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Abstract

What factors determine a protein’s rate of evolution are actively debated. Especially unclear is the relative role of intrinsic
factors of present-day proteins versus historical factors such as protein age. Here we study the interplay of structural
properties and evolutionary age, as determinants of protein evolutionary rate. We use a large set of one-to-one orthologs
between human and mouse proteins, with mapped PDB structures. We report that previously observed structural
correlations also hold within each age group – including relationships between solvent accessibility, designabililty, and
evolutionary rates. However, age also plays a crucial role: age modulates the relationship between solvent accessibility and
rate. Additionally, younger proteins, despite being less designable, tend to evolve faster than older proteins. We show that
previously reported relationships between age and rate cannot be explained by structural biases among age groups. Finally,
we introduce a knowledge-based potential function to study the stability of proteins through large-scale computation. We
find that older proteins are more stable for their native structure, and more robust to mutations, than younger ones. Our
results underscore that several determinants, both intrinsic and historical, can interact to determine rates of protein
evolution.
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Introduction

It is well known that protein evolutionary rates are not

homogeneous, with as much variation within an organism as

between organisms. In fact, evolutionary rates vary as much as

1,000-fold among the proteins in the yeast S. cerevisiae [1].

Therefore, there has been longstanding interest in deciphering

the causes of this variation, with a large literature of theoretical

and empirical studies alike.

Numerous possible determinants for protein evolutionary rate

have been proposed, such as protein dispensability [2], number of

mRNA molecules per cell [3,4], number of protein molecules per

cell [5], codon adaptation index [4,6], number of protein-protein

interactions [7], sequence length [8,9], role in the interaction

network [10], and structural properties such as solvent accessibility

and folding robustness [11–13]. Some of the proposed determi-

nants are correlated with one another, which makes the

identification of causal factors difficult. For this reason Drummond

and colleagues [5] tried to disentangle these factors by performing

a principal component regression (PCR) analysis. They found that

a single component, which included codon adaptation index,

protein abundance and gene expression level, accounted for nearly

half of the observed variability in protein’s evolution. Nonetheless,

those expression-related factors have been measured with less

noise than other possible factors. This further complicates even the

principal component regression [14]. In related work, Drummond

and Wilke [15] observed covariation between sequence evolution,

codon usage and mRNA level among a broad range of species.

They suggested there may be selection for robustness against

mistranslation, since mistranslation-induced misfolding would be

more deleterious for highly expressed proteins.

A protein’s three-dimensional structure may also be a key factor

in determining its evolutionary rate. The core of a protein is

mostly formed by buried residues, which often play a crucial role

in the stability of the folded structure [16]. Most mutations in the

core of a protein tend to destabilize the protein [17]. Exposed

residues are in contact with solvent and they are known to evolve

faster than buried ones [11,12,18–21]. In fact, the more general

relationship between solvent exposure and evolutionary rate is

linear and very strong [12]. Given these results, we might expect

those proteins with a higher fraction of exposed residues to evolve

faster. But, surprisingly, Bloom and others found the contrary

pattern [11,12]. Bloom et al explained this incongruence using

protein designability, defined roughly as the number of sequences

than can fold into a structure. Since a higher number of sequences

can fold into highly designable structures, designable structures are

more tolerant to mutations and hence, evolve faster. As

designability has been related to contact density [22] and contact
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density is highly correlated with the fraction of buried residues, the

authors hypothesize that highly designable proteins have a higher

fraction of buried residues. Consequently, highly designable

proteins have stable core, allowing the exposed residues to freely

mutate without compromising stability. In fact, Franzosa and Xia

[12] have demonstrated how large-core proteins (which are the

ones having an overall low solvent exposure value) have low

solvent exposure values but high dN/dS, specially observing that

highly exposed residues in large-core proteins are evolving faster

than in small-core proteins. Also, proteins with a higher contact

density tend to evolve more rapidly – in fly, yeast, E.coli and

human [23]. Moreover, highly designable proteins have been

shown to evolve more functional innovations [24]. Bloom and

colleagues [11] have carried out a PCR analysis showing that the

component measuring expression level could explain around 34%

of the rate variation, whereas structural characteristics explained

approximately the 10% of the rate variation. There are other

structural properties correlated with evolutionary rates, such as the

number of intra-protein residue interactions, which tend to reduce

rates of evolution [25]. Structure itself could be a determinant of

protein evolution, or indeed, could be acting through other

mechanisms. For example, it could play a crucial role in the

selection for structural robustness against mistranslation in highly

expressed proteins, which has already been shown to be a key

determinant of protein evolution [11].

