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The conversion from soluble states into cross-f fibrillar aggregates is a property shared by many different proteins and
peptides and was hence conjectured to be a generic feature of polypeptide chains. Increasing evidence is now
accumulating that such fibrillar assemblies are generally characterized by a parallel in-register alignment of §-strands
contributed by distinct protein molecules. Here we assume a universal mechanism is responsible for p-structure
formation and deduce sequence-specific interaction energies between pairs of protein fragments from a statistical
analysis of the native folds of globular proteins. The derived fragment-fragment interaction was implemented within a
novel algorithm, prediction of amyloid structure aggregation (PASTA), to investigate the role of sequence
heterogeneity in driving specific aggregation into ordered self-propagating cross-p structures. The algorithm predicts
that the parallel in-register arrangement of sequence portions that participate in the fibril cross-f core is favoured in
most cases. However, the antiparallel arrangement is correctly discriminated when present in fibrils formed by short
peptides. The predictions of the most aggregation-prone portions of initially unfolded polypeptide chains are also in
excellent agreement with available experimental observations. These results corroborate the recent hypothesis that
the amyloid structure is stabilised by the same physicochemical determinants as those operating in folded proteins.
They also suggest that side chain-side chain interaction across neighbouring -strands is a key determinant of amyloid
fibril formation and of their self-propagating ability.
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Introduction

An increasing number of human pathologies are associated
with the conversion of peptides and proteins from their
soluble functional forms into well-defined fibrillar aggregates
[1,2]. The diseases can be broadly grouped into neuro-
degenerative conditions, in which fibrillar aggregation occurs
in the brain, nonneuropathic localised amyloidoses, in which
aggregation occurs in a single type of tissue other than the
brain, and nonneuropathic systemic amyloidoses, in which
aggregation occurs in multiple tissues [1,2]. The fibrillar
deposits associated with human pathologies are generally
described as amyloid fibrils when they accumulate extracell-
ularly, whereas the term “intracellular inclusions” has been
suggested to be more appropriate when fibrils morphologi-
cally and structurally related to extracellular amyloid form
inside the cell [3].

Amyloid formation is not restricted, however, to those
polypeptide chains that have recognised links to protein
deposition diseases. Several other proteins that have no such
link have been found to form fibrillar aggregates in vitro with
morphological, structural, and tinctorial properties that
allow them to be classified as amyloid-like fibrils [4,5]. This
finding has led to the idea that the ability to form the amyloid
structure is an inherent property of polypeptide chains,
encoded in main backbone chain interactions. From a
theoretical perspective it was also recently shown that simple
considerations of geometry and symmetry are sufficient to
explain, within the same sequence-independent framework,
the emergence of a limited menu of native-like conforma-
tions for a single chain and of B-aggregate structures for
multiple chains [6].
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The generic ability to form the amyloid structure has
apparently been exploited by living systems for specific
purposes, as some organisms have been found to convert,
during their normal physiological life cycle, one or more of
their endogenous proteins into amyloid-like fibrils that have
functional properties rather than deleterious effects [7-9].
Perhaps the most surprising of these functions is the ability of
amyloid-like fibrillar aggregates to serve as a nonchromoso-
mal genetic element. Proteins such as Ure2p and Sup35p
(Saccharomyces cerevisiae) or HET-s (P. anserina) can adopt a
fibrillar conformation that, in addition to giving rise to
specific phenotypes, appears to be self-propagating, trans-
missible, and infectious [10].

In their soluble states, the proteins able to form fibrillar
aggregates do not share any obvious sequence identity or
structural homology to each other. In spite of these differ-
ences in the precursor proteins, morphological inspection
reveals common properties in the resulting fibrils [11]. Images
obtained with transmission electron microscopy or atomic
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force microscopy reveal that the fibrils usually consist of 2-6

protofilaments, each about 2-5 nm in diameter [12]. These
protofilaments generally twist together to form fibrils that are
typically 7-13 nm wide [11,12], or associate laterally to form
long ribbons that are 2-5 nm high and up to 30 nm wide [13-
15]. X-ray fibre diffraction data have shown that the protein
or peptide molecules are arranged so that the polypeptide
chain forms B-strands that run perpendicular to the long axis
of the fibril [11].

Solid-state nuclear magnetic resonance (ss-NMR), X-ray
micro- or nano-crystallography, and other techniques such as
systematic protein engineering coupled with site-directed
spin-labelling or fluorescence-labelling have transformed our
ability to gain insight into the structures of fibrillar
aggregates with residue-specific detail [16-29]. These advan-
ces have allowed us to go beyond the generic notions of the
fibrillar appearance and presence of a cross-f structure.
These studies have indeed allowed the identification of
regions of the sequence that form and stabilise the cross-f3
core of the fibrils, as opposed to those stretches that are
flexible and exposed to the solvent. In many cases, the
arrangement of the various molecules in the fibrils has also
been determined, clarifying the nature of the intermolecular
contacts and the structural stacking of the molecules along
the fibril axis. One frequent characteristic emerging from
these studies, particularly for fibrils formed by long sequen-
ces, is the parallel in-register arrangements (PIRA) of -
strands in the fibril core [17-21,23-26,28], but antiparallel
arrangements are also possible, especially for shorter strands
[27,30].

