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Abstract

Listeria monocytogenes is a pathogenic bacterium that moves within infected cells and spreads directly between cells by
harnessing the cell’s dendritic actin machinery. This motility is dependent on expression of a single bacterial surface protein,
ActA, a constitutively active Arp2,3 activator, and has been widely studied as a biochemical and biophysical model system
for actin-based motility. Dendritic actin network dynamics are important for cell processes including eukaryotic cell motility,
cytokinesis, and endocytosis. Here we experimentally altered the degree of ActA polarity on a population of bacteria and
made use of an ActA-RFP fusion to determine the relationship between ActA distribution and speed of bacterial motion. We
found a positive linear relationship for both ActA intensity and polarity with speed. We explored the underlying
mechanisms of this dependence with two distinctly different quantitative models: a detailed agent-based model in which
each actin filament and branched network is explicitly simulated, and a three-state continuum model that describes a
simplified relationship between bacterial speed and barbed-end actin populations. In silico bacterial motility required a
cooperative restraining mechanism to reconstitute our observed speed-polarity relationship, suggesting that kinetic friction
between actin filaments and the bacterial surface, a restraining force previously neglected in motility models, is important in
determining the effect of ActA polarity on bacterial motility. The continuum model was less restrictive, requiring only a
filament number-dependent restraining mechanism to reproduce our experimental observations. However, seemingly
rational assumptions in the continuum model, e.g. an average propulsive force per filament, were invalidated by further
analysis with the agent-based model. We found that the average contribution to motility from side-interacting filaments
was actually a function of the ActA distribution. This ActA-dependence would be difficult to intuit but emerges naturally
from the nanoscale interactions in the agent-based representation.
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Introduction

Listeria monocytogenes is a rod-shaped bacterial pathogen that can

infect cells and spread from cell to cell directly, thus evading the

host’s normal immune response [1]. L. monocytogenes expresses the

surface protein, ActA, which interacts with the host-cell actin-

polymerization machinery, to propel itself through the cytoplasm

in order to form membrane protrusions and move directly into a

neighboring cell [reviewed in 2,3]. The ActA protein directly

activates the Arp2,3 complex, which in turn nucleates branched

actin networks at the surface of the bacterium [4]. ActA also

interacts directly and indirectly with F- and G-actin, the cellular

protein VASP, and profilin-actin [reviewed in 2,3]. The bacterium

thereby harnesses the same dendritic actin array a motile cell

deploys at its leading edge to create an actin ‘comet tail’ structure

that propels the bacterium [reviewed in 2,3,5].

The actin driven motility of L. monocytogenes, or of artificial cargo,

is frequently used as a biophysical model system to understand the

force-production mechanisms of actin-polymerization and the

dendritic-actin array organization leading to cargo movement

[reviewed in 6]. Much of this experimental work has been done in

an in vitro system in which L. monocytogenes move in cellular extracts

or mixtures of purified protein components [7,8]. Mathematical

models of L. monocytogenes motility include those studying the

contribution of bacterial, or filament, fluctuations on movement,

and the actin-network as an elastic gel [9–11]. Recently, we

created an agent-based simulation of L. monocytogenes motility,

which recreated realistic bacterial motion by combining experi-

mentally known rules and rates of biochemical interaction with a

mechanism of force generation at the bacterial surface due to

filament polymerization [12]. A modification of that simulation is

our principal tool in this study. The resulting behavior of the in

silico bacterium was an emergent property of the simulation and

not one that could be directly predicted or controlled. The

simulation, like the biological system, is ‘complex’ since global

behaviors emerge in non-obvious ways from the encoded small-

scale local interactions. Bacterial movement resulted from the

combination of forward pushing forces due to actin polymerization
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and the tethering of filaments to the bacterial surface, ensuring the

bacterium and the tail did not simply drift apart. Forward motion

of the bacterium occurred due to the cooperative breakage of a set

of tethers and led to a distribution of abrupt steps of nm sizes,

which have recently been confirmed in experiments carefully

tracking actin-propelled microspheres moving in extract [13]. In

addition, the consideration of cooperative tether-breakage as the

rate-limiting step for bacterial motility also has been subsequently

experimentally supported [14]. This suggests that our complex

simulation indeed replicated realistic mechanisms of force

production in the L. monocytogenes system. Text S1, Fig. S1, and

Tables S1 and S2 offer a more detailed explanation of the agent-

based simulation, its assumptions, and its validation.

To understand the dominant force mechanisms regulating

bacterial speed, we combine this simulation with new experimental

results on ActA distribution patterns. A population of L.

monocytogenes moving in the same extract system exhibits great

variability in their steady-state speed [15]. Some of this variability

can be explained by differences in the surface distribution of ActA

protein, which nucleates new actin filaments, and thus can

regulate the pattern of actin network growth at the bacterial

surface. The ActA pattern on the surface of L. monocytogenes arises

in a cell-cycle dependent manner [16,17]. The typical bacterium

has a higher ActA concentration on one pole than on the other,

but as it grows and begins to divide, the opposite pole also

accumulates ActA such that when the bacterium is ready to divide,

both poles have high ActA density (bipolar ActA) relative to the

center of the bacterium, which has the least [17,18]. Thus, in each

newly divided bacterium, ActA density is initially greatest at one

pole, tapering off along the sides towards the other pole (unipolar

ActA). Bacteria with more bipolar distributions were shown to

move more slowly, due to competition between actin nucleation at

both poles [17]. Within unipolar bacteria there exists a wide range

of polarities with differences in the shape of the ActA distribution

along the long axis of the bacterium [17]. In this study we address

how the more subtle differences in ActA distribution in unipolar

bacteria modulate bacterial speed.

It may seem obvious that concentrating more ActA at the

‘business end’ of the bacterium, where the polymerization it

catalyzes most effectively moves it forward, would enhance

bacterial speed. This turns out to be true, but for subtle reasons.

Consider the following statements about the bacterial-actin

interactions:

N The cylindrical geometry of the bacterium is important to its

motion, with filaments nucleated at the sides contributing

weakly, or not at all, to forward forces, while filaments

nucleated at and/or interacting with the pole push the

bacterium forward [17].

N Filaments generated at the sides grow autocatalytically, due to

Arp2,3-dependent branching. Thus the sides provide many

pre-polymerized filaments already integrated into the comet-

tail actin network and primed to push when, due to forward

displacement of the bacterium, they find themselves at the rear

end.

N All filaments are also able to retard the bacterium due to their

interactions with the ActA protein, either directly or possibly

via Arp2,3 or Ena/VASP, which create transient forces

tethering the tail to the bacterium [reviewed in 3,19].

N Filaments and the bacterium exchange kinetic friction forces

proportional to the contact force of each interaction, though

the importance of this force in determining motility is

unknown.

N Motion of the bacterium feeds back onto this system –the

slower the bacterium moves, the more filaments it can

accumulate to generate propulsive forces, and vice versa.

The interplay between these competing propulsive and

restraining mechanism ultimately determine the effect of ActA

quantity and distribution on bacterial speed.

Here we experimentally alter the degree of polarity of ActA on

the surface of L. monocytogenes and observe that the more polar

bacteria move more quickly. To explore the mechanistic basis of

this observation, we incorporate different ActA polarities into our

agent-based model, which simulates all of the aforementioned

competing forces. We find in our motility assay that ActA along

the sides of bacteria principally slows bacterial speed, and that our

simulation requires the incorporation of a cooperative restraining

mechanism (i.e. a cooperative function of the number of filaments)

to recapitulate this experimental observation. We suggest, due to

the inherent cooperative nature of kinetic friction, that the friction

forces between filaments and the bacterial surface, rather than the

transient tether forces between filaments and ActA proteins or

fluid coupling between filaments and the bacterium, are primary

in determining how ActA polarity determines bacterial speed of

motion.

Results

Bacteria with ultrapolar ActA distributions move faster
We created populations of L. monocytogenes displaying a greater

degree of ActA polarity than bacteria normally used in extract

experiments (Fig. 1). Cell wall growth along the cylindrical body of

the bacterium is faster than at the poles [18]. Thus, when bacteria

with normal ActA distributions are rapidly grown for short periods

of time, the protein is preferentially retained at the poles and more

rapidly diluted along the sides, resulting in a greater degree of

ActA polarity –we call these highly polarized bacteria ‘ultrapolar’

bacteria and contrast their motility with ‘normal’ bacteria.