Quite aside from the factors discussed above, which are intrinsic

to the properties of a protein in an organism today, studies have

also shown that the age of a protein, which depends on its

evolutionary history, is also correlated with evolutionary rates [26–

28]. In particular, an inverse relationship between age and

evolutionary rate has been widely observed [26,27,29], suggesting

that a protein’s evolution could be shaped in part by its

evolutionary origin. This relationship has been reported in a

broad range of organisms: primates [30], mammals [26], Drosophila

[27,29], Plasmodium [31], fungi [32] and bacteria [33].

Despite all these findings, what factors determine a protein’s

evolutionary rate are still under debate – and the relative role of

intrinsic factors of present-day proteins, versus historical factors

such as protein age, remains poorly characterized. Here we

explored the interplay between two very different factors: a

protein’s age and its structural properties. Our objective is to

determine whether structural biases among age groups could

explain the reported differences in evolutionary rates with age

[26,27]. To do so we used a dataset of human proteins with

homologues in mouse for which we were able to map a PDB

structure. Age was assigned to each PDB structure and then

structural properties (solvent exposure, designability, stability and

secondary structure) were calculated among the PDB structures

classified in the age groups. We found that differences in

evolutionary rates previously observed among age groups could

not be explained due to differences in the structural properties

among age groups. Similarly, differences in rates correlated with

structural differences cannot be entirely explained by the age of

the PDB structure, although a marginal influence of age is

observed. Our results therefore reinforce the idea that there is not

a single determinant of evolutionary rate, and that both intrinsic

present-day properties as well as evolutionary age independently

contribute to differential rates of protein evolution.

Results

Interactions between age and structural determinants of
evolutionary rates

It has been widely argued that both protein structure and

protein age play important roles as determinants of protein

evolution. However, how structure and protein age are related has

not been yet studied. We have found an interesting interplay

between structure and age: a set of structural characteristics that

are correlated with evolutionary rates but in a manner that

depends on protein age.

Linear relationship between relative solvent accessibility

and evolutionary rate. We calculated the relative solvent

accessibility (RSA) for each residue in every PDB structure that

mapped to human proteins (406,970 residues in total, across 2,595

PDB structures). We apportioned the RSA values into 20 bins and

we concatenated all the residues within each bin to calculate the

evolutionary rate (measured as dN) of residues as a function of

accessibility. We found a strong correlation between RSA and dN

(Pearson correlation: 0.971, p-value = 1.179 e212) in mammals

(Figure S1). A similar linear correlation between evolutionary rate

and RSA was previously reported in yeast [12], suggesting that this

relationship is an universal trend.

Additionally, we separated the PDB structures according to

their age (i.e. the youngest proteins, which originated in

Vertebrates, the medium-aged proteins which originated in

Metazoans, and the oldest proteins which originated in Eukary-

otes) and we found a similar correlation between RSA and

evolutionary rate within each age group (Pearson correlation

.0.94 and p-value,10210 in all the age groups) (Figure 1). But,

interestingly, the slope is different among age groups: the younger

proteins show a more dramatic influence of RSA on evolutionary

rate. For the linear model dN,RSA, the slope in Eukarya is

0.0025; for Metazoans and Vertebrates, it is 0.003 and 0.006,

respectively. We also considered an interaction term of RSA with

age (dN,RSA+RSA*age+age) in all the possible pairwise com-

parisons between age groups, in order to assess the importance of

age. The interaction was generally significant (Eukarya vs

Metazoans: 0.11, Eukarya vs Vertebrates: 1.70e-07, Metazoans

vs Vertebrates: 4.73e206) supporting the notion that age plays a

role in shaping the relationship between solvent accessibility and

evolutionary rate.