At the same time, mutational studies of the amyloid
aggregation kinetics revealed simple correlations between
physico—chemical properties (charge, hydrophobicity, and B-
sheet propensity) and aggregation propensities [31]. This
allowed the development of different methods, which
successfully predict aggregation-prone regions in the ami-
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no-acid sequence of a full-length protein [32-37]. All such
approaches focus on predicting the intrinsic f-aggregation
propensity of a sequence stretch using only the amino-acid
sequence as an input. In [35] the possible parallel/antiparallel
arrangement of the sequence stretch with itself was also taken
into account. Molecular dynamics simulations of sequence
fragments mounted on idealized B-strand templates, either
parallel or antiparallel, were used to identify the most
amyloidogenic fragments in a specific case [38]. A template
amyloid structure based on PIRA is also employed in a very
recent method for identifying fibril-forming segments [39]. A
yet-unanswered question is why PIRA is found to be the most
frequent arrangement of B-strands in the fibril core.

Here we introduce a computational approach by editing a
pairwise energy function based on the propensities of two
residues to be found within a B-sheet facing one another on
neighbouring strands, as determined from a dataset of
globular proteins of known native structures. We extract
two different propensity sets depending on the orientation
(parallel or antiparallel) of the neighbouring strands. Our
method associates energy scores to specific B-pairings of two
sequence stretches of the same length, and further assumes
that distinct protein molecules involved in fibril formation
will adopt the minimum-energy B-pairings in order to better
stabilise the cross-p core.

A novel feature of our method is the ability to predict the
registry of the intermolecular hydrogen bonds formed
between amyloidogenic sequence stretches. In this way we
can rationalise the observed tendency of proteins to assemble
into parallel B-sheets in which the individual strands are in-
register, contributing to form stackings of the same residue
type along the fibril axis. Our algorithm is also able to
correctly discriminate the orientation between intermolecu-
lar B-strands, either parallel or antiparallel. As a further
demonstration of the robustness of the approach we will
illustrate the ability of our algorithm to predict the portions
of the sequence forming the cross-B core of the fibrils for a
set of proteins, in excellent agreement with the experimen-
tally determined amyloid structures, similar to previously
proposed methods [32-37].

Our approach is based on the key assumption that a
universal mechanism is responsible for B-sheet formation
both in globular proteins and in fibrillar aggregates. The
successful predictions obtained in this work suggest the
validity of the above hypothesis in agreement with the unified
framework presented previously [6].

Results

The Parallel In-Register Arrangement of B-Strands in the
Amyloid-Like Fibrils

Based on the procedure described in detail in Materials
and Methods and sketched in Figure 1, we can associate an
energy score SZ(-“) (L), from Equations 2 and 3, to the B-pairing
of two sequence stretches chosen from distinct protein chains
sharing an identical sequence. The pairing is specific since
only pairs of residues facing each other in the corresponding
register contribute to the energy score. All possible aggrega-
tion patterns are then defined in terms of the positions along
the sequence ij, the length L, and the relative orientation
(either parallel or antiparallel) of the two sequence stretches

participating in the pairing. We assume that the faithful
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Figure 1. Sketch of the Method Presented in This Work
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Parallel In-Register Arrangement in Amyloids

Two identical protein chains are assumed to associate by means of an ordered pairing of two hydrogen-bonded B-strands of the same length (L =7)
while the remaining parts of the chains remain unstructured. All possible pairings can be obtained by sliding the two strand-forming regions (i.e., by
varying i and j) along the corresponding sequences and by varying their length L and their relative orientations. The two possible orientations, parallel
and antiparallel, for the same choice of sequence stretches participating in the pairing, are depicted. The corresponding pairing aggregation scores are
obtained (Equations 2 and 3) by summing contributions for each of the L pairwise interactions between residues in front of each other in the paired
strands, represented as dotted lines. Dotted lines do not represent hydrogen bonds. Interaction matrices (Equation 1) are obtained from a statistical
analysis of globular protein native structures, separately for parallel and antiparallel orientation. A term taking into account the entropy loss of the

residues being ordered due to the pairing is further added.
doi:10.1371/journal.pcbi.0020170.g001

repetition of this aggregating unit is at the basis of the
assembly of polypeptide chains into amyloid fibrils, deter-
mining the highly regular cross-B core of the fibril.

We first analyse the properties of our energy function at
the level of single pair energies Ef,sa) (see Equation 1). Residue
pairs that appear from the analysis to possess low values of
Eﬁb or EJ, should then have a propensity to aggregate in the
context of amyloid fibrils higher than other pairs. Figure 2
shows the distribution of the 210 entries for Ei’b, Ej,, and for
the 20 in-register entries EZ . All entries for both parallel and
antiparallel pairing are shown in Table 1. Antiparallel pairing
is favoured, on average, but the most favourable entries are
found in the left tail of the parallel pairing distribution (with
the only exception of the CYS-CYS antiparallel entry).
Moreover, many of those are achieved for in-register pairings,
notably for the hydrophobic residues VAL, ILE, and PHE. On
the contrary, E?, energies for charged and for some of the
polar residues can assume significantly higher values. The
highest E? energy is obtained for PRO, as expected, since it
breaks the regular pattern of main backbone hydrogen
bonding.

