rotations, and in (I) for scalings.
doi:10.1371/journal.pcbi.1003468.g006

Slowness and Sparseness in Complex Cell Learning
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optimized for slowness. It may still be possible though that

slowness plays some role in the formation of complex cells. The

trade-off analysis with the mixed objective has shown that giving

up some sparsity allows one to achieve both relatively large

sparsity and slowness at the same time with localized receptive

fields.

Having established how exactly sparseness and slowness differ

in their implied receptive fields also helps to address the roles of

sparseness and slowness experimentally. Li & DiCarlo [39,40]

found neural correlates of the learning of invariances by

manipulating the statistics of the presented stimuli. Since their

recordings were from area IT where receptive fields are known

to be very large, it would be very interesting to see the effect of

similar experiments, made during the critical period, on

complex cells in primary visual cortex. To distinguish between

slowness and sparseness it might also be instructive to vary the

temporal continuity of the training stimuli, e.g. by comparing

the effect of smooth translations with discrete jumps on the

learnt receptive fields. Another, possibly more direct approach

to distinguish between sparseness and slowness might be to

compute the respective objective functions directly on the

sensory responses over development. While such an experiment

has already been done for sparseness by [8] who interestingly

found that sparseness decreases throughout development, we are

not aware of the equivalent evaluation of any change in

neuronal slowness.

Independent of what happens during development, the

comparison of slowness and sparseness raises questions about

how we should view the role of complex cells with respect to the

tolerance-selectivity trade-off. Given that large receptive fields

are advantageous for invariance or slowness, the small receptive

field size of complex cells suggests that complex cells do not aim

at achieving maximal tolerance but rather lean towards

preserving a high degree of selectivity. For both ISA and SSA

some degree of invariance is already built into the architecture

which resembles the energy model of complex cells and will

always find two-dimensional invariant subspaces. Instead of

prescribing the invariant subspace dimensionality we wanted to

know what happens if the subspace dimensionality is learned as

well. This can be done by learning complex cells with SFA on

the full quadratic feature space and then investigating the

spectrum of the resulting quadratic forms. Comparing the

number of subspaces employed by SFA to maximize slowness

to empirical measurements in V1 [41,42] it turns out that the

number of subspaces employed by real neurons, and therefore

the degree of invariance is smaller than predicted by slowness

(see Figure S1).

The deeper principle underlying both sparsity and slowness is

the idea of generative modeling [25]. From a generative modeling

perspective, one is most concerned about modeling the precise

shape of all variations in the data rather than just optimizing some

fixed architecture or feature space to be as invariant or sparse as

possible. More specifically, in a generative modeling framework all

ingredients of the model are formalized by a density model and

thus the likelihood becomes the natural objective function. This

holds also true for the studies which combined the slowness

objective with a sparsity objective in the past [8,31–33]. The

generative power of these models, however, still needs to be

significantly improved in order to be able to explain object

recognition performance of humans and animals. A better

understanding of the partially opposing demands of slowness

and sparseness on the response properties of visual neurons will

help us understand the computational strategy employed by the

visual system in reaching that performance.

Methods

Slow Subspace Analysis
The algorithm of slow subspace analysis (SSA) has previously

been described by Kayser et al [9]. Just like in independent

subspace analysis [4] also in SSA the N-dimensional input space is

separated into M~
N

K
independent subspaces of dimensionality K

and the (squared) norm of each subspace should vary as slowly as

possible. The output function of the i-th subspace is then defined

as

zi(t)~gi(x(t))~
XK{1

k~0

uTiKzkx(t)
� �2

, ð2Þ

where K is the dimensionality of the subspace, m the number of

the subspace, and U~ u0, . . . ,uN{1½ � is the orthonormal filter

matrix. It is important to notice that, for an input signal x(t) with

zero mean and unit variance, z(t) has mean K . For K~2, the set

of squared subspace norms corresponds to the power spectrum of

the Fourier transform if the set of filters are the discrete Fourier

transform.