Fraction of residues exposed and designability. Given

the linear relationship between solvent accessibility and evolution-

ary rates one expects to find that those structures containing a

higher number of exposed residues would be evolving faster. But

Bloom and colleagues [11] have found exactly the contrary: the

fraction of buried residues in a protein is positively correlated with

its evolutionary rate (dN). Bloom et al explained this incongruence

using the concept of protein designability, as discussed above.

Author Summary

Rates of protein evolution vary dramatically within and
between organisms. But the factors that determine a
protein’s evolutionary rate are still under debate, despite
extensive studies over the past decade. Several determi-
nants have been proposed, for example gene expression,
the importance of the gene for the organism, the number
of physical or genetic interactions it has, its structural
characteristics, or when it originated. Here we study how
age and structural characteristics interact with one another
to influence evolutionary rates. We use a set of one-to-one
orthologs of human and mouse proteins, with known
crystal structures. We find that these two determinants
interact: for example, the age of protein modulates how its
structure correlates with evolutionary rate. Nonetheless,
the influence of age on evolutionary rate cannot be
explained by its interplay with structure.

Structure and Age Influence on Protein Evolution
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Here we have been more stringent than in earlier studies, using

99% sequence identity to assign structure as compared with the

40% criteria used in Zhou et al [23].

We tested the impact of designability in the context of PDB

structures classified by their age of origin. We first calculated the

evolutionary rate (dN) of each PDB structure as well as the fraction

of residues exposed (exposed residues/(buried+exposed residues)

*100). We found that the oldest Eukaryotic PDB structures were

evolving the slowest, followed by Metazoans and then Vertebrates

(Wilcoxon tests, p-value,1023 in all the pairwise comparisons).

This confirms the inverse relationship between protein age and

evolutionary rate that has been reported previously [26] (Figure

S2). Besides, older folds have been previously reported to be more

conserved than younger ones [34]. At the same time, we found

that younger PDB structures have a significantly higher fraction of

exposed residues than older ones (Wilcoxon tests, p-value,1023 in

all the pairwise comparisons) (Figure 2), despite the fact that the

younger PDB structures evolve faster. This is contradictory with

what has been found in Bloom et al. [11] and Franzosa et al. [12].

In an effort to disentangle this contradictory result we obtained

for each age group the fastest (dN/dS.0.1) and the slowest evolving

PDB structures (dN/dS = 0.001 in Eukarya and Metazoan and

dN/dS,0.1 in Vertebrates) and we checked their fraction of

exposed residues. Within the three age groups we found that the

fastest evolving PDB structures had a higher fraction of buried

residues than the slowest ones (Wilcoxon test, Eukarya: p-value =

2.697e207, Metazoans: p-value = 0.004, Vertebrates: p-value =

0.05). Furthermore, among the fastest evolving PDB structures, the

younger ones had a lower fraction of buried residues than the

older ones (Wilcoxon test, Eukarya vs Metazoans: p-va-

lue = 2.765e205, Eukarya vs Vertebrates: p-value = 2.140e210,

Metazoans vs Vertebrats: p-value = 0.0008). Thus, while the

impact of designability on evolutionary rate holds within each

age class, it does not hold between age groups. Therefore, our

results in part confirm those of Bloom et al. [11], at least within

each age class, but they also suggest that protein age has a stronger

overall relationship with evolutionary rate than designability does.