To verify whether the energies obtained with Equation 1
promote a general pattern in the aggregation, we use the
sequence of the human amyloid B-peptide (AB;_40), a peptide
known to be involved in Alzheimer disease and other
pathological conditions such as hereditary cerebral hemmo-
rhage with amyloidosis and inclusion-body myositis [2]. We
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Figure 2. Histograms of the Energies for the Occurrence of Parallel and
Antiparallel B-Pairing

The third histogram shows the energies for the PIRA (a subset of the
parallel case). The lowest energies correspond to the antiparallel
arrangement of CYS-CYS and to the PIRA of VAL-VAL and ILE-ILE.
Seventeen out of the 44 CYS-CYS residues found in native structures in
anti-parallel B-pairing are forming disulfide bridges with each other, in
agreement with previous reports [57,58]. Note that the energy for
parallel arrangement of CYS-CYS is repulsive.
doi:10.1371/journal.pcbi.0020170.g002
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Table 1. Entries for Both Parallel, £, and Anti-Parallel, EZ,, Pairings, Computed as in Equation 1 (See Materials and Methods)

Residue CYS PHE LEU TRP VAL ILE MET HIS TYR ALA GLY PRO ASN THR SER ARG GLN ASP LYS GLU
CYs —257, —1.08 —-0.84 -094 -094 -065 -021 —-051 -124 —-0.09 -0.23 043 080 —-0.07 006 034 026 087 -030 0.57
PHE :8172 -131, -065 —-066 -1.18 -1.15 -0.81 -0.15 —-098 -030 -0.17 041 069 —-0.25 -0.07 -0.01 0.02 0.96 0.19  0.01
LEU —0.09 :(1)‘9‘? -0.55, —0.50 -0.88 -083 -035 026 -064 0.12 043 097 087 0.1 0.14 035 030 1.11 034 070
TRP —-0.69 -0.01 :8?2 -058, -0.72 -0.78 -0.26 -0.55 -097 -0.13 0.16 036 —-0.02 030 -027 -047 -042 067 -070 0.16
VAL —-1.16 —-149 -1.67 :822 —1.40, —142 —-065 -041 -—-1.09 —-044 -0.16 091 056 —0.59 -0.10 —-032 —-0.27 068 -036 -—0.11
ILE —124 -148 -170 -1.03 :§;§ -120, -062 —-031 -1.00 -052 0.14 1.20 076 —0.22 —-0.01 -0.19 -0.19 094 022 0.7
MET —-041 -079 -082 -033 -1.16 :éég —0.65, —0.09 —0.41 0.25 0.58 0.52 047 —-026 006 022 068 132 0.05 0.27
HIS 1.10 0.01 -0.10 123 —-046 —0.60 :gg? —073, —038 036 003 1.24 039 -033 017 013 -0.15 031 0.09 0.17
TYR —-038 —-095 —-060 -0.19 -1.10 —-1.09 -0.84 :8;3 —0.98, —0.25 0.09 0.07 002 -060 —-035 -057 —-036 056 -0.53 -0.21
ALA 005 0.14 -0.41 0.12 -0.82 -0.74 064 087 :ggi 048, 0.65 1.57 146 016 089 056 096 1.75 0.88 1.09
GLY 103 -019 036 069 -013 013 044 069 024 82131 0.65, 1.61 116 053 062 085 083 1.13 1.63 1.51
PRO 218 1.88 261 1.97 1.27 125 222 239 1.45 1.74 1 2(2) 2.68, 1.18  0.69 1.37 1.06 092 3.55 1.04 1.51
ASN 214  0.50 129 061 044 080 023 053 0.28 1.32 1.29 ;(7; 091, 0.08 002 042 007 127 0.64 091
THR 067 010 -0.14 008 -0.70 -042 -0.09 -050 054 031 0.69 1.34 :82(5) -1.03, =037 -033 -030 030 -041 -0.23
SER 033 -—-0.04 068 0.61 006 038 002 -0.08 0.8 067 122 194 0.85 —8(1); —0.24, —0.01 —-0.03 0.81 0.07 0.28
ARG —0.03 127 085 188 000 006 -009 0.15 067 099 0.89 250 089 -0.18 g;; 037, —0.04 0.08 030 —-0.24
GLN 154 027 033 015 031 003 062 033 0.17 080 070 1.80 087 053 1.14 (1)23 0.20, 0.71 030 0.22
ASP 0.98 158 099 218 037 081 088 084 037 135 145 331 1.01 063 042 1.19 (1)‘19; 111, 0.0 137
LYS 2.30 129 084 069 053 075 1.35 022 049 1.08 143 3.20 1.03 —0.02 1.13 177 075 (1)22 0.11, —0.53
GLU 020 072 057 208 050 000 070 053 0.60 1.30 158 3.28 217 073 097 070 1.08 1.46 :)?? 0.60,
1.51

Antiparallel pairings are shown in the upper above-diagonal half of the matrix. Parallel pairings are shown in the lower below-diagonal half of the matrix. For entries in the diagonal
corresponding to two equal residue kinds, the antiparallel pairing is shown in the top line, whereas the parallel pairing is shown in the bottom line.

doi:10.1371/journal.pcbi.0020170.t001

are interested in rationalising on general grounds the
competition between different registers in achieving the
most favourable pairing. To average out as much as possible
the influence of sequence specificity, we need to find a set of
different minimum energy pairings. For fixed L and |i - j|, we
slide the B-pairing segments along the sequence looking for
the minimum energy pairing in both the parallel and
antiparallel orientations (for the analysis shown in Figure 3

we consider the length independent energy term
sf](-">
are then averaged over different segment lengths (4 < L < 23)

(L) + LAs). The minimum energies collected in this way

for a fixed value of |i - |, yielding a mean value that is plotted
as a function of |i - j| in Figure 3. As a matter of fact, the in-
register parallel alignment (|i — j| = 0) is considerably more
favourable than any other out-of-register parallel alignment
(|i = j| # 0). We interpret oscillations in the curve for parallel
pairings as a signature of some degree of pattern repetition in
the sequence. On the other hand, (|i - j| = 0) is the preferred
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pairing also for antiparallel orientation, but in this case the
average minimum energy exhibits a linear increase with |i - j|.
All these features are consistently retrieved in all sequences
analysed in this work (unpublished data), whereas the
existence and the values of the “gap” between the |i - j| =0
parallel and antiparallel depends crucially on the specific
sequence (see Table 2).

