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Abstract

Current work in elucidating relationships between diseases has largely been based on pre-existing knowledge of disease
genes. Consequently, these studies are limited in their discovery of new and unknown disease relationships. We present the
first quantitative framework to compare and contrast diseases by an integrated analysis of disease-related mRNA expression
data and the human protein interaction network. We identified 4,620 functional modules in the human protein network and
provided a quantitative metric to record their responses in 54 diseases leading to 138 significant similarities between
diseases. Fourteen of the significant disease correlations also shared common drugs, supporting the hypothesis that similar
diseases can be treated by the same drugs, allowing us to make predictions for new uses of existing drugs. Finally, we also
identified 59 modules that were dysregulated in at least half of the diseases, representing a common disease-state
‘‘signature’’. These modules were significantly enriched for genes that are known to be drug targets. Interestingly, drugs
known to target these genes/proteins are already known to treat significantly more diseases than drugs targeting other
genes/proteins, highlighting the importance of these core modules as prime therapeutic opportunities.
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Introduction

Our understanding of the human disease state is incomplete

without the knowledge of how various diseases relate to each

other. Relationships between diseases have been used to gain

insights into the etiology and pathogenesis of similar diseases [1].

Study of disease similarities has also led to the discovery of new

causal genes for diseases [2,3]. Moreover, similarities between

biological concepts such as genes have been used successfully in

gene function prediction [4]. However, most of the early work on

finding disease-similarity has been limited to studying the clinical

phenotypes of the diseases. For instance, similarities in disease

symptoms and pathological results have been used to ascertain

similarities between Alzheimer’s disease and vascular dementia

[1]. These methods are not quantitative and cannot be used to

compare the relative similarities between diseases. More recently,

scientists have been able to explore the genetic similarity between

diseases because of the availability of large-scale knowledge-bases

such as the Online Mendelian Inheritance in Man (OMIM) [5]. In

2007, Goh and colleagues created the first ‘‘Diseasome’’, a

network of human diseases [6]. This network consisted of human

diseases/disorders as nodes and two diseases were joined by a link

if they shared known disease genes (data obtained from OMIM).

Van Driel et al. [7] inferred disease-disease associations by an

automated text mining of OMIM descriptions. Liu et al. [8] mined

for disease etiologies from the Medical Subject Headings (MESH)

[9] vocabulary and used it to reveal similarities between diseases.

Although the above studies provided comprehensive views of

disease interrelationships, they were mainly studying monogenic

disorders and generally ignored the effect of the environment on

these and other, more complex, diseases. They also relied heavily

on information that is already known, such as known disease genes

or known pathways. As a result, they were limited in their ability to

uncover hitherto unknown relations between diseases.

Advances in high-throughput molecular assay technologies,

accompanied by declining per-sample costs, have given rise to

numerous public repositories of biomolecular data such as mRNA

expression profiles and protein interaction networks. In particular,

the availability of these datasets for many different diseases

presents a ripe opportunity to use data-driven approaches to

advance our current knowledge of disease relationships in a

systematic way. As a matter of fact, very recently, Hu and Agarwal

[10] presented an approach to determine disease relationships

using only gene expression data. In order to obtain the disease
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correlations, the authors excluded genes which don’t change

meaningfully using an arbitrary threshold. They also did not take

advantage of the plethora of protein interaction data available for

the human system. Protein networks represent the physical

processes taking place inside a cell and are essential to acquire a

complete understanding of any biological condition such as

disease.

Therefore, just as sequencing of genomes has enabled the

reorganization of many species and provided quantitative metrics

to appreciate their relationships, we believe an integrated

approach combining both mRNA expression and protein

interaction data will provide us a quantitative way to assess the

correlation between diseases. Here, we present the first such

systematic and integrated approach to explore the architecture of

human diseases. In particular, we identified 4,620 functional

modules analogous to important complexes and pathways in the

human protein network and recorded how they varied in each of

the 54 diseases using the mRNA expression data. This process

provided a quantitative measure to describe the overall response of

the human system to a given disease. Subsequently, we used these

measures to identify 138 significant associations between diseases.

We also discovered functional modules that are common to at least

half of the diseases representing a common ‘‘disease-state’’

signature. These common disease-state modules were not only

significantly enriched for genes that were known drugs targets, but

their corresponding drugs were known to treat significantly more

diseases than expected by chance highlighting their importance as

therapeutic opportunities.

Results/Discussion

Protein complexes and pathways are accountable for most

processes in the cell. Accordingly, we can gauge the response of a

cell system to a certain perturbation (such as disease) by the

measuring changes in the expression levels of various functional

modules of the system. To this end, we first generated a catalog of

4,620 functional modules by querying the large-scale human

protein interaction network (see Methods). We then collected the

mRNA expression arrays associated with each disease from the

Gene Expression Omnibus (GEO) [11]. After several rounds of

filtering the gene expression data for accuracy, reliability, and

experimental context, we had microarrays representing 54 human

diseases (see Methods and Table S1). Next, we combined the gene

expression data and the 4,620 functional modules to generate a

Module Response Score (MRS) for each module in each disease-

state representing its activity level (see Methods). Specifically,

positive MRS values correspond to modules that are up-regulated

and negative MRS values identify modules that are down-

regulated in the disease-state as compared to the control (healthy).

Figure 1 gives an overview of the process to compute the MRS

values for a given disease. In the end, we generated a matrix

containing the MRS values for each module in each of the 54

diseases considered in this study. The relationships between

different diseases were then ascertained by the Partial Spearman

correlation coefficient of their MRS values (see Methods and

Figure S1). Specifically, we calculated the Spearman correlation

between two diseases conditioned on the responses of the

functional modules in their respective control samples. The use

of the Partial Spearman correlation coefficient instead of the

generic Spearman correlation coefficient not only provided a

quantitative metric to assess disease similarity but also explicitly

factored out the possible dependencies between different gene-

expression experiments due to their underlying tissue or cell types.

Figure 2(A) is the hierarchical clustering of diseases based on the

correlations generated above. To assign significance to these

associations, we randomized the gene to module assignments as

well as the control and disease labels 100 times to generate a

background distribution of disease correlations (see Methods). We

then selected only those disease correlations that passed the p-value

threshold of 0.01 (FDR = 10.37%) resulting in 138 significant

disease-disease similarity relationships. Immediately, we see that

many expected disease associations such as the brain disorders like

Alzheimer’s disease, Bipolar disorder and Schizophrenia are

pooled together in one sub-branch. We also see many novel and

hitherto unknown significant correlations such as the similarity

between uterine leiomyoma and lung cancer. We also created a

network representation to display all the 138 significant disease

correlations (Figure 2(B)). In this network, the nodes are diseases,

while the thickness of the edges between two diseases represents

their strength of correlation. This abstraction allows us to pick

additional significant disease associations that were missing in the

hierarchical clustering. For example, Crohn’s disease and Malaria

share a significant disease correlation. A listing of all the significant

disease correlations is provided in Table S2.

Although the 54 diseases considered in this study cover many

categories of diseases ranging from cancers to cardiomyopathies,

some categories of diseases such as cancer are over-represented as

opposed to others such as infectious diseases. Ideally, we would like

to explicitly correct for this bias by down-weighing over-

represented classes. However, the principle behind organizing

diseases into categories such as cancers, infectious diseases and

others is not the same. For instance, diseases are classified as

cancers if their underlying pathology consists of a group of cells

that show uncontrolled growth, invasion of nearby cells and

metastasis. On the other hand, infectious diseases relates to

diseases which are caused by pathogens and have the potential to

spread from person to person. Lack of a common organization

scheme prevents us from explicitly correcting for the observed

over-representation. Moreover, there is considerable heterogeneity

even among diseases of the same category. For instance, the

category of cancers covers a wide variety of diseases affecting

Author Summary

Many human diseases are related to each other through
shared causes or even shared pathology. Knowledge of
these relationships has long been exploited to treat similar
diseases with the same therapies. However, most of the
traditional approaches to discover these relationships have
depended on subjective measures, such as similarity in
symptoms, or incomplete knowledge, such as genes with
mutations. Here we present the first approach integrating
high-throughput datasets such as mRNA expression and
large-scale protein-protein interaction networks to discov-
er human disease relationships in a systematic and
quantitative way. We discover 138 significant pathological
similarities between 54 human diseases ranging from lung
cancer, schizophrenia, and malaria. We also discovered a
set of common pathways and processes within the cell
that are dysregulated in at least half of the diseases. We
infer that these processes correspond to a common
response of the human system to a disease state.
Interestingly, we find that many of the proteins in these
pathways are already known to be targets of existing
drugs. In fact, the drugs corresponding to these proteins
are known to treat significantly more diseases than
expected by chance highlighting the importance of these
common molecular pathological pathways as prime
therapeutic opportunities.

Network-Based Elucidation of Disease Relationships
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Figure 1. Overview of the process to generate the module response scores for each disease. (A) Normalization of the gene expression
matrices through a Z-score transformation. In the gene expression matrix for a given disease k, gij represents the expression value of gene i in sample
j, gj corresponds to the whole set of gene expression values for a given sample j (jth column) and zij corresponds to the z-score transformed gene
expression value of gene i sample j. (B) Response score of a gene in a given disease. The response score of gene i in a disease k is the t-test statistic
between the disease and control sample values for that gene. This score is represented as Sik. (C) Module response score calculation. The Module
Response Score (MRS) of a given module i in a given disease k (Mik) is average of the response scores of its component genes. Detailed description of
this process is provided in the Methods section.
doi:10.1371/journal.pcbi.1000662.g001

Network-Based Elucidation of Disease Relationships
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Figure 2. Significant disease-disease similarities. (A) Hierarchical