Protein age, stability, and mutational robustness
An important, related question is whether protein stability

depends on protein age. To quantify stability for the large set of

proteins used in this study, we used a well-known coarse-grained

four-body knowledge-based potential function (see Materials and

Methods), described by Gan [35] and Krishnamoorthy [36]. This

potential has been shown to successfully score stability changes due

to both mutational and structural protein alterations in a manner

consistent with free energy changes derived from unfolding

experiments [37,38]. Thus, for convenience in what follows, we

Figure 1. Linear relationship between solvent accessibility and dN in Eukarya, Metazoans and Vertebrates age groups. Eukarya:
Pearson correlation: 0.957, p-value = 4.477e211; Metazoans: Pearson correlation: 0.950, p-value = 1.445e210; Vertebrates: Pearson correlation: 0.941, p-
value = 7.005e210. Errors bars indicate the standard error for the dN calculation.
doi:10.1371/journal.pcbi.1002542.g001

Figure 2. Percentage of residues exposed in PDB structures
classified in 3 age groups: Eukarya, Metazoans and Verte-
brates. Wilcoxon tests were performed to assess the significance of the
difference: Eukarya vs Metazoans: p-value,2.2e216 , Eukarya vs Verte-
brate: p-value,2.2e216 , Metazoans vs Vertebrates: p-value = 0.0005 ).
doi:10.1371/journal.pcbi.1002542.g002

Structure and Age Influence on Protein Evolution

PLoS Computational Biology | www.ploscompbiol.org 3 May 2012 | Volume 8 | Issue 5 | e1002542



refer to the score of a given protein (conformation+sequence) as

DG (analogous to the free energy of folding: lower DG implies

greater stability). To validate our implementation of this potential,

we tested its ability to distinguish native from misfolded decoy

protein conformations (i.e., physically reasonable alternative

protein conformations generated computationally from a native

structure) taken from a standard database [39].Our implementa-

tion of the score ranked native structures among their decoys in a

manner consistent with (in some cases, more favorably than)

previous work [36] (Table S1).

As a secondary validation of our stability scoring function, we

re-considered the correlation between RSA and evolutionary rate,

described above. Given this empirical correlation, we should

expect that mutations with a higher impact on the stability of the

protein would tend to occur in the residues that are more buried.

To test this computationally, for every protein in our PDB data set,

we mutated each residue to a randomly selected residue while

holding all other residue identities fixed. Then, we classified each

residue in a bin according to the impact of the mutation on the

stability score relative to the native sequence (using the absolute

value, |DDG|, where |DDG| = |DG (native)2DG (mutant)

|2larger values imply greater absolute perturbations to the

stability). We found that the residues with less solvent accessibility

exhibited significantly greater impacts on computed stability when

mutated, in accordance with expectation (Figure S3).

We used the potential function to score the overall stability,

measured as DG, for each PDB structure. To control for any

length dependence in the score (a correlation between length and

contact density has already been reported [11]), we binned the

lengths of all structures to obtain a set of structures with the exact

same length distribution within each age class. In doing so,

however, we were not able to retain enough Vertebrate PDB

structures for further analysis, and so restricted our comparisons to

Eukarya and Metazoans. When we compared DG amongst

Eukarya and Metazoans, paired by length bin, we found that

Eukaryotic structures are more stable on average (Wilcoxon-

paired test, p-value,0.01, Eukarya median: 290.74, Metazoan

median: 285.08). This suggests that older proteins are more

stable, on average, than younger proteins.

Furthermore, we studied how mutational robustness might vary

with protein age. To estimate robustness we simulated random

amino-acid mutations in 2% of the residues of each PDB structure,

and we repeated this process 1000 times for each structure (Figure

S4). We then used two measures, Z-score and Rank, to assess how

robust the native structure is to mutation. The Z-score was

calculated for each protein as the protein’s stability score minus

the mean score for the population of 1000 mutated structures

divided by its standard deviation, s, (Z = (DG2ÆDGæ/s). Younger

PDB structures were significantly less robust to mutations (higher

Z-score) than older proteins (Wilcoxon test, Eukarya vs Metazoans

p-value,10215, Eukarya vs Vertebrates p-value,10214, Metazo-

ans vs Vertebrates p-value = 0.131). We also computed the rank of

each native protein score within the population of 1000 mutant

scores. We found the same trend: the native sequence-structure

compatibility of younger proteins was significantly less robust

(higher rank) than that of older proteins (Wilcoxon test, p-

value,1027 in all the pairwise comparisons) (Figure 3). Similar

results were obtained when we increased the mutation rate to 10%

of residues within each PDB structure (data not shown).