Our results show that on average the assembly of AB;_4
molecules with PIRA of sequence segments is favoured over
both antiparallel and parallel out-of-register arrangements.
ss-NMR and site-directed spin labelling experiments indeed
show that amyloid fibrils from AP contain such a parallel in-
register stacking of B-strands contributed by distinct mole-
cules [17,18]. Similar results are obtained when computing
the sequences of amylin, a-synuclein, and the PHF43 segment
of tau protein (unpublished data), again in agreement with
the experimental results [19-21,23]. For the AB;_4 peptide
and for the islet amyloid polypeptide, PIRA is clearly
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Figure 3. Plot of the Average over L of minj g; (L) as a Function of |i —j|,
Obtained with the AB40 Peptide for Both Parallel and Antiparallel
Orientation

Bars represent the standard deviations of the minimum energies
obtained for different segment lengths L. The linear increase with
|i — j| of the antiparallel curve can be explained in the following way. If
[i—jl=1 with I <L, [(L—1)/2] terms are repeated twice in the last sum
of the right hand side of Equation 2 ([x] is the integer part of x) so that
the number of £, values to be searched for low values is [(L 4+ /+ 1)/2].
Since the smaller this number the easier to find a good pairing,
antiparallel pairing is more and more favoured as | < L is more and
more decreased until for /=0 one gets the most favourable antiparallel
pairing.

doi:10.1371/journal.pcbi.0020170.9g003

preferred over the antiparallel one within this analysis (Table
2). On the other hand, the preference is milder for the PHF43
fragment of the tau protein, and for human o-synuclein,
being within the standard deviation of the energies employed
for the average, as shown in Table 2.

The behaviour of the two curves shown in Figure 3 can be
understood on the basis of simple statistical considerations.
The problem consists in finding several low-energy pairings
in a row. For a generic out-of-register parallel arrangement,
the lowest Efb values need to be found within all 210 possible
entries. Therefore, the probability of finding several consec-
utive low-energy pairings is indeed quite low, independently
of the sequence distance |i - j| between the segments (as long
as |i - j| # 0). On the other hand, the search problem is much
easier in the case of in-register parallel pairing (|i - j| = 0),

Table 2. Energy Difference between Average Parallel and
Antiparallel In-Register (|i — j| = 0) Pairings (See Figure 3)

Sequence Gap between Average Minimum
Energy of Parallel and Antiparallel
Pairing at |i —jl =10

AB1_s0 25+ 16

Islet amyloid polypeptide 50 *= 26

PHF43 fragment 14 *15

a-synuclein 1.8+ 1.8

doi:10.1371/journal.pcbi.0020170.t002
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Table 3. Pairing Energies Predicted by Equations 2 and 3 for the
Listed Peptides, Assuming the Full Peptide Length Is Involved in
a B-Pairing with Itself

Peptide Parallel Arrangement Antiparallel Arrangement
GNNQQNY 3.25 3.73
KFFEAAAKKFFE 3.82 —2.23

KLVFFAE (ABisps) —1.82 -3.08

Boldface, the minimum energy pairing among the two possible orientations, parallel or
antiparallel.
doi:10.1371/journal.pcbi.0020170.t003

since the lowest pairing energies need to be found only within
the 20 E? entries (see Figure 2). Therefore PIRA is favoured,
with respect to other parallel alignments, because many of
the most favourable entries can be found more easily.

In the case of antiparallel arrangement, the search always has
to be performed among 210 entries, but a symmetry effect
favours the |i - j| = 0 register. Indeed, when two overlapping
sequence segments are aligned in antiparallel manner, some
pairings are repeated twice (see the antiparallel case in Figure 1
with j=¢). The number of low-energy pairings to be found is thus
effectively reduced. The extent of this reduction is proportional
to the length of the overlapping portion, thus explaining the
linear increase with |7 — j| of the antiparallel curve in Figure 3.
(Further details can be found in the Figure 3 legend.)

We remark that the above general arguments rely on the
fact that the most favourable entries do indeed correspond to
PIRAs, due to the stacking of hydrophobic and hydrophilic
residues. In other words, PIRA provides a natural way of
maximizing the number of favourable stacking interactions,
lining up hydrophobic and hydrophilic residues in long rows
along the fibril axis. Any other out-of-register parallel
arrangement will most likely disrupt such an ordered pattern
of stabilizing interactions.