The objective function of SSA has been called ‘‘temporal

smoothness’’ objective by Kayser et al. [9] and is given by

Eslow(U)~
1

M

XM{1

i~0

v zið Þ~
1

M

XM{1

i~0

Var _zzi½ �
Var zi½ �

~
1

M

XM{1

i~0

S _zz2
i Tt{S _zziT2

t

Sz2
i Tt{SziT2

t

:

ð3Þ

Note, however, that Eslow increases with the amount of rapid

changes and is minimized subject to UUT~I . To find the optimal

set of filters U under the given constraints we use a variant of the

gradient projection method of Rosen [43] which was successfully

used for simple cell learning before [22].

In order to compute the gradient of the objective function we

have to compute the temporal derivative of the output signal z(t)
first, using the difference quotient as approximation:

_zz(t)~
z(tzDt){z(t)

Dt
: ð4Þ

As we use discrete time steps, we can set Dt~1 which leads to
_zz(t)~z(tz1){z(t). This simplifies the objective function (3) as the

temporal difference mean S_zziT2
t ~0. The objective function can be

further simplified by using the fact that S uTx(t)
� �2T

t
~1 for

DDuDD22~1 and x(t) having zero mean and unit variance, which leads

to SziTt~K . The complete objective function is then

Eslow(U)~

1

M

XM{1

i~0

S PK{1
k~0 uTiKzkx(tz1)

� �2
{
PK{1

k~0 uTiKzkx(t)
� �2

h i2T
t

S PK{1
k~0 uTiKzkx(t)

� �2
h i2T

t
{K2

ð5Þ

For every iteration, the gradient of the objective function is

computed, scaled by the step length a, and subtracted from the

current filter set

ÛUiz1~Ui{a+f Uið Þ: ð6Þ

The partial gradient with respect to uiKzk is
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LEslow(U)

LuiKzk

~

2S zi(tz1){zi(t)½ � zi
’(tz1){zi

’(t)
� �

T
t

Szi(t)
2Tt{K2

� �
{2 zi(tz1){zi(t)½ �2Szi(t)zi

’(t)T

M Szi(t)
2Tt{K2

� �2
ð7Þ

with

zi
’(t)~

Lzi(t)

LuiKzk

~S XK{1

k~0

uTiKzkx(t)
� �2

" #
uTiKzkx(t)x(t)TT

t

: ð8Þ

The matrix containing the resulting filter set is then projected onto

the orthogonal group using symmetric orthogonalization [44]

Uiz1~ÛUiz1 ÛUT
iz1ÛUiz1

� �{0:5
, ð9Þ

yielding the closest orthonormal matrix with respect to the

Frobenius norm [45]. Along this gradient a line search is performed

where the initial step length a is reduced until the objective function

on Uiz1 is smaller than Ui before the iteration proceeds.

The optimization is initialized with a random orthonormal

matrix U0. As stopping criterion the optimization terminates when

the change in the objective function is smaller than the threshold

E~1e{8. In all our simulations we used a subspace dimension of

K~2. A python implementation of the algorithm can be found as

part of the natter toolbox http://bethgelab.org/software/natter/.

Independent Subspace Analysis
Independent subspace analysis (ISA) has originally been

proposed by Hyvärinen and Hoyer [4]. The only difference

between SSA and ISA is the objective function. Generally

speaking, ISA is characterized by a density model for which the

density factorizes over a decomposition of linear subspaces. In

most cases the subspaces all have the same dimension, and in case

of natural images the marginal distributions over the individual

subspaces are modeled as sparse spherically symmetric distribu-

tions. Like Hyvärinen and Hoyer [4] we chose the spherical

exponential distribution

log p zi(t)ð Þ~{a zi(t)½ �0:5zb ð10Þ

where zi is the subspace response as defined in Equation 2, a is a

scaling constant and b the normalization constant. Correspond-

ingly, the objective function reads

Esparse(U)~
1

M

XM{1

i~0
S zi(t)½ �0:5T

t

~
1

M

XM{1

i~0 S XK{1

k~0

uTiKzkx(tz1)
� �2

" #0:5T
t

: ð11Þ

The scaling and normalization constants a and b can be omitted.