More designable proteins are generally more stable [40] and

have a higher fraction of buried residues, which may lead to a

more robust protein core. It has been shown that stability generally

enhances tolerance to mutations – more beneficial mutations are

accepted because they do not destabilize the native structure

[41,42]. Thus, our results on the greater stability and robustness of

older proteins generally concord with earlier notions of desig-

nability and mutational tolerance.

Protein age and secondary structure
We also investigated the relationships between protein age,

secondary structure classification, and evolutionary rates. We

classified each residue in every PDB structure according to the

type of secondary structure in which it participates as well as

according to whether it is buried (RSA,25%) or exposed

(RSA.25%) as in Bloom et al. [11]. Each residue was mapped

to one of four secondary structure categories by DSSP [43]: helix

(class H in DSSP), sheet (class E in DSSP), turn (classes S and T),

coil (classes B, G, I and ‘‘.’’). Evolutionary rates within each

structural category were computed by concatenating, for each

PDB structure, all the residues classified in a given structural

category and comparing those residue positions to homologous

positions in mouse.

Generally, we found that exposed residues evolved faster than

buried ones (Wilcoxon test, p-value,0.01) and that residues

classified as helix evolve slower (Wilcoxon test, p-value,0.01) than

the residues classified in other categories (Figure S5). More

importantly, when we separated the secondary structures and

solvent accessibility according to age group we found that the

younger structures were evolving faster than the older ones

(Wilcoxon test, Table 1, Figure 4) within each structural category.

This implies that differences in the frequency of structural

categories by age class cannot explain the previously reported

inverse relationship between protein age and evolutionary rate

[26]. Thus, this analysis supports the important role for protein

age in shaping evolutionary rates, above and beyond the influence

of solvent accessibility and secondary structure.

Discussion

Interactions among various determinants of protein evolution

are not well understood despite several decades of investigation. In

Figure 3. Rank of the stability score of wildtype protein
sequence among 1000 mutated sequences in 3 age groups:
Eukarya, Metazoans and Vertebrates. Wilcoxon tests were
performed to assess the significance of the difference: Eukarya vs
Metazoans: p-value,1.684e214 , Eukarya vs Vertebrate: p-value
,2.2e216 , Metazoans vs Vertebrates: p-value = 1.119e28). Low rank
suggests that the native structure is relatively robust to mutations.
doi:10.1371/journal.pcbi.1002542.g003

Structure and Age Influence on Protein Evolution
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this work, we have studied two types of proposed determinants:

structural properties intrinsic to present-day proteins, and protein

age. We found that several well-known relationships between

structural properties and evolutionary rate that had previously

been reported, regardless of age, also hold within each age class:

residues with high solvent accessibility evolve more quickly

[11,12,18–21], while proteins with a larger fraction of exposed

residues evolve more slowly [11,12]. At the same time, the age of a

protein can modulate the correlation between structural properties

and evolutionary rates – e.g. the strength of relationship between

solvent accessibility and evolutionary rate depends on the age of

the protein in which the residue is found. We also studied

secondary structures of proteins, and we confirmed that the typical

inverse relationship between protein age and evolutionary rate

holds within each structural class of residues. This implies that

differences in the frequency of structural categories by age class

cannot explain the previously reported inverse relationship

between age and rate. Finally, we introduced a knowledge-based

potential to study the relationships between protein age and

stability. We found that older proteins are more stable, on average,

than younger proteins, and that older structures are also more

robust to mutation than younger structures.

Our results provide a more nuanced view on the determinants

of protein evolutionary rates. Whereas some determinants of rates

hold within each age class, age can nonetheless modulate these

Figure 4. Evolutionary rates by age and secondary structure/solvent accessibility categories. An inverse correlation between the age of
the protein and evolutionary rate occurs within each structural category. Wilcoxon tests were performed (see Table 1).
doi:10.1371/journal.pcbi.1002542.g004

Table 1. Comparisons between the 3 age classes in each
secondary structure and solvent accessibility types.