Prediction of Alignment Orientation for Fibril-Forming
Peptides

We employ prediction of amyloid structure aggregation
(PASTA) to predict the orientation between B-strands in
fibrillar structures formed by short, previously investigated
peptides. In all cases we assume the full peptide length is
involved in the B-core of the fibril, so that we simply compare
the energy score of the parallel and antiparallel B-pairings of
the full segment with itself. Results are shown in Table 3,
showing in the three considered cases that PASTA correctly
identifies the experimentally determined orientation as the
minimum energy pairing. To our knowledge, the first two
peptides are the only cases of a detailed atomic resolution
achieved for a fibrillar structure obtained by means of X-ray
diffraction from microcrystals. GNNQONY is a fragment
from the yeast prion protein Sup35 displaying a parallel
orientation between B-strands within the same B-sheet [28].
KFFEAAAKKFFE is a peptide explicitly designed to form
amyloid-like fibrils and was shown to be composed of
antiparallel B-sheets [27]. KLVFFAE is the (16-22) fragment
of the human AP; 4 amyloid peptide, whose B-sheet
structure was indicated to be antiparallel by ss-NMR data
[40]. In the latter case it is remarkable that PASTA recognises
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Table 4. Best Pairing Energies Predicted by Equations 2 and 3

Sequence Best Pairing Second-Best Pairing Third-Best Pairing

First Second First Second First Second

Segment Segment Energy Segment Segment Energy Segment Segment Energy
AB1-40 12-20 12-20 —6.12 31-40 31-40 —6.11 12-21 12-21 —5.49
Islet amyloid polypeptide 12-32 12-32 —7.62 14-32 14-32 —7.47 15-32 15-32 -7.33
PHF43 fragment 11-15 11-15 —5.08 11-14 11-14 —491 10-15 10-15 —3.87
a-synuclein 48-55 48-55 —6.11 48-55 70-77 —-5.82 48-56 48-56 —5.49
HET-s prion domain 22-28 22-28 —4.29 47-51 47-51 —4.07 22-29 22-29 —3.97

All listed arrangements are PIRAs. Only the second-best pairing for a-synuclein is out-of-register. In the case of the PHF43 fragment of the tau protein, the third-best pairing involving the

segment 10-15 with itself is degenerate with the pairing involving the segment 11-16 with itself (again with parallel orientation).

doi:10.1371/journal.pcbi.0020170.t004

the tendency of the short (16-22) fragment to form
antiparallel B-sheets while at the same time predicting the
correct in-register parallel alignment for the full sequence
(see below).

Prediction of Specific Pairings and Sequence-Aggregation
Propensities

We employ PASTA to identify the regions of the sequence-
promoting aggregation for five natively unfolded systems.
These include human Af;_49, human o-synuclein, the human
islet amyloid polypeptide, the PHF43 fragment from human
tau, and the HET-s prion domain protein from P. anserina. We
decided to perform the analysis on such systems rather than
on globular proteins because our analysis utilises values of
intrinsic propensity to aggregate residue pairs and does not
take into account the presence and type of secondary and
tertiary structure in the analysed polypeptide chain. Indeed,
it is well-known that the presence of structure in the initial
nonaggregated state of the protein is an important determi-
nant of aggregation and reduces dramatically the aggregation
propensity of the structured regions [41]. In addition, the five
natively unfolded systems analysed here were chosen because
their aggregation-promoting regions were also determined
experimentally, allowing our predictions to be directly tested.

The energy functions introduced in Equations 2 and 3 can
be used to compare different segment lengths, and we will
first list the three pairings yielding the minimum energy when
looking among all possible segment lengths. (By definition the
energy of a nonaggregating system is zero.) The results are
summarized in Table 4. We then use the single-residue

propensity h(k) defined in Equation 5 to take into account
other low-energy pairings that could be close competitors of
the lowest-energy pairing.

Human amyloid B-peptide. We first apply PASTA to study
ABy_40. It is known by proline-scanning mutagenesis and
quantitation of fibrils by Congo red binding [42], ThT
binding, electron microscopy, and SDS-Page [43], ss-NMR
(17) and site-directed spin labelling [18] that the regions of
the sequence involved in B-aggregation are approximately the
segments 12-24 and 30-40 (the boundaries of the two regions
vary somewhat in the various reports). Both segments are
almost exactly predicted and are found as minima closely
competing with each other. In Figure 4A we are plotting h(k)
for ABy_40. We see that in the region 12-20 and 31-40 the
propensity is very strong, in almost perfect agreement with
the experimental prediction, whereas it is negligible in the
other parts of the protein. In both cases PIRA is predicted in
perfect agreement with experimental data [17].

Human o-synuclein. This protein is involved in Parkinson
disease and in dementia with Lewy Bodies [2]. By synthesising
peptides of various lengths and quantifying their aggregation
using HPLC and circular dichroism, the region 63-78 has
been proposed to be involved in aggregation [44,45]. More
recent experimental studies employing ss-NMR have allowed
the identification of several sequence portions involved in -
strand formation within the fibrils [23]. These are shown as
thick red bars in Figure 4B, together with the aggregation
profile predicted by our algorithm. Four out of five of the
experimentally determined sequence stretches are correctly
identified by PASTA. The overall arrangement is parallel in-

Figure 4. Amyloid Propensity Plots for the Proteins Studied in This Work

(A) Plot of amyloid propensity h(k) (Equation 5) for the human amyloid B-peptide. The sequence regions involved in B-strands according to ss-NMR
experiments [17] are represented by a thick red line along the k-axis.

(B) Same as in (A) but for the protein human a-synuclein. Thick red bars mark sequence stretches involved in B-strands according to ss-NMR
experiments [23]. The thin red bars show the whole sequence portion found to be in PIRA, according to site-directed spin-labelling, solid line [19], and
found to participate in main backbone hydrogen bonding according to hydrogen-deuterium exchange, dashed line [22]. The two experimentally
determined portions differ only in the location of the initial boundary.

(C) Same as in (A) but for the subsection islet amyloid polypeptide. The thin red line shows the whole sequence portion found to be in PIRA according
to site-directed spin-labelling experiments, with the dashed portions representing the uncertainty on boundary location [20]. Thick red bars show the
sequence portions proposed to participate in B-strands according to a structural model based on a serpentine PIRA [24].