Author Summary

Cells tightly regulate the branched actin networks involved
in motility, division, and other important cellular functions
through localized activation of the Arp2,3 protein, which
nucleates new actin filaments off the sides of existing
ones. The pathogenic bacterium, Listeria monocytogenes,
expresses its own Arp2,3 activator, ActA, in a polarized
fashion and can thus nucleate dynamic actin networks at
its surface to generate forces to move through the
cytoplasm. This bacterium has thus served as a simplified
system for experimental and modeling studies of actin-
based motility. We use this bacterial system to quantify the
relationship between ActA polarity and bacterial speed of
motion by experimentally manipulating this polarity and
analyzing the resultant ActA distributions and bacterial
trajectories. Like many cellular behaviors, L. monocytogenes
motility emerges from a complex set of biochemical and
force-based interactions. We therefore probe this polarity-
speed relationship with a detailed agent-based simulation
which encodes the predominant biochemical reactions
and whose agents (actin filaments, ActA proteins, and the
bacterium) exchange forces. We contrast conclusions from
this agent-based model with those from a simpler
mathematical model. From these studies we assert the
importance of a heretofore neglected force in this system
– friction between actin filaments and the bacterial
surface.

Listeria Polarity and Speed
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Linescans of ActA-RFP intensity along the length of the bacterium

demonstrate that ultrapolar bacteria created in this manner

display lower amounts of ActA along the sides with respect to the

pole than bacteria with normal ActA distributions (Fig. 1) while the

poles maintain comparable amounts of ActA.

Ultrapolar and normal populations were mixed to create a

continuum of ActA surface distributions that we could directly

compare within the same motility assay experiment. We

performed time-lapse video microscopy of steady-state movement

of these mixed polarity populations. To avoid confusion, we

excluded bipolar ActA bacteria [17] in our subsequent analysis.

Our final dataset included 253 individual bacteria from two

separate experiments performed on the same day, using the same

population of mixed polarity bacteria. In this paper, we confine

our analysis to bacteria from a single population observed all on

the same day to eliminate, as much as possible, variations in our

ActA intensity and bacterial speed measurements that arise from

experimental variation (e.g. differences in extract dilutions,

temperature, etc). We saw the same trends, however, in

additional independent experiments on several other days (data

not shown).

To obtain a continuous measure of the degree of polarity, we

calculated, from measured ActA linescans, the 1st moment of the

intensities along the bacterium (normalized to bacterial length and

maximum ActA intensity). The 1st moment describes how

asymmetric the ActA intensity linescan is around the center of

the bacterium, with higher 1st moments representing distributions

with greater asymmetry (linescans on axis in Fig. 2A). The average

speed of a bacterium was positively correlated to both the 1st

moment and to the total ActA linescan intensity (a measure of total

ActA computed by integrating the ActA distribution over the

surface of the bacterium) in this population (Fig. 2A and B).

Therefore we sought a mathematical function giving the speed as a

function of two independent variables (total ActA intensity and 1st

moment of ActA distribution). Approximations of this function as

polynomials in the two variables will become arbitrarily accurate

as the polynomial degrees increase. To ascertain how high the

polynomial degrees should be before diminishing returns makes

further increases in degree pointless, we generated fits to our

measured data using all degrees less than 4. We found only slight

increases in the R2 goodness of fit criteria above a fit linear in both

1st moment and total ActA intensity (Fig. 2C). This suggests that

the resulting best-fit plane (Fig. 2A) sufficiently describes the main

trends in the data. The increases in speed as both ActA polarity

and ActA intensity are increased individually and jointly are

statistically significant (p = 7e-14, 1e-13, and 5e-8 both variables

together and each separately, respectively). We randomized the

data for each variable and performed multiple additional

regression analyses to verify that no statistical trend could be

found for the randomized data (p&0.1). While our analysis

demonstrates a clear dependence of speed on both ActA polarity

and intensity, scatter about the best-fit plane in Fig. 2A suggests an

underlying variability in average speed not explained solely by the

ActA distribution.

We found we could easily distinguish, by eye, ActA

distributions with 1st moments below 0.045 from those with 1st

moments above 0.075, and thus categorized these bacteria into

normal and ultrapolar classes respectively (linescans in Fig. 2D).

We removed bacteria with intermediate 1st moments (0.045–

0.075) from this analysis in order to make a more stark

comparison between bacteria with normal and ultrapolar ActA

distributions. The average speed of bacteria was positively

correlated to the total ActA intensity in both the normal and

ultrapolar populations (p values 1e-3 and 2e-5 respectively;

Fig. 2D). Further, the average speed of the entire ultrapolar ActA

population (0.093 mm/s for 52 bacteria) was significantly greater

than the normal ActA population (0.073 mm/s for 96 bacteria; p

value 4e-8 by rank sum analysis; Fig. 2D), results that the

polynomial fit in Fig. 2A represents. An analysis of the joint

dependence of bacterial speed on polarity and ActA density

(maximum linescan intensity), instead of total ActA, revealed the

same statistically significant trends described above (data not

shown). Whether two bacteria share the same maximum ActA

density (implying that the less polar bacterium has greater total

ActA) or the same total ActA (implying that the less polar

bacterium has less ActA at its pole), the more polar bacterium

moves at faster speeds, on average. Our results show that

increases in the degree of ActA polarity increase the speed of L.

monocytogenes, suggesting that the additional ActA along the sides

in normal bacteria must have a slowing effect. Further, greater

amounts of ActA lead to faster bacteria within the range of ActA

intensities in these data.

Figure 1. Ultrapolar bacteria display greater degree of polarity than normal bacteria. A) Images of normal (top) and ultrapolar (bottom)
bacteria expressing ActA-RFP. Left panels show ActA signal, right panels show bright-field illumination. B) ActA intensity linescan of one normal and
one ultrapolar bacterium labeled in A. The average intensity over the width of the bacterium is plotted at each point along its length. Intensities are
normalized to the maximum in the linescan. Ultrapolar ActA bacteria display relatively less ActA along the sides than normal ActA bacteria.
doi:10.1371/journal.pcbi.1000434.g001

Listeria Polarity and Speed
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Figure 2. Bacterial speed increases with increased ActA polarity and intensity. A) 3-dimensional plot of the average experimentally
measured bacterial speed vs. its 1st moment and total ActA linescan intensity. The linescan graphs along the bottom right axis display the ActA
distribution for respective 1st moment values (intensity normalized to the maximum to highlight how the 1st moment describes degree of polarity).
The larger the 1st moment, the greater the degree of polarity in ActA distribution. The total ActA intensities span a ten-fold range. Actual data points
are shown in red. The best-fit plane is shown in gray. Speed increases with both ActA polarity (1st moment) and ActA intensity. The bacteria that
provided the prototypical normal and ultrapolar distributions used in simulations (Fig. 3A) are circled in black. B) A view of dataset shown in A from
an alternate vantage highlighting the quality of the fit and scatter around the best-fit plane. C) 3-dimensional plot of the R2 residual values obtained
when fitting the data shown in A by functions of increasing polynomial degree. The numbers on the x- and y-axes represent the highest polynomial
degree of the function used for the fit. For example, the small round point at ‘‘2’’ on the ActA intensity axis and ‘‘1’’ on the 1st moment axis represents
the R2 value for the fit Z = a+bX+cX2+dY where Z is the speed, a, b, c, and d are fitting constants, X is the ActA intensity and Y is the 1st moment (a
similar plot representing the mixed non-linearities, i.e. where the yellow star would represent the function Z = a+bXY was also considered; data not
shown). The greatest increase in R2 occurs for a linear fit in ActA intensity and polarity (yellow star) –higher degree polynomials only marginally
improve the fit. This suggests that a linear fit in both 1st moment and ActA intensity sufficiently describes the trend in the data. The plane shown in A
and B corresponds to this fit. D) Speed vs. ActA intensity for ultrapolar and normal ActA bacteria. Bacteria were classified into ultrapolar and normal
categories based on the value of their 1st moment. Bacteria with 1st moments below 0.045 and above 0.075 could be easily distinguished by eye.
Bacteria with intermediate 1st moments (between 0.045 and 0.075) were ignored in this analysis. Normal bacteria are shown as gray circles and
ultrapolar bacteria as black crosses. Linescan inset contrasts two examples each of ultrapolar (black) and normal (gray) ActA distributions.
doi:10.1371/journal.pcbi.1000434.g002
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The agent-based simulation requires a cooperative
restraining mechanism to replicate the observed
polarity-speed dependence

To explore the mechanisms by which polarity affects bacterial

speed, we incorporated into the simulation examples of both

normal and ultrapolar ActA distributions from our experimental

dataset with comparable total ActA intensities (Fig. 3A). In both

the original version of the simulation [12] and in our updated

version (see Materials and Methods) ultrapolar ActA bacteria

consistently moved more slowly than normal ActA bacteria

(Fig. 3B, ‘‘constant drag’’). The faster speed our initial model

predicted for normal ActA bacteria is due to the greater density of

actin filaments generated along the sides of these bacteria

compared to the lower density of these filaments along the sides

of ultrapolar bacteria. The role of side-generated filaments in

enhancing speed is can be demonstrated with simple, artificial

ActA distributions. Simulations in which the ActA is fully confined

to the poles produce much slower bacterial movement than if a

small amount of ActA (20% of total) is distributed on the sides

(data not shown). These side-generated filaments enhance speed

by creating larger branched actin networks that will produce

greater forward forces, once they come into contact with the rear

bacterial pole. These side-generated filaments may also interact

with many different ActA proteins as the bacterium moves past

them, and they are thus protected from capping or actively

uncapped. For this reason, filaments interacting with the bacterial

sides are, on average, the longest-lived filaments. The simulations

produce a large distribution of filament lifetimes with very many

short-lived filaments –largely those that diffuse away from the

bacterium and are quickly capped. But more than half of the

filaments persist for longer than 10 seconds and almost a third

persist for longer than 20 seconds (data not shown). For a 1.7 mm

long bacterium moving at ,100 nm/s, this is plenty of time for a

side-generated filament to enter the population of filaments

interacting with the bacterial pole.

On the other hand these same filaments form tethers with the

bacterial surface, via ActA, and thus also generate pulling forces

retarding bacterial motion. Since the population of filaments along

the sides of the bacterium can only restrain the bacterium in our

model (pushing by filament tips is assumed to be in a direction

normal to the bacterial surface), we initially reasoned that

ultrapolar bacteria might be made to move faster than normal

ActA bacteria if we simply changed the nature of the actin

filament-bacterial surface tethers, allowing side-filaments to retard

motion more than they enhance motion in a filament number-

dependent fashion and thus slowing normal ActA bacteria more

than ultrapolars. Extensive parameter searches, varying tether

toughness, breakage criteria, and number (by adjusting the

parameters governing new and autocatalytic branch creation)

failed to find parameter sets matching our in vivo observations.

Increasing tether number or strength per tether (1000-fold range)

did slow the overall speed of both normal and ultrapolar ActA

bacteria. However, the normal ActA bacteria were always faster

than the ultrapolar bacteria up until the point that the tether

number or strength was great enough to stall the bacterial motion

altogether (data not shown).

We additionally explored values of other simulation parameters

that might affect the polarity-speed dependence, including

parameters affecting actin growth (actin nucleation (50-fold range),

depolymerization (4-fold range) and branching rate (25-fold

range)), strength of the attachments between the comet tail and

its surroundings (50-fold range), and the viscosity of the

environment (6-fold range). These parameters did affect the

overall speed of bacteria, and the nature of the trajectories (e.g.

smooth vs. hoppy motion), and some produced simulation runs in

which ultrapolar ActA bacteria moved almost as fast as normal

bacteria. However, ultrapolar ActA bacteria consistently moved

more slowly than normal ActA bacteria (Fig. 3B, ‘‘constant drag’’)

and, despite extensive searching, we found no parameter set that

produced the speed-polarity relationship we observed experimen-

tally. This suggested that the simulation required filament-

dependent restraining forces of a different nature.

We introduced a representation of both fluid coupling between

the bacterium and the actin network around it and a represen-

tation of friction forces between individual filaments and the

bacterium (Fig. 3). These forces add realism to the model; their

existence is unquestionable. Only when we used a cooperative

restraining mechanism, i.e. a restraining force that increases more

than linearly with the number of filaments, could we replicate the

experimental ActA polarity-speed dependence, obtaining simula-

tion runs in which ultrapolar ActA bacteria move faster than

normal ActA bacteria (Fig. 3C and D). With fluid coupling of the

bacterium to the surrounding filaments, we can create, by making

up a formula, such a cooperative restraining force (Fig. 3C), but we

cannot justify it physically (Fig. S2). Thus realistic fluid coupling

(i.e. non-cooperative coupling) does not reproduce our experi-

mental results. Kinetic friction between the bacterial surface and

side filaments is, on the other hand, inherently cooperative. The

kinetic friction force between a filament and the bacterium is

proportional to the contact force between them, i.e. F~mN where

m is the coefficient of friction and N is the normal force. But

additional side filaments polymerizing at the bacterial surface

cooperate to increase the average normal force N, i.e. N!nb (Fig.

S2) where n is the number of contributing filaments and b is an

unknown factor of cooperativity. The total frictional drag force is

just a summation of the contributions from each of the n filaments

and is approximately Ftotal~nmN , or Ftotal!n1zb, i.e. frictional

drag restrains that bacterium cooperatively as a function of

filament number by the factor b. Such a frictional force was

incorporated into the simulation by specifying a non-zero friction

coefficient, m, for filament-bacterial surface interactions. For

sufficiently large coefficients of friction (mw0:2), this robustly led

to greater speeds for the ultrapolar bacteria than the normal

bacterial (Fig. 3D and see Video S1 for representative examples of

a normal and an ultrapolar ActA bacterium). Note that in the

agent-based simulation the value for b, which depends on

particulars of the filament population (e.g. filament and branch

drags forces and orientations), emerges from the many individual

filament-bacteria interactions. We find average values of b
between 0.6 and 0.7 (Fig. S3B).

With this qualitatively realistic frictional drag force by side

filaments, our simulation replicated the polarity-speed dependence

of two specific experimental ActA distributions. However, our

experimental results indicate a dependence of speed on both ActA

polarity and on total ActA intensity. To test this experimental

result further in our simulation, we constructed an ad-hoc

mathematical function, as the sum of two sine waves with one

varying parameter (Fig. S4), to create artificial ActA distributions

that span the range of our experimental measurements. In this way

we could easily generate a large simulation dataset as the in silico

analogy to the experimental data (compare Fig. 2 and Fig. 4). In

this simulated dataset, the average speed of a bacterium was

positively correlated to both the 1st moment and the total ActA

intensity (p = 8e-80, 4e-19, and 2e-80 both variables together and

each separately, respectively). This suggests that our simulation, by

incorporating a frictional force between actin filaments and the

bacterium, captures the experimentally observed speed depen-

dence for a continuum of polarities and intensities.

Listeria Polarity and Speed
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A simple mathematical model describing the simulation
results

The nanoscale details that lead to microscale L. monocytogenes

motility are complex. Individual filaments are created as branches

from filaments oriented at any angle to the bacterial surface. These

actin branches form cross-links to each other and to other

filaments and bodies in the cell environment, thereby gaining

purchase from which polymerizing actin barbed-ends can push the

bacterium forward. The behavior of any individual bacterium is

influenced by the stochasticity of the various biochemical events,

by the Brownian motion to which all cellular bodies are subject,

and by the particular location of individual ActA proteins on the

bacterial surface. In silico, we have tried to capture these nanoscale

details and mechanisms, and have succeeded in building a

simulation whose emergent motility is much like that of the actual

bacteria [12].

But it is a fair criticism to point out that the simulation, due to its

very complexity, doesn’t build intuition. We have thus encapsu-

lated the major mechanisms from our complex model into a vastly

simpler one-dimensional continuum model (Fig. 5, Text S2),

formulated as a set of partial-differential equations (PDEs) with

state variables of actin barbed-end number, actin density, and

speed of motion. We built this continuum model to compare and

contrast its predictions and robustness of behavior with the agent-

based simulation.

In the solution of this model the bacterium is spatially discretized

into a one-dimensional set of elements, each of size 0.1 mm,

spanning the bacterium at the optical resolution of our experimental

Figure 3. Ultrapolar bacteria move faster than normal ActA bacteria in simulations incorporating a cooperative restraining
mechanism. A) Representative examples of a normal ActA distribution and an ultrapolar ActA distribution selected from the experimental dataset
for use in the simulation. These distributions are scaled such that the total amount of ActA is equal. B) Representative set of simulation runs with
normal and ultrapolar ActA distributions for simulations exhibiting a constant drag [as in 12]. Regardless of the parameters chosen, the normal ActA
bacteria always moved faster than the ultrapolar bacteria. In this particular set of runs, the average speed of the normal ActA and ultrapolar bacteria
was 0.101 and 0.105 mm/s (n = 20 simulation runs for each distribution.) Average speeds were significantly different by rank sum analysis (p-value
0.038). C) Simulations runs with the identical parameters as in B but incorporating fluid coupling of the bacterium to the surrounding filaments with a
quadratic dependence on filament number. Now the ultrapolar bacteria move more rapidly than the normal ActA bacteria (0.139 and 0.125 mm/s
respectively, n = 15). Average speeds were significantly different by rank sum analysis (p-value 0.028). However, we cannot physically justify this
quadratic fluid coupling (Fig. S2). D) Simulation runs with the identical parameters as in B but incorporating a frictional force between actin filaments
and the bacterial surface. Ultrapolar bacteria move more rapidly than the normal ActA bacteria (0.106 and 0.099 mm/s respectively, n = 20). Average
speeds were significantly different by rank sum analysis (p-value 0.005). This particular set of runs used a friction coefficient of 0.2. However these
results were robust to changes in simulation parameters, e.g. for 6-fold higher friction coefficients and for simulations with increased actin tail
densities (data not shown). Error bars are standard error. E) A schematic definition of the forces in the simulation shown on half the surface of a 2D
capsule shaped bacterium. Any collision between a filament and the bacterial surface defines a contact force, assumed normal to the bacterial surface
regardless of filament orientation. The collision may be the result of thermal motions of the bacterium and actin structures, or a filament may
polymerize ‘into’ the bacterium. Bonds between actin filaments and surface bound ActA proteins can lead to a tether force if that bond is strained.
This protein-protein tether is distinguished from the smaller scale forces between electrically charged molecules that lead to kinetic friction. A shape-
based viscous drag is assumed for all bodies in the simulation, but that drag might be modified to account for the fluid-coupling between bodies. To
include this fluid-coupling between actin filaments and the bacterium we increase the bacterial drag as a linear function of the surrounding filament
population.
doi:10.1371/journal.pcbi.1000434.g003

Listeria Polarity and Speed
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images of ActA distribution and bacterial motility (Fig. 5A). Thus

our measured ActA distributions can be directly mapped onto these

elements. The model tracks through time the barbed-end and f-

actin populations in each mesh element (Fig. 5B). Bacterial velocity

and drag coefficient are constructed as simple functions of this

barbed-end population. New barbed-ends are created (de-novo in

the simulation, although this represents both de novo nucleation

and the capture by ActA of small f-actin fragments) in each spatial

element as a function of the number of ActA proteins in that

element, and also autocatalytically, in proportion to the number of

barbed-ends. Filamentous actin growth is also proportional to the

number of barbed-ends in each element. Barbed-ends and f-actin

flow into, and out of, each mesh element at a rate dependent upon

the speed of the bacterium. We assume that, as in the complex

model, only barbed-ends in contact with the hemispherical caps can

effectively push the bacterium forward, so the propulsion force, F , is

a function of barbed-ends in the elements near the back end of the

bacterium. The drag coefficient, c, is dependent on the f-actin

populations summed up along the length of the bacterium. The

instantaneous velocity of the bacterium is v~F=c. As this model is

formulated in terms of average quantities (e.g. average barbed-end

creation rates, average force per filament) we can justify some of the

parameter values through analysis of the equivalent emergent

property in the agent-based model (Text S2).

The predictions of this model are coarsely consistent with our

results from the agent-based model, but less specific about the

Figure 4. Bacterial speed increases with increased ActA polarity and intensity in simulations that incorporate friction. A) 3-
dimensional plot of the average bacterial speed vs. its 1st moment and total ActA linescan intensity for 253 simulated bacteria. A range of simulated
ActA polarities was chosen to correspond to the experimentally observed range (Fig. 2A). Similarly, the total ActA intensities were set to span a ten-
fold range as in the experimental data. The linescan graphs along the bottom right axis display the ActA distribution for respective 1st moment values
(intensity normalized to the maximum). Actual data points are shown in red. The best-fit plane is shown in gray. B) An alternate view of the dataset
shown in A, highlighting the quality of the fit and scatter around the best-fit plane. C) 3-dimensional plot of the R2 value obtained when fitting the
data shown in A by functions of increasing polynomial degree. As in Fig. 2C the greatest increase in R2 occurs for a linear fit in ActA intensity and
polarity (yellow star) –higher degree polynomials only marginally improve the fit.
doi:10.1371/journal.pcbi.1000434.g004
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nature of the restraining forces. The differential-equation model

predicts that ultrapolars will move faster than normals with any

restraining mechanism that is filament number dependent,

whether linear or cooperative (Fig. 5C). This means that this

simple model can explain our experimental observations as an

effect of either the protein-protein ‘tether’ bond between ActA and

actin filaments, fluid coupling between the bacterium and actin

filaments, or friction. Therefore, our continuum model has limited

resolution as an investigative tool for this study. To be clear, this

simple model is not inconsistent with the posited role for kinetic

friction, it just does not require such a cooperative restraining

mechanism to replicate the experimental results. We explore the

reasons for the discrepancy between models in the Discussion.

Discussion

Our experimental observation of how the speed of L.

monocytogenes depends upon ActA distribution sets an important

constraint for any model of that system: bacterial speed should

increase, up to a point, with both ActA amount and the polarity of

the ActA distribution. Mathematical modeling can determine the

importance of forces acting on bacteria by exploring the

underlying mechanisms that satisfy this constraint. We have

attempted this with two models, a complex agent-based simulation

and a far simpler partial-differential equation representation. We

find that the partial-differential model can capture the coarse

behavior of the biology, but that it is insensitive to the details of the

restraining forces we wish to explore. Specifically, the partial-

differential equation model produces the correct ActA distribu-

tion-speed relationship if the bacterial drag is assumed dependent

upon actin filament number. Further, the mathematical form of

this drag is unimportant in this model –the model can be made to

satisfy that constraint through quantitative parameter tuning for

many qualitatively different assumptions about the functional

shape of this drag (i.e. linear vs. cooperative). Thus, our continuum

model cannot distinguish between, or reach conclusions as to the

relative importance of, filament-ActA tethers, fluid coupling, and

kinetic friction between filaments and the bacterial surface. Our

continuum model is not entirely wrong, but it is the wrong model

for the questions we have posed. The agent-based simulation,

however, leads us to a qualitative conclusion about the biology by

distinguishing between these mechanisms. We conclude that a

cooperative restraining force operates in determining motility

characteristics and that this force likely arises from the kinetic

friction between filaments and the bacterial surface.

We explored force-based mechanisms that lead to ultrapolars

moving faster than normals, but there are reasonable biochemical

explanations as well. The most obvious of these is actin monomer

depletion at the rear of the bacterium. If the denser actin growth

from normal ActA distributions leads to substantially greater actin

monomer depletion, relative to the ultrapolar bacteria, then slower

speeds for normal bacteria could result simply from decreased

polymerization. Estimates [Text S1, 20] suggest that the monomer

flux to the bacterial surface, using the measured diffusivity of actin

monomer through an actin gel [21,22], is sufficient to replenish

monomers used in polymerization. There is not unanimous

agreement on this point, however [23]. Another biochemical

possibility is that the local actin-filament nucleating power of ActA

may depend cooperatively, rather than just linearly, on local ActA

concentration. Distributing the same number of ActA molecules in

an ultrapolar vs. normal pattern would then change the resulting

total rates and locations of actin filament initiation and that alone

could make ultrapolars move faster. We have not rejected this

possibility, and indeed, there is new experimental evidence

implicating it [24]. Such a hypothesis can be tested in our agent-

based model: each ActA protein in the simulation can determine its

nearest neighbors and then have enhanced Arp2/3 activation if

those neighbors are sufficiently close. Footer et al. [24] propose two

distinct pathways to explain the observed ActA cooperativity –we

propose as a future direction to test these two possibilities in silico.

Additionally, neither the agent-based or continuum models we

present explicitly consider gel effects, and they thus ignore the

mechanisms proposed in elastic propulsion models [10,25]. In the

elastic propulsion model for bacterial motility, strain energy

induced in the actin network surrounding the bacterium by

continued actin growth at the surface is released by ‘‘squeezing’’

the bacterium forward and out of the actin shell. Increased

computational power since this work began will allow our next

Figure 5. A one-dimensional barbed-end tracking model of L. monocytogenes motility. A) The bacterium is spatially discretized into 0.1 mm
long mesh elements along the long-axis (the x-direction). In each of the mesh elements, two state variables bi and ni –the number of barbed-ends
and the f-actin density, respectively– determine the element contribution to propulsion force and drag coefficient. B) Equations for bi , for example,

are derived from conservation of barbed ends at a single mesh element: _bbi~BizAbiz
biz1{bi

d
_xx, where B is the nucleation of new barbed-ends (i.e.

a new mother filament), Abi is the autocatalytic creation of barbed-ends from existing barbed-ends (i.e. branching), and _xx is the velocity of the
bacterium. Only elements on the hemispherical cap significantly contribute to propulsion force, while f-actin along the side of the bacterium
contributes to the drag force. The ratio of force to drag determines the instantaneous velocity _xx. A similar element diagram can be drawn for ni ,
though without any autocatalytic term. C) Steady state speeds for different ActA distributions. A constant drag on the bacterium led to faster normals
than ultrapolars. Incorporation of a linear filament-dependent restraining mechanism, representing either (or both) filament-surface tethers or fluid
coupling led to faster ultrapolars than normals, as in our experimental observations. A cooperative filament-dependent restraining mechanism
(representing kinetic friction, for example) similarly led to faster ultrapolars (data not shown).
doi:10.1371/journal.pcbi.1000434.g005

Listeria Polarity and Speed

PLoS Computational Biology | www.ploscompbiol.org 8 July 2009 | Volume 5 | Issue 7 | e1000434



generation model to simulate flexible, crosslinked, and entangled

filaments; an approximation of gel effects will emerge naturally in

this model. But our present model cannot address the importance

or impact of this mechanism to bacterial motility. It is possible that

gel effects might lead our model to different qualitative conclusions

concerning the importance of the considered restraining mecha-

nisms, i.e. a lesser role for friction. We suspect, however, that our

current model, in ignoring the large hoop stresses that develop in

the actin gel about the bacterium, underestimates the filament-

bacterium contact forces. Higher contact forces would suggest an

important role for friction with friction coefficients lower than we

have used here.

Our experimental dataset spans a large range of different ActA

amounts and polarities (1st moments). We explored in silico

behaviors with ‘normal’ and ‘ultrapolar’ ActA bacteria (represen-

tative distributions near the extremes of our measured ranges) and

with mathematically generated distributions to span this entire

range. Normal and ultrapolar ActA distributions (Fig. 3A) create

different actin populations about a bacterium at steady-state

motion. Any filament created on the side of the bacterium will

immediately contribute to an increased drag on the bacterium

through both fluid coupling and frictional drag when in contact

with the bacterial surface. This filament may additionally

participate in the creation of new daughter branches through its

interactions with ActA on the bacterial surface, accompanied by a

restraining tether force between the filament and the bacterial

surface. This filament (and its daughter barbed-ends) will

eventually advect, relative to the bacterium, to become part of

the population of barbed-ends that can propel the bacterium

forward by pushing at the rear. Therefore, relative to ultrapolars,

normal ActA distributions create more robust actin populations

along the sides that can simultaneously feed the propulsion

machine with polymerizing barbed-ends, and restrain the

bacterium through tethers, increased effective drag, and kinetic

friction. Whether the net result of these competing effects is an

increase or decrease in speed, relative to some standard

distribution, depends on the qualitative details of the distribution

(i.e. the 1st and potentially higher moments). From our results with

the agent-based model, we explain the ActA polarity-speed

dependence of L. monocytogenes as the result of these several

competing and interacting dynamic subsystems in which a

cooperative restraining mechanism, likely the frictional force

between actin filaments and the bacterial surface, determines how

ActA polarity affects bacterial speed. The cooperative nature of

this restraining mechanism shifts the balance between pushing and

pulling such that filaments along the cylindrical sides of the

bacterium hinder forward motion more than benefit it.

In vivo, L. monocytogenes is a large object moving through a

cytoplasm densely packed with cytoskeletal structures and other

cellular bodies. It is well known that there is a non-linear size-effect

on the diffusion of cytoplasmic bodies [26,27]. While very small

proteins may diffuse as if in water, a large object like a bacterium

would have an effective diffusion coefficient many times less than

their shape-based values in water because any movement, causes,

and is impeded by, collisions with myriad cellular inclusions. Our

earlier model dealt with this cellular reality with a constant scaling-

down of the shape-based diffusion coefficients (typically by 1/

3000). In consideration of the fluid coupling that must exist

between the bacterium and the filaments that form around it, we

alternately explored the effect of varying this scaling constant as a

function of the actin population along the bacterium. Such a

scheme captures the (previously absent) realism that L. monocytogenes

affects it’s own viscous environment, but fails to satisfy our

experimental constraint that ultrapolars outrun normals.

Of the restraining forces shown in Fig. 3E, only friction is

cooperative. As detailed in Fig. S2, we expect the restraining force

from both the ActA-filament tether force and any fluid coupling

mechanisms to increase linearly, at most, with the number of actin

filaments about the bacterium. For example, no matter the tether

parameters, 100 tethers should exert (on average) a restraint force

that is 100 times that of a single filament. Likewise, fluid coupling

under Stokes flow can justify only a linear increase (again, on

average since we are neglecting filament orientation in this

argument) in drag on the bacterium with increasing actin filament

number. At higher filament densities we would even expect this

drag to increase more slowly, e.g. two nearly coincident filaments

will not double the drag of a single filament. Unlike restraint by

ActA-filament tethers or fluid coupling, restraint by friction forces

is inherently a cooperative process (see Results and Fig. S2).

The only filament-number-dependent restraining force consid-

ered in other L. monocytogenes motility models has been an assumed

net result of the many transient ActA-filament tethers [10,11].

This tether force and the bacterial drag force are typically the only

forces that oppose bacterial motion considered in past models; to

our knowledge, this is the first suggestion of a role for kinetic

friction between filaments and the bacterial surface. Though

friction is familiar enough to us in the macroscopic world, it is

reasonable to question the nature of this force for nanoscale

contacts between biological materials. Specifically, we have

assumed that Amontons’ law applies for contact between filaments

and the bacterial surface, i.e. that the magnitude of the friction

force is proportional, through a friction coefficient, to the contact

force normal to the direction of motion. The nature of friction at

the microscopic scale is not fully understood, but research in this

field largely supports our assumption [28–30].

The slower, normal ActA distribution is, indeed, the ‘‘normal’’

(i.e. typical) distribution for L. monocytogenes. That a L. monocytogenes

doesn’t usually move as rapidly as it might with a more polar ActA

distribution is likely indicative of the task before it in infecting

neighboring cells: the bacterium is more of a bulldozer than a

racehorse, which has been observed powering through cellular

bodies such as mitochondria with little change in speed [31]. The

additional resistance from mitochondria in the path could be

small, compared to the restraining forces on a bacterium from the

dense shell of actin filaments it has catalyzed.

Suitability of modeling methodologies
The qualitative differences between a simple continuum model

and the complex agent-based model motivate a discussion of

biological modeling methodologies in general. These two models

were constructed under different design principles – the partial-

differential model was constructed with a single narrow question in

mind, while the agent-based model, designed to incorporate a

large degree of low-level ‘‘realism’’, can address many different

questions. The failure of our particular continuum model to

exhibit qualitative differences in outcome corresponding to

qualitative differences in restraining mechanism does not denigrate

analytical models in general –a modification of Gerbal et al. [10]

in which friction force is made proportional to the radial actin-gel

pressure might reach similar conclusions as our agent-based

model, for instance. The point here, however, is that our initial

best-intuition continuum (mean field) model doesn’t have sufficient

resolution to uncover the reason ultrapolar ActA distributions lead

to faster bacteria. Absent insight from the agent-based model we

would have overlooked the necessity of a cooperative restraining

force, in the form of cooperative kinetic friction.

Why do the agent-based and continuum models reach different

conclusions? We assert that the average relationships of the
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continuum model mask a smaller time-scale process critical to the

correct emergent behavior. Thus, we find that the parameters

chosen as constants in the continuum model are, in reality,

functions of ActA distribution, our experimental variable.

To construct our continuum model, which tracks the dynamics

of three state variables (barbed-ends, filamentous actin, bacterial

speed) through time and in one-dimensional space, we have to

assume some average relationships. We assume: an average

propulsive force for each filament on the rear hemispherical cap of

the bacterium, an average restraining force per unit actin (for fluid

coupling) or per barbed-end (constant for ActA-filament tethers or

filament number dependent for kinetic friction), an average

autocatalytic and de novo barbed-end creation rate, and an

average f-actin growth rate. We found that the continuum model is

insensitive to the nature of the three restraining mechanisms we

have modeled: fluid coupling between filaments and the

bacterium, ActA-filament tethers, and kinetic friction. We

interpret this insensitivity to mean that behaviors critical to the

correct emergent ActA distribution response occur on a time-scale

for which the assumed average relationships of the continuum

model are not valid. Consider a filament born 1 mm from the rear

tip of the 1.7 mm long bacterium, a bit forward of the centroid. If

the bacterium moves at 100 nm/s (a typical speed) then it might

interact with the bacterium for as long as 10 seconds before

becoming part of the trailing actin tail. During that interval this

filament may undergo many polymerization, collision, ActA

tethering, and branching events. In other words, filaments

stochastically sample a large number of possible states during

their lifetime, and this is especially so for the filaments that interact

the most with the bacterium. For instance, the ability of a filament

(or branch structure, if it is part of one) to impart large forces on

the bacterium generally increases until the bacterium has long

passed (see actin distribution Fig. S5). It is this process –the

stochastic maturation of a filament– that the average parameter

assumptions of our continuum model have no way to represent.

We support this claim by using the agent-based model to

determine the time-scales at which our continuum model

assumptions are reasonable. Average relationships begin to emerge

when we average the agent-based data over several seconds, but

are only clearly valid on time-scales of 10 seconds or more –a

hundred thousand time-steps in the agent-based model (Fig. S3).

We can also use the agent-based model to demonstrate that the

maturation states, and thus appropriate average contributions to

bacterial propulsion and restraint, of any side-interacting filament

depend on the ActA distribution. Therefore, relationships assumed

constant in the continuum model are actually functions of the

experimental variable. We explicitly show this for two parameters

in the continuum model: the propulsive force per filament and the

autocatalytic barbed-end creation rate (Fig. S3B).

Based on our analysis with the agent-based model, we postulate

that it might be possible to rectify the discord between models by

introducing a third independent variable, filament age, into the

PDE description. This modified continuum model would then track

barbed-ends and filamentous actin in time, 1D-space, and age, thus

allowing a filament age-dependent formulation of propelling and

restraining forces, and perhaps of branching and elongation rates.

We could use the agent-based model to establish the average age-

dependence (as in Fig. S3B) of these parameters, but the revisionist

tinkering required to compensate for the time-scale insensitivity of

the continuum model undermines its usefulness, for this study at

least. We prefer the model in which these dependences simply

emerge, and our long-term interests lie with the building of realistic

nano-scale encoded simulations that can address a large number of

biological questions. But while we do not pursue a fix for this

particular continuum model in this context, it should be remarked

that simplified microscale models of inherently nanoscale processes

are absolutely necessary to address certain biological questions.

Consider a modification of our ActA distribution study focused on

actin network behavior at the leading edge of a large motile cell. In

that case we might attempt to characterize actin growth as a

function of the density and distribution of nucleation promoting

factors (i.e. Arp2/3 activators) on the cortex. The computational

cost of using an agent-based model similar to ours to track every

actin filament at the periphery of this cell is, at present and in the

foreseeable future, prohibitive. A microscale model that provided an

appropriate synopsis of the actin network behavior might, however,

succeed on the whole cell scale. As demonstrated in Fig. S3, a

nanoscale agent-based model can establish parameter values for

application in a microscale model.

As a last word, we believe that the historical narrative of our

work can serve as a parable for others. We described extensive

parameter searches with the agent-based model, when it lacked a

cooperative restraining mechanism, that all failed to match our

experimentally observed polarity-speed relation. This iterative

process was very time-consuming, as simulation of a single

bacterium (representing one parameter set) requires several days

of computer time. Ultimately, we found that this model produced

robustly wrong behaviors, and this pointed to its lacking a critical

mechanism. With the inclusion of kinetic friction, the model

robustly predicts that ultrapolar bacteria move faster than

normals. We might have saved ourselves many months searching

through parameter space to find values that might make a

qualitatively wrong model yield predictions that agreed with our in

vivo data had we heeded a principle we now believe should guide

biological modeling: Biological systems have evolved to do what

they do robustly, so emergent behaviors arise from the system

topology/connectivity and should not depend on a precise and

fragile balance of the parameters characterizing interactions

between molecular parts or in the relative abundance of those

parts (i.e. the concept of structural stability in mathematics). Had

we succeeded in finding a parameter set for the agent-based model

that matched our experimental constraint, that result would have

been suspect due to the very difficulty in finding it.

Materials and Methods

Bacterial growth conditions to generate ultrapolar ActA
distributions

L. monocytogenes displaying a greater degree of ActA polarity

(ultrapolar) were created by manipulating bacterial growth

conditions. Bacteria expressing normal, wild-type ActA distribu-

tions (achieved either by use of a constitutively expressing strain or

by ActA induction) can be made more polar by growing them

rapidly for short periods of time. While ActA has a long residence

time on the surface of bacteria on the order of several hours [18],

some of the ActA protein is still lost from the entire surface during

the growth to create the ultrapolar distribution. Thus each

combination of initial ActA expression level and rapid growth

conditions will result in a different range of ActA distributions and

intensities within the population. For these experiments we used

the following empirically determined conditions for the optimal

combination of polarity and minimal ActA loss. L. monocytogenes

strain JAT-395 [17] expressing ActA-RFP under the wild-type

ActA promoter was induced to early stage IV in ActA polarization

[18] (ActA distribution almost the same as in constitutively

expressing strains). Bacteria were then diluted 10-fold into BHI

and grown one hour (approximately one doubling time), then used

in motility assays.

Listeria Polarity and Speed

PLoS Computational Biology | www.ploscompbiol.org 10 July 2009 | Volume 5 | Issue 7 | e1000434



Motility assays and microscopy
JAT-396 bacteria (constitutively expressing ActA-RFP) [17]

were grown for 9 hours with shaking at 37uC in 5 mL LB

containing 7.5 mg/mL chloramphenicol. These bacteria display

the previously described normal polar ActA distributions [17]. To

analyze both ultrapolar and normal bacteria simultaneously,

bacteria from both populations were mixed at a 2:1 ultrapolar:-

normal ratio. The mixture was spun down and re-suspended in

Xenopus buffer (XB) [32] to an O.D.600 of approximately 9.0 then

used continuously in multiple independent motility assays for

5 hours (maintained on ice; L. monocytogenes in XB remain alive but

no longer grow and thus maintain their ActA distribution during

this time).

L. monocytogenes in vitro motility assays were performed as

described [17]. 25 mL Xenopus laevis egg extract, 2.5 mL ATP

regenerating mix [32], and 2 ml of rabbit muscle AlexaFluor488

labeled actin (diluted to 1.1 mg/mL, 1.5 dyes/actin; Invitrogen,

Carlsbad, CA) were mixed and diluted with XB such that the final

motility assay was 50% of the original extract concentration, then

kept on ice. 1 mL resuspended bacteria and 1 mL 0.9 mm

prediluted silica spacer beads were added to 5 ml extract mixture.

1.2 mL of the mixture were immediately spread between a glass

slide (Gold Seal, Portsmouth, NH) and 22 mm, #1 square

coverslip (Premium Cover Glass; Fisher Scientific, Hampton, NA),

sealed with VALAP (vaseline:lanolin:paraffin; 1:1:1) and used for

imaging of steady-state motility.

Microscopy was performed on an Olympus IX70 equipped with

an x-y-z automated stage (Applied Precision, Issaquah, WA) and a

cooled CCD camera (CoolSNAP HQ; Photometrics, Tucson, AZ).

Timelapse images were taken using a 606, 1.4NA PlanApo lens

and collected every 5 s for 2 minutes using Softworx software

(Applied Precision, Issaquah, WA).

Bacterial tracking and parameter measurements
Bacteria were tracked at their centroid using the semi-

automated threshold dependent ‘‘track objects’’ function in

Metamorph (Universal Imaging, Downington, PA). Tracked

bacteria were imaged between 1.5 and 2.5 hours after mixing

with extract to ensure this analysis included only bacteria moving

at steady-state. Bacteria displaying bipolar ActA distributions [17]

were not included in this dataset. Bacterial tracking was performed

separately from ActA linescan measurements and the data

eventually recombined. The ActA linescan intensities were

measured in ImageJ with the plot profile function as follows.

The background intensity for a fluorescent image of ActA was

determined as the average mean intensity of several large

rectangular measurements (Rectangular Selection Tool: Analy-

zeRMeasure); we subtracted this intensity from the image. ImageJ’s

Straight Line Selection tool was used to determine the length of the

bacteria on the bright-field image. A straight line of this length, with

an averaging width of five pixels, was centered as well as possible

(given the coarse pixilation) on the fluorescent image to obtain a plot

profile of ActA intensity along the length of the bacterium (Straight

Line Selection Tool: AnalyzeRPlot Profile).

Analysis of ActA polarity
To generate a continuous measure of ActA polarity (from least

to most polarized) the ActA linescan was used to calculate the 1st,

2nd, etc. moments by calculating:

Mn~
1

It
:Ln

X

j

Ij
:dn

j

where Mn refers to the nth moment, L = length of bacterium,

It = total linescan intensity, Ij = linescan intensity at pixel j (i.e. j-th

discretized mesh point) along bacterium, and dj = distance from

pixel j to center of bacterium. A principle component analysis of

the data was performed (using JMP; SAS Institute, Cary, NC)

which showed that the 1st moment was the most significant of the

first 5 moments (0th to 4th moment) for describing the

experimental polarity-speed dependence. The 2nd moment is

useful to differentiate between unipolar and bipolar ActA bacteria.

However, since all bacteria with bipolar distributions were

removed from the dataset, this measure was not critical to our

analysis. The total amount of ActA on a bacterium was

determined as the sum of the intensities at each camera pixel in

the linescan (also the same as the 0th moment).

No correlation between speed and bacterial length was found

(data not shown), but to ensure no effect from extremely long or

short bacteria, the final analyzed datasets were limited to bacteria

between 10 and 25 pixels (1.06 and 2.26 mm) in length (.90% of

tracked population). The final filtered dataset shown in Fig. 2A

included 253 bacteria. Statistical significance for the difference

between the average speeds for this analysis was determined using

rank sum analysis. The Statistical significance of the linear

correlation was calculated with the ‘‘regression’’ analysis tool in

Microsoft Excel.

3-dimensional plots showing average speed per bacterium as a

function of 1st moment (polarity) and total ActA were created in

Mathematica (Wolfram Research, Champaign, IL). To determine

which polynomial functions best fit the data, the R2 values from

different polynomial-order fits were plotted; the improvement in fit

beyond linear was minimal. The statistical significance of the

linear fit was calculated with the ‘‘regression’’ analysis tool in

Microsoft Excel. The values within each category (i.e. average

speed etc.) were randomized and recombined. A regression

analysis of these randomized data confirmed no significance in

the linear fits (p&0.1).

Computational Methods
We made two different computer models. One is a nanoscale-

detail-oriented stochastic model of the biochemical and force-

based interactions between a rigid in silico L. monocytogenes and the

actin filaments/branches whose creation that bacterium catalyzes.

A description of this agent-based model can be found in Alberts

and Odell [12], with some distinctions described here. The Java

source code for this model, RocketBugs, is available at www.

celldynamics.orgRdownloadsRsimulation code. The second

model is a simple partial-differential equation formulation of a

mean field theory, informed by our explorations with the more

complex model; a derivation of this PDE model can be found in

Text S2, and its numerical solution is implemented in Text S3, a

Mathematica notebook.

The stochastic model is computationally intensive, with typical

run-times (for 6 minutes of simulated time) of three to five days,

depending on parameters, on modern Linux servers running Java

1.6. These simulations additionally require up to 2 GB of main

memory per server, again depending on the particular parameter

set.

Changes to the stochastic model from Alberts and Odell
[12]

Filament drag. The method by which we simulate the

interactions of filaments/branches with each other, and with other

cellular entities not explicitly simulated, has changed greatly. In

Alberts and Odell [12], the assumed viscous drag of an actin

filament/branch increased greatly as a simple function of its age;
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after a threshold drag was attained, the filament/branch was simply

assumed to be fixed in space. This scheme had the defect of allowing

a small number of filaments, or even a single fixed filament, to

sterically inhibit bacterial motion in a given direction. Exploring

bipolar ActA distributions, or distributions with ActA anywhere

near the forward tip of the bacterium, was therefore not possible.

Filaments now accumulate ‘‘drag units’’ stochastically as a function

of their length to more realistically capture the implicit interaction of

filaments with each other and with other cellular entities (their

surroundings). The more ‘‘drag units’’ a filament has, the greater its

viscous drag coefficient that multiplies its velocity relative to the lab

frame to compute the viscous drag force resisting its motion. While

the drag coefficient of an individual filament/branch can grow

large, it can always be moved out of the way with sufficient force.

Amontons’ law for filament-bacteria interactions. The

simulation detects collisions between actin filaments and the

bacterium at each time-step, and these collisions are resolved

through application of equal and opposite forces. . Let f be the

vector force a filament tip exerts on the bacterium. In general we

can resolve this into one component normal to the bacteria surface

plus another tangent to the bacterial surface. For a perfectly

smooth bacterium [as in 12] the normal component, N, is the only

non-zero component. A more realistic bacterial surface is

characterized by a non-zero friction coefficient m, and therefore

a friction force tangent to the bacterial surface with magnitude mN
and direction opposite the instantaneous bacterial velocity. This is

Amontons’ law, familiar to us in the macroscopic world. Typical

engineering materials have coefficients of kinetic friction in the

range of 0.005 to 0.2 –the coefficient of friction for actin filaments

on gram-positive bacterial surfaces is not known. Discussion of

Amontons’ law at the microscopic scale can be found in [28–30].

Bacterial drag. The bacterium was given a constant shape-

based drag in Alberts and Odell [12]. The exact nature of the

mechanisms that restrain the bacterium is the main focus of this

manuscript. We extensively study the effect of ActA – f-actin tether

properties, fluid coupling between the bacterium and its

surrounding network of actin filaments, and friction between

filaments and the bacterial surface (Fig. S2).

ActA-filament interaction probability. The probability

that an actin filament encountering the bacterial surface will

interact with an ActA protein is now dependent on the

concentration of ActA proteins at that location on the bacterium

(the concentration depends only on the arc length measured from

the posterior pole – not on the azimuthal angle). We previously

assumed that all filaments colliding with the bacterium would

immediately interact with an ActA protein – a good approximation

in regions of high ActA density, which is distribution dependent –

but no longer relevant when ActA concentration tapers off gradually

towards the front end of the bacterium.

Random number generation. Random number generation

is too important to be left to chance. Instead of using the built-in

Java pseudo-random number generator (period of 24821), we now

employ the scientific standard Mersienne Twister method (period

of 21993721). This is implemented from the free and open-source

Java package provided by www.honeylocust.com/RngPack/.

Supporting Information

Text S1 Description of the agent-based model.

Found at: doi:10.1371/journal.pcbi.1000434.s001 (0.08 MB

DOC)

Text S2 Derivation and solution of the continuum model.

Found at: doi:10.1371/journal.pcbi.1000434.s002 (0.21 MB

DOC)

Text S3 Mathematica notebook solution of discretized contin-

uum model.

Found at: doi:10.1371/journal.pcbi.1000434.s003 (0.13 MB PDF)

Figure S1 Snapshots of in silico L. monocytogenes motility (adapted

from Alberts and Odell 2004). A) A bacterium with a normal ActA

distribution (Fig. 1B) moves at speeds similar to experimental

measurements with a realistically dense actin tail. B) An illustration

detailing the states considered in the simulation. Filaments can

branch from existing filaments, become capped at their barbed-

ends by Capping protein, bind ActA proteins on the bacterial

surface, collide with the bacterium to produce propulsive force,

etc. Hydrolysis of filamentous actin monomers is assumed to be

fuse-like, i.e. there are distinct regions of ATP, ADP-Pi, and ADP

actin, as opposed to a more likely random hydrolysis and

dissociation for each monomer.

Found at: doi:10.1371/journal.pcbi.1000434.s004 (0.85 MB EPS)

Figure S2 Of the restraining forces considered in the agent-

based model, only the frictional force between filaments and the

bacterial surface is cooperative. A) The top bacterium has three

transient ActA-filament tethers along the side of the bacterium,

while the bottom one has six. A two-fold increase in tethers will, on

average, restrain the bacterium with only twice the force, i.e.

restraint by ActA-filament tethers is approximately linear in the

number of interacting filaments. B) At low Reynolds number the

induced fluid velocity field can extend a large distance from an

object’s surface. The top figure shows a hypothetical fluid flow

profile -vf will equal the bacterial velocity v at the surface and

decrease parabolically from there. Any nearby filaments will

interact with this fluid and induce a drag on the bacterium in a

complicated way, dependent on their own position, orientation

and velocity. We approximate this interaction by simply counting

the number of filaments within a ‘shell’ about the bacterium and

increase the drag coefficients of the bacterium linearly with that

number. The induced drag will increase linearly, at most, as

demonstrated in the bottom figure. Filaments i and ii will

independently interact with the bacterium’s fluid velocity field;

identically positioned, oriented, and moving filaments will

contribute equally to the drag on the bacterium, i.e. the drag

will increase approximately linearly with the number of filaments.

A filament pair as in iii, however, will effectively appear as a single

filament in this fluid coupling -at high filament densities we might

expect the drag to increase even less than linearly with the number

of filaments. C) By Amonton’s law, kinetic friction is proportional

to the normal contact force, as shown in the top figure. The

bottom figure illustrates how many filaments can cooperate to

increase the average normal force, i.e. N/b where n is the number

of contributing filaments and b is an unknown exponent of

dependence. The total friction force is just a summation of the

contribution from each of the n filaments, and thus is cooperative

in n by the factor b, i.e. FTotal/n1+b. In Fig. S3 we determine

average values for b in the agent-based simulation.

Found at: doi:10.1371/journal.pcbi.1000434.s005 (0.71 MB EPS)

Figure S3 Examination and determination of continuum model

parameters through analysis of average agent-based model

relationships. A) Averaging of data for three in silico bacteria with

our standard ultrapolar ActA distribution (Fig. 1B) including

kinetic friction. Autocatalytic barbed-end creation rate, propulsive

force on the rear hemisphere of the bacterium, and total radial

contact force for filaments on the cylindrical section of the

bacterium are averaged over 0.1, 1, and 10 sequential seconds.

Only over intervals of 10 seconds or more (third row) does an

assumption of a constant average value seem reasonably valid.

These data also demonstrate the general way that nanoscale agent-
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based model might be used to inform parameter choices for a

microscale continuum model. For example, the slope of the best

linear relation between propulsive force and number of barbed-

ends at the rear of the bacterium is the propulsive force per

filament, while the exponent of the power relationship between

contact force and filament tips at the surface defines our

cooperativity factor b. B) A larger dataset of 10 in silico bacteria

each for ultrapolar (blue) and normal (red) ActA profiles (Fig. 1B)

reveals that the average autocatalytic barbed-end creation rate,

propulsive force per filament, and even the cooperativity factor b
are functions of ActA distribution. Each datapoint is the average of

1000 sorted 0.1 second sequential averages, e.g. we group

0.1 second averages of total propulsive force by the number of

filaments on the rear hemisphere of the bacterium, then average

1000 adjacent values. These data suggest (for normal bacteria)

values of 0.07 new barbed-ends for each existing barbed-end per

second, 0.07 pN per filament tip at the rear hemisphere, and a

cooperativity factor b= 0.65.

Found at: doi:10.1371/journal.pcbi.1000434.s006 (20.39 MB

EPS)

Figure S4 We devised a simple function, the sum of two sine

waves (i. e. the first two terms in a Fourier series approximation),

to distribute ActA on our in silico bacteria. By varying a single

parameter, A, we can span the range of ActA 1st moments

measured in our experimental data set and reasonably represent

the typical shapes of those distributions. For comparison, our

prototypical normal (red) and ultrapolar (blue) experimentally-

measured distributions are shown alongside these function-

generated distributions.

Found at: doi:10.1371/journal.pcbi.1000434.s007 (0.78 MB EPS)

Figure S5 Comparison of in silico, and experimental actin and

distribution. The top row shows an average experimental actin

distribution along the bacterium for an ultrapolar and normal

ActA bacterium. Linescans from four timepoints in a timelapse

movie were averaged to obtain these plots. The bottom row shows

an in silico average actin distribution along the bacterium obtained

from our simulations. Actin distributions along the bacterium were

averaged over the course of 30 seconds in the simulation.

Comparing the in silico and experimental actin profiles reveals

that they share distinctive features for both normal and ultrapolar

ActA distributions.

Found at: doi:10.1371/journal.pcbi.1000434.s008 (0.92 MB EPS)

Table S1 Concentrations used in the agent-based model

(reproduced from Alberts and Odell 2004). These values are not

for any specific cell type, but are typical biological concentrations

and similar to those used for in vitro reconstitutions of bacterial

motility.

Found at: doi:10.1371/journal.pcbi.1000434.s009 (0.02 MB

DOC)

Table S2 Rates used in the agent-based model (reproduced from

Alberts and Odell 2004). A hydrolysis rate is given for a vectorial

ATP hydrolysis model; experimental evidence currently supports

the random hydrolysis model but we have, for simplicity,

implemented a vectorial scheme for this analysis. That is, we

assume that there is a distinct border within each filament between

the ATP actin, ADP-Pi actin, and ADP actin regions; only

monomers adjacent to these borders can transition from ATP

actin to ADP-Pi actin or from ADP-Pi actin to ADP actin. We can

readily switch to a random hydrolysis model in future studies. The

values in angle brackets, for the interactions between ActA, Arp2/

3, and actin monomers, are calculated considering the diffusive

flux onto the bacterium’s surface (see Alberts and Odell,

2004:Dataset S2). These values are thus dependent upon ActA

density, the concentrations of Arp2/3 and actin, and a heuristic

adjustment of these rates to balance new filament nucleation and

side-branching in order to achieve realistic tail morphologies. The

on-rates in brackets listed here apply to the concentrations in

Table S1.

Found at: doi:10.1371/journal.pcbi.1000434.s010 (0.03 MB

DOC)

Video S1 Example trajectories of normal (on the left) and

ultrapolar (on the right) in silico bacteria with friction between

filaments and the bacterial surface. Only regions of relatively

smooth motion are analyzed to determine the average speed of

such bacteria, i.e large stalls and hops are ignored.

Found at: doi:10.1371/journal.pcbi.1000434.s011 (5.58 MB

MOV)
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