Secondary structure Age dN/dS dN

Helix Eukarya-Metazoan 0.929 0.600

Eukarya-Vertebrates 5.286e206 5.188e206

Metazoans-Vertebrates 4.771e205 5.74e205

Sheet Eukarya-Metazoan 0.048 0.009

Eukarya-Vertebrates 2.737e208 2.521e209

Metazoans-Vertebrates 3.057e205 4.129e205

Turn Eukarya-Metazoan 0.4841 0.205

Coil Eukarya-Metazoan 0.001 0.0002

Eukarya-Vertebrates 3.070e205 3.542e206

Metazoans-Vertebrates 0.010 0.005

Exposed Eukarya-Metazoan 0.132 0.010

Eukarya-Vertebrates 2.681e216 ,2.2e216

Metazoans-Vertebrates 7.402e213 4.318e212

Buried Eukarya-Metazoan 0.066 0.005

Eukarya-Vertebrates ,2.2e216 ,2.2e216

Metazoans-Vertebrates 3.713e212 4.207e212

doi:10.1371/journal.pcbi.1002542.t001

Structure and Age Influence on Protein Evolution
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effects. And other relationships that hold regardless of age (such as,

proteins with a greater fraction of exposed residues evolve more

slowly) cannot explain differences in rates among age classes.

Our analyses certainly suffer from several drawbacks. Most

important, we were able to map a structure to only 14% of the

one-to-one orthologs proteins between human and mouse. This

fraction would be even smaller if we had chosen other species.

Despite the increase in solved structures over the past few years,

the number of mapped structures is still a small fraction of known

proteins. Additionally, we have to bear in mind that there are

biases in the type of proteins that enjoy solved structures. For

example disordered regions are poorly represented in PDB, as they

are difficult to crystallize. Younger proteins are enriched in low-

complexity regions [44,45], many of which are expected to be

disordered [45]. How this adds to the differences in evolutionary

rates among age classes is an aspect that remains to be studied.

Choi and Kim [46] have reported that old proteins are longer

and have more complex tertiary structures (a/b) than younger

proteins, hypothesizing that proteins tend to become more

complex in their structure along their evolutionary history. Our

results also give insights on the evolution of protein structural

characteristics, as we have found that older structures are more

designable, stable and robust to mutations than younger ones.

These findings suggest that structures may acquire stability and

robustness to mutations with time. However, these findings also

raise new questions. Since stability increases a protein’s tolerance

to mutations [42] we might expect that younger structures would

be evolving slowly due to the destabilizing effect of mutations. But

we find them to evolve fast. One possible explanation is that

previous studies have assumed proteins are generally under the

same degree of selection, regardless of age. But some of our results

might be due to differential strengths of selection in old versus

young proteins. One possibility is that younger sequences mapped

to PDB may be experiencing strong positive selection for

stabilizing mutations, which explains their higher rates of

evolution; whereas older protein are already stable and robust,

and thus lack this type of positive selection. However, using single

nucleotide polymorphism (SNP) data Cai and Petrov have found

limited evidence for increased positive selection in primate-specific

genes, and strong indications that relaxed negative selection is

likely to be more important in young genes than in older genes

[47]. Therefore, it may be that selection for high stability is

reduced in younger proteins. In conclusion, our results reinforce

the idea that protein evolution is not explained by a single

determinant, but rather by the interplay of many determinants,

including even factors that are not intrinsic to the present-day

protein but depend on evolutionary age.

Materials and Methods

Datasets
13494 orthologs one-to-one between Homo sapiens and Mus

musculus were obtained from Ensembl (version 62) [48]. In order to

assign a known structure to our proteins we performed BlastP

searches [49] between the structures deposited in the Protein Data

Bank [50] and our dataset of human proteins with orthologs in

mouse. We only kept those hits with an identity at least of 99%. If

several hits were overlapping we chose the one that is closer to the

human protein. Afterwards we applied a strong filtering process in

which we discarded 506 PDB structures because they were either

shorter than 50 amino acids, had a discontinuous (gapped) chain,

or had an incomplete backbone structure. After discarding these

structures we were left with 1,899 proteins with at least one PDB

structure mapped to them, encompassing a total of 2,145

structures.

For each human protein region with a structure assigned we

recorded the information regarding to the solvent-accessibility and

the secondary structure. The information for the secondary

structure and for solvent accessibility was obtained from the

DSSP files (downloaded from http://srs.ebi.ac.uk/srsbin/cgi-bin/

wgetz?-page+LibInfo+-lib+DSSP). We only recorded those posi-

tions in which there was the same amino acid in the human

protein and in the PDB structure. Residues were classified in 4

secondary structures based on the DSSP [43] assignation for the

residue: helix (class H in DSSP), sheet (class E in DSSP), turn

(classes S and T) and coil (classes B, G, I and ‘‘.’’), as in Bloom et

al. [11]. For each residue we calculated the solvent-accessibility as

the RSA (relative solvent accessibility). RSA was obtained

normalizing the accessibility obtained from DSSP by the reference

solvent-accessible surface areas (ASA) of each amino acid. ASA is

calculated for residue X in an extended Gly-X-Gly peptide; ASA

values were obtained from Miller et al. [51]. Some residues were

found to have RSA.1. We treated those cases as if they had

RSA = 1, as several earlier studies have done [12,52]. Residues

were classified as buried if the RSA value was lower than 25% and

as exposed if it was higher than 25%, as in Bloom et al. [11].

Additionally we binned the RSA values in 20 bins, and we

classified each residue in one of these RSA bins.

The fraction of exposed residues for a given PDB was calculated

dividing the number of residues classified as exposed by the sum of

the number of exposed and buried residues.

Age assignation
For each PDB structure we used BlastP searches with an e-value

cut-off of 1024 against several genomes to asses the presence of

homologues. We used the following age classes: mammals (Mus

musculus, Rattus norvegicus), non-mamalian vertebrates (Gallus gallus,

Xenopus tropicalis, Danio rerio, Takifugu rubripes), other metazoans

(Ciona intestinalis, Drosophila melanogaser, Anopheles gambiae, Caenorhab-

ditis elegans) and other eukaryotes (Schizosaccharomyces pombe,

Saccharomyces cerevisiae, Oryza sativa, Arabidopsis thaliana). Then, an

age is assigned to each PDB chain according to the phylogenetic

width of its homologues. We obtained 1157 PDB structures

classified as eukarya, 725 as metazoan, 253 as vertebrate and 25 as

mammals. As very few PDB structures were classified as mammals

they were discarded for the analysis.

Evolutionary rates estimation
To estimate the evolutionary rates we only used those PDB

structures in which the corresponding region in the human protein

had at least 50% identity with its syntenic region in mouse.

Pairwise alignments for the protein region corresponding to the

PDB structure in human and in mouse were performed using T-

Coffee [53] and subsequently we obtained the nucleotide coding

sequence alignment using an in-house Perl program.

To perform the secondary structure and the solvent-accessibility

analysis we concatenated for each PDB region in the protein all

the residues that were sharing the same type of secondary

structure/solvent-accessibility, as long as the amino acid position

in the protein was exactly the same as in the PDB structure. Then,

for example, for a given protein region with a mapped PDB

structure, we concatenated all the residues that were classified as

helix and we took also the corresponding residues in mouse (as

long as the mouse region homologous to human and human had

at least a 50% of identity, which was accomplished in the majority

of the cases). Therefore, we constructed two new orthologous

sequences with information corresponding only to one type of
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structure, helix in this case. These new sequences were aligned

using T-coffee and realigned afterwards at nucleotide coding

sequence level.

We additionally concatenated all the PDB residues classified in

the same RSA bin and also all the residues that were classified in

the same RSA bin and in the same age. The corresponding residue

in mouse was also obtained. By doing that we obtained very long

orthologous sequences that were aligned using MAFFT [54].

To estimate the evolutionary rates we calculated the number of

non-synonymous substitutions per non-synonymous site (dN), the

number of synonymous substitutions per synonymous site (dS) and

the dN/dS ratio using the codeml program, which is inside the

PAML software packages [55].

Several filters have been applied to the evolutionary rates

estimations to ensure their robustness. Sequences shorter than 60

amino acids were discarded, as well as sequences with dN.0.5

and/or dS.2 which could be indicative of a lack of homology and

of the presence of sequence saturation respectively.

Stability computations
To calculate the stability of the PDB structures we used a

knowledge based potential, described by Gan [35] and Krishna-

moorthy [36]. The potential function was trained on a non-

redundant set of 3,425 X-ray protein structures downloaded from

the PISCES database [56] maintained by the Dunbrack labora-

tory. This set of proteins represented a subset of a list of 4,944 PDB

chains that met strict parsing criteria [36]. Each chain in the set

shares no more than 25% sequence identity with any other chain,

was resolved to ,2.0 Angstroms, and solved with an R-factor of

0.25 or better. This type of potential has been widely validated

[37,57].

We did two rounds of point mutations. In the first round we

introduced 1 random mutation with random placement along the

sequence for every 50 amino acids in the protein. In the second

round, 1 random mutation with random placement along the

sequence for every 10 amino acids. We repeated this process 1000

times for each PDB structure, obtaining 1000 mutated structures.

For those structures obtained by NMR spectroscopy we used the

first structural model presented in the PDB file. Then, we assessed

the stability for the native PDB structure and mutated sequence

using the potential, obtaining the measure, DG, which describes

the stability – lesser values imply more stability. We also calculated

the destabilizing effect of mutations (robustness) using Z-score and

Rank measures. The Z-score for a protein structure with specified

sequence is calculated as (Z = (DG2ÆDGæ/s), where ÆDGæ is the

average stability score and s is the standard deviation in DG

derived from the 1000 mutated structures. The rank of the native

sequence in these experiments is defined as the enumerated

position of the native DG value in the sorted list – from lowest

(most stable) to highest (least stable) – of DG values from the 1000

mutated structures.

To control for any possible dependence of the knowledge based

potential score on protein length, we binned the PDB structures in

our data set by length when comparing native DG values for the

proteins classified by age. In doing so, we ensure that our

comparisons of stability across age grouped proteins are unbiased

by protein length. Due to this binning, we lacked sufficient data to

perform these comparisons for the representative Vertebrate PDB

structures.

Supporting Information

Figure S1 Linear correlation between dN and solvent
accessibility (RSA). Pearson correlation: 0.971, p-value = 1.179

e212. RSA was separated in 20 bins and residues classified in the

same bin were concatenated for all the PDBs to calculate the

evolutionary rates.

(TIF)

Figure S2 Evolutionary rates (measured as dN/dS) in
the three age groups: Eukarya, Metazoans, Vertebrates.
The differences are significant in all pairwise comparisons

(wilcoxon tests, Eukarya vs Metazoans: p-value = 0.004, Eukarya

vs Vertebrates: p-value,2.2e216 , Metazoans vs Vertebrates: p-

value,2.2e216 ).

(TIF)

Figure S3 Mutations with a higher impact tend to occur
in more buried residues. Differences between delta delta G

are highly significant (wilcoxon test, p-value,2.2 e216) except for

the comparison between bin 6 and 7 and bin 7 and 8.

(TIF)

Figure S4 Diagram representing the pipeline done to
assess PDB’s robustness against point mutations.
(TIF)

Figure S5 Residues classified in structural classes
(Helix, Sheet, Turn and Coil) and solvent accessibility
properties (Buried, Exposed). Two trends could be observed

1) exposed residues evolve faster than buried ones (wilcoxon test,

p-value,0.01), 2) helix structure is evolving slower than the other

types of secondary structures (wilcoxon test, p-value,0.01).

(TIF)

Table S1 Structure recognition: Discrimination of na-
tive from decoy structures. Comparison of the performance

of our potential (Native rank) with the performance of the

potential derived by Feng [58] and Krishnamoorthy [36].

(PDF)
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