(D) Same as in (A) but for the PHF43 fragment from the fetal form of human tau. The thick red line shows a local sequence motif identified to be crucial
for B-aggregation [46].

(E) Same as in (A) but for the HET-s prion domain protein from P. Anserina. The red bars show sequence portions involved in B-strands as determined by
fluorescence studies, quenched hydrogen exchange NMR, and ss-NMR (29).

doi:10.1371/journal.pcbi.0020170.9004

@ PLoS Computational Biology | www.ploscompbiol.org 1613 December 2006 | Volume 2 | Issue 12 | e170



Parallel In-Register Arrangement in Amyloids

ABMO human o—synuclein

0.08 0.08

0.06 — — 0.06 — —

0.04 — —

0.04 — —

0.02 — — 0.02 — —

aggregation propensity [h(k)]
aggregation propensity [h(k)]

e e e — — T
0 5 10 15 20 25 30 35 40 45 0 30 60 90 120 150
residue number [k] residue number [k]
(A) (B)
Islet amyloid polypeptide PHF43
0.07 - 0.25
=006 B — [ ]
2 r ] =2 ook ]
= = W
=t ] = [ ]
0.0 B r 1
2 T ] E 1
a [ ] Z oush 1
5} [ . 5 0 —
8 004} - g L ]
=} r T o r 7
— F B — | .
= 00sf b e [ 1
g 003 B = o1l ]
g f ] S 1
§D L ] ‘§D t 4
200,02~ ] oo | ]
5 1 5 005 ]
an [ ] o 005~ 7
S 001 - < [ ]
0 e e e V" T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
residue number [k] residue number [Kk]
©) D)
HETs-prion
0.08
= i
2t i
N’
=, 0.06 — -
v . 4
=
Q L 4
=9
2 004 —
a | i
=
=} L 4
g=
< L 4
on
L 002+ —
on
Y i
~ | J
oS e T
0 10 20 30 40 50 60 70 80

residue number [k]

(E)

@ PLoS Computational Biology | www.ploscompbiol.org 1614 December 2006 | Volume 2 | Issue 12 | €170



register, as determined by site-directed spin-labelling studies
[19]. PASTA correctly finds the best minimum for a parallel
in-register pairing, but the second-best pairing is a parallel
out-of-register one. Looking at the segments involved, which
are VVHGVATYV (48-55) and VVTGVTAV (70-77), we realize
that this is due to a strong pattern repetition. Five out of
eight residues are matched for an in-register alignment,
including the four valines that are most responsible for the
low pairing energy. In Figure 5 we show the B-pairing contact
map ho(k,m), where a compendium of the general features
predicted by PASTA can be found. The strongest signal is for
PIRA, but parallel out-of-register arrangement is also selected
in the presence of repetition of sequence patterns along the
chain. Weak signals are also present for antiparallel arrange-
ment, which would take place between identical sequence
stretches, as predicted on general grounds.

Islet amyloid polypeptide. The 37-residue islet amyloid
polypeptide is the major component of pancreatic amyloid
deposits, which are the hallmark of noninsulin—dependent
(type II) diabetes mellitus. We plot A(k) in Figure 4C. Again
there is quite a good agreement with site-directed spin-label
experiments (20), which show parallel in-register aggregation
in the region 12-29. It should be remarked that in this case,
unlike for AB;_49, PASTA clearly signals the existence of a
single continuous pairing. In a recently proposed model,
resulting from a number of experimental constraints,
residues 12-17, 22-27, and 31-37 are proposed to form -
strands in a serpentine arrangement in each molecule, with
very short loops connecting them [24]. This structural
arrangement is repeated for each peptide molecule along
the fibril axis so that the parallel in-register orientation is
maintained [24]. The short length of the loop may make it
difficult to distinguish between a single continuous pairing
and three very-nearby short pairings.

ha(k, m)

140

100 120
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80

residue number [m]

40
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Figure 5. B-Pairing Contact Map (Equation 6) for Human a-Synuclein

This picture was obtained with A = 1.5, for a better visualization of the
competition between the best pairings.
doi:10.1371/journal.pcbi.0020170.g005
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PHF43 fragment from the fetal form of human tau.
Filamentous inclusions from tau proteins are present in
numerous neurodegenerative diseases, including Alzheimer
disease and frontotemporal dementia with Parkinsonism
linked to Chromosome 17 [2]. The region, found experimen-
tally to be involved in aggregation within the tau fragment
PHF43, is the segment 11-16, as identified by means of spot
membrane-binding assay [46]. A good agreement is again
found between these experimental data and those found with
our prediction, as shown by both the minimum energy
pairings listed in Table 4 and the plot of A(k) in Figure 4D.
The arrangement is also correctly predicted to be parallel in-
register, as determined by site-directed spin-labelling
coupled with EPR methods [21].

HET-s prion domain fragment from P. anserina. The prion
form of the protein HET-s is involved in a programmed cell
death mechanism called heterokaryon incompatibility
[47,48]. The recombinant HET-s prion domain (fragment
218-289) can form amyloid-like fibrils in vitro and induce
prion phenotypes in a host cell [49]. Recent experiments
employing fluorescence studies, quenched hydrogen ex-
change NMR, and ss-NMR [29] determined four sequence
portions involved in PB-strand structure within the fibrils,
shown as red bars in Figure 4E, together with the aggregation
profile predicted by our algorithm. PASTA correctly predicts
four sequence stretches to be involved in [-aggregation,
placing three of them in good agreement with experiments.
The peculiar arrangement suggested by Ritter et al. on the
basis of their experimental data is parallel but not in-register,
pairing different portions of the same chain [29]. The method
described in this work is based on the assumption of
interchain pairing. Further studies are being carried out to
extend our algorithm to intrachain pairing as well.

Discussion

We introduced a pairwise energy function based on the
propensities of two residues to be found within a B-sheet
facing one another on neighbouring strands, as determined
from a dataset of globular proteins of known native
structures. Such energy function was incorporated within
an algorithm able to predict amyloidogenic sequence
stretches, as well as the registry of the intermolecular
hydrogen bonds formed between them. The latter type of
prediction is a novel feature of our approach.

For a set of natively unfolded proteins involved in the
formation of amyloid fibrils, we correctly predict their
observed tendency to assemble into parallel B-sheets in which
the individual strands are in-register. Our algorithm is also
able to correctly determine the orientation between B-strands
in the fibrils, either parallel or antiparallel, as shown by a
comparison with fibrillar structures formed by short peptides
determined experimentally at the atomic level.

Our energy function predicts that PIRA is favoured on
general grounds, with respect to other parallel out-of-register
alignments, because the most favourable B-pairing found in
globular proteins is indeed parallel and obtained for hydro-
phobic pairs sharing the same residue kind. Even though such
parallel in-register pairing can be unfavourable for other
residues (especially charged ones), PIRA by itself constrains
the search for good pairs in a much smaller set than for out-
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of-register arrangement. A similar, yet milder, effect induced
by pairing statistics is detected for antiparallel arrangement,
favouring the case in which the latter is achieved between
identical sequence stretches. Parallel arrangement is generally
favoured over antiparallel, but in some cases sequence
specificity can override this tendency, as in the case of short
peptides. Out-of-register parallel arrangement is also pre-
dicted as a good competitor in the presence of repeated
(periodic) patterns in the sequence, which actually occur in
several prion proteins, both in mammals and in fungi.

Our algorithm was also used to predict the portions of the
sequence, for an initially unstructured polypeptide chain,
that form the cross-p core of the fibrils. A good agreement
with the experimental information available on amyloid
structures, similar to other proposed methods [32-37], was
found for human Af;_49, o-synuclein, islet amyloid polypep-
tide, a fragment from human tau, and the prion domain of
HET-s from P. anserina.

The results obtained in this work, besides rationalising on
general grounds the common occurrence of PIRA in amyloid
fibrillar structures, suggest two important conclusions. First,
the existence of a preferred B-pairing is an important
determinant of the self-propagating nature of amyloid fibrils
and of the difficulty of these to seed the fibrillar state in
proteins that have even subtle differences in sequence, a
phenomenon associated with the species barrier in prion
transmissibility. Moreover, the polymorphism often observed
for amyloid fibrils [15,50], leading to the existence of
different prion strains [10], might be explained by the
competition between different low-energy PB-pairings that
are realizable for the same sequence.

The notion of a preferred B-pairing is the simplest one
that can be put forward to account for the self-comple-
mentation of protein molecules on a structural basis [561]. It
can be seen as a way of reconciling the roles of side chains
in driving specific aggregation and of main backbone
interactions in determining the general tendency of poly-
peptide chains for fibril formation. The knowledge-based
energy function introduced in this work describes how side
chain-side chain interactions between residues facing each
other modulate the main chain hydrogen bond energy
common to all residues. Stacking of hydrophobic residues
[27] or hydrogen bonding between side chain groups [28]
will favour PIRA, whereas electrostatic repulsion between
charges of the same type disfavours it. All such interactions
are captured within our knowledge-based approach. A
determinant of self-complementation that we neglect in
our simple scheme is the steric interdigitation between
different sheets forming the fibril core [39]. However, the
good performance of our algorithm shows that sequence
information is already relevant at the level of [-strand
pairing within the same sheet.

As a second important conclusion, the fact that the whole
computational approach is derived from the knowledge of
globular proteins underscores the universality of the physico-
chemical mechanisms underlying amyloid fibril formation.
Moreover, it indicates that the structure and stabilising
interactions existing in the apparently monotonous amyloid
or amyloid-like fibrils are of the same essential nature as
those determining structural and functional diversity in
globular proteins.
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Materials and Methods

Knowledge-based pair potential. We derive an energy function for
specific B-aggregation using the top500H database [52]. It is a
nonredundant specially refined set of 500 high resolution X-ray
crystallographic structures of globular proteins, where hydrogen
atoms were also reconstructed. These proteins include all-o,, all-B, a/B,
and o + B proteins, and their structures are deposited in the Protein
Data Bank. All occurring instances, n,, of a given ab residue pair are
partitioned (n,, = nS, +nly +nd, +nd,) into four different classes
according to whether the two residues are facing each other on
neighbouring parallel -strands (n,,) or on neighbouring antiparallel
B-strands (nf,), and whether the distance between their C* atoms is
less than 6.5 A—without participating in a ordered PB-geometry
(generic bulk contacts nf,)—or more than 6.5 A (noncontacting
disordered pairs an)' All pairs are included in the count, except those
formed by consecutive residues along the protein chain. The
participation to either parallel or antiparallel B-bridges is assessed
by using the DSSP algorithm [53], but with a slightly stricter
electrostatic energy threshold of —1 Kcal/mol to assign hydrogen
bonds. (The distribution of such energies obtained from the
Richardson set peaks around the value of —2.4 Kcal/mol, but increases
again for values higher than —1 Kcal/mol, unpublished data).

Energies can be assigned to the occurrence of parallel B-pairing
and antiparallel B-pairing for two amino acids of type @ and type b, by
assuming that the database of protein native structures is a system in
thermodynamic equilibrium at a single temperature, assumed to be
roughly constant for all the proteins in the database [54]. Upon
further assumption that correlations between different pairings can
be neglected within single proteins in the database [55], the propensity,
pap(x), of the ab pair to be found in one of the four pairing types, x, is
given by the Boltzmann factor, p,,(x) = exp(—=E},). The E’s are energy
differences, measured in units of thermal energy, between the native
and the reference state with respect to which propensities are
computed [54].

Propensities are defined as the ratio of the observed frequency
over the expected probability in the reference state, which is in turn
estimated as the frequency observed over all pairs.

P a ¢
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A similar expression yields the energy E(’fb, which should be
assigned to a noncontacting pair ab. Since the numbers n,, nj,, and
ng, can be very small (or even zero in some special cases involving
PRO and CYS), we used an averaging procedure to decrease statistical
error [33]. Hence, for example, Eﬁb = (Ff:b+ + Ff;)/?, where Ff:;,Ffb_,
are the energies obtained from Equation 1 when adding (n,, — nf:,, +

1, n, — n, + 1) or subtracting ("Zb — nzb - 1,n, — n, — 1), a single
event, to the observed number of cases (whenever ”[;b <2,0.5is used
in place of n, — 1). Statistical potentials describing residue pair
correlations within [-sheets were developed in the context of
structure prediction, limiting the total ensemble of residue pairs to
those in which both residues participate in a B-structure [56-59]. Our
derivation instead places all residue pairs in the total ensemble.
B-pairing energy function. Our aim is to predict the specific
aggregation pattern of a pair of identical proteins of N amino acids
{ar}1<r<n, as determined by the specific B-pairing (either parallel or
antiparallel) of the sequence stretch of length L, beginning at position
i on the first chain, with the sequence stretch of the same length,
beginning at position j on the second chain. We assume throughout
the rest of this work that only a single stretch per sequence
participates in the B-pairing and that all other residues (from 1 to i
— 1 and from i+ L to N for the first chain and from 1 to j— 1 and from
j+ L to N for the second chain) are not involved in aggregation and
are found in a disordered noncompact conformation. We assume
further that the energies E¢, of all pairs involving these latter residues
can be neglected, since n¢, ~n, and E% ~0. Remaining pairs whose
residues are both present in the B-aggregating stretches but not
specifically paired with each other are assumed to be noncontacting
as well. We verified that the results we present in this work do not
change upon inclusion of noncontacting pair terms. The overall

1616 December 2006 | Volume 2 | Issue 12 | €170



pairing aggregation energy for a given parallel/antiparallel pattern is
then determined only by residue pairs mutually involved in the
ordered B-pairing, and can be written, by assuming they do so
independently of one another, as

L-1
el (L)=>_El . —LAs
k=0

(@)

2
Dok

L—
0= T E @

where the overscripts 1 and 2 correspond to the first and second
chain, respectively, and AS = LAs is the entropy loss due to the B-
ordering of the L residue pairs, with As corresponding to the average
entropy loss per residue pair. Due to the many approximations
involved in the standard derivation of statistical potentials, the latter
extensive term might actually compensate for any bias introduced
with the choice of the reference state, making its a priori evaluation
too difficult. Therefore we set As =—0.2 throughout all our work on a
purely empirical basis. The proper introduction of sequence specific
As,, might certainly improve the quantitative agreement with
experimental observations, but we chose to keep our energy-scoring
function as simple as possible to directly test the relevance of B-
pairing specificity in dictating aggregation patterns. Since the
computation of energy scores S;.j(L) and g} ;(L) involves a summation
over only L terms, it can be easily performed on a genome-wide scale.

Sequence-dependent aggregation propensities and contact maps.
To take into account in a more complete manner all possible pairing
energies close to the minimum, we introduce an “ordered B-pairing
partition function™:

2= > {exp(-2ed, (1)) + exp(-2et, (1)) }

i >4

(4)

where we set A = 2.0 as an adimensional factor setting the energy
scale. Parameters As and A need not to be fine-tuned and can be
changed within a 20% range without affecting the final results. The
partition function (Equation 4) allows a better one-dimensional
visualization of the results by defining a position-based “amyloid
propensity”
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(5)

where 8; < 4 < ; + =1 if residue % belongs to the L-stretch going from
itoi+ IL—-1 and §;, < 4 < ; + 1 = 0 otherwise. Note that h(k) is a
probability since ), h(k) = 1. It tells how a given residue is more
likely to aggregate in an ordered B-structure with respect to others.

A more complete piece of information that can be extracted from
the method is the normalized two-dimensional probability hg(k,m) of
two given residues found paired to each other within an ordered B-
structure. It is given by

h(k,m) =
di<h<i+1.Oj<m<j+L 5 » “
f[ —m+j—i€XP(—he; (L)) + Spm+1-1-j—iexp(—Ae] ;(L))]
ijL>4
Z
(6)
where k and m label residues in two different chains and &, _,, +j—i=1lifk

-m+j—i=0, and 0 otherwise. Based on ho(k,m), a B-pairing contact map
can be produced where the orientation (parallel or antiparallel to the
diagonal) and the register of the best pairings is easily traced out (see
Figure 5).

We name the full procedure described in this section PASTA.
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