This leads to the gradient

LEsparse(U)

LuiKzk

~0:5S zi(t)½ �{0:5
zi
’(t)Tt ð12Þ

with zi
’(t) as defined in Equation 8. The optimization is identical

to SSA where only objective and gradient are replaced. For the

numerical implementation of ISA we used a python translation of

the code provided by the original authors at http://research.ics.

aalto.fi/ica/imageica/.

Data Collection
The time-varying input signal x(t) was derived from the van

Hateren image database [34] for translations, rotations and scalings

and the van Hateren movie database [35] for movie sequences. The

image database contains over 4000 calibrated monochrome images

of 1536|1024 pixels, where each pixel corresponds to 0:1 deg of

visual angle. We created a temporal sequence by sliding a 11|11
window over the image. Step length and direction for translation,

angle for rotation and anisotropic scaling factors were sampled from

a uniform random process. If not stated otherwise, the translation

was sampled independently for x- and y direction from a uniform

distribution on ½{2; 2�, the rotation angle from a uniform

distribution on ½{180; 180) and the scaling factors independently

for x- and y-direction from a uniform distribution on ½0:8; 1:2�. The

movie database consists of 216 movies of 128|128 pixels with a

duration of 192 s and 25 frames per second. The images were taken

in Holland and show the landscape consisting mostly of bushes,

trees and lakes with the occasional streets and houses. The video

clips were recorded from Dutch, German and British television with

mostly wildlife scenes but also sports and movies. For each stimulus

set we sampled 120,000 patches.

Preprocessing
The extracted 11|11 image patches were treated as vectors by

stacking up the columns of the image patches, resulting in a 121-

dimensional input vector x(t). We projected out the DC

component, i.e. removed the mean from the patches, and applied

symmetric whitening to the remaining 120 AC components. No

low pass filtering or further dimensionality reduction was applied.

All computations were done in the 120-dimensional whitened

space and the optimized filters then projected back into the

original pixel space.

Supporting Information

Figure S1 Model complex cells derived with SFA fail to
reproduce the small numbers of significant eigenvalues
found empirically with STC analysis. We computed SFA

filters on the quadratic feature space of the 100 lowest Fourier

components of 11|11 image patches sampled from the van

Hateren image database [34]. As temporal transformation we

applied a 2D translation with shift amplitudes drawn from a 2D

uniform continuous distribution on ½{2 : 2� to the data. We then

applied the same analysis to the SFA filters as used in [42,41]. We

applied a sequence of 50000 Gaussian white noise pattern to the

SFA filter. The filter responses were centered at their respective

median and split in two firing rate sets, the excitatory from all

positive responses (i.e. larger than median) and the inhibitory from

the absolute value of all negative responses (i.e. smaller than

median). The firing rates were then used to generate Poisson spike

counts. Given spike counts and stimuli, we computed the spike

triggered covariance (STC) for 100 different noise stimulus sets per

SFA filter. The spectrum of eigenvalues (eigenspectrum) of the

STC matrix of one cell recorded from V1 in an awake monkey

[41] is shown in (A), the eigenspectrum of the STC of one SFA

filter is shown in (B). To determine which eigenvectors are

significant, we computed the STC with shuffled spike counts as

control. The dashed lines correspond to mean + 4.4 SD, which

corresponds to a confidence interval of Pv10{4 for Gaussian

distributed eigenvalues. One clear difference is the number of

significant eigenvectors. While for the V1 cell, only a few

ð7Þ
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eigenvectors are significant, for the SFA model almost all

eigenvectors are significant. The histogram of the number of

significant excitatory and inhibitory eigenvectors is shown in (C)

for the physiological data and in (D) for the SFA model. While the

V1 cells have only few significant eigenvectors for all 130 recorded

cells, the 980000 cells of the SFA model have on average 80

significant excitatory and inhibitory eigenvectors out of the 100

dimensions. The histogram bins with 0 entries were not plotted for

clarity of the figure.
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10. Einhäuser W, Kayser C, König P, Körding KP (2002) Learning the invariance
properties of complex cells from their responses to natural stimuli. European

Journal of Neuroscience 15: 475–486.

11. Kayser C, Körding KP, König P (2003) Learning the nonlinearity of neurons
from natural visual stimuli. Neural Computation 15: 1751–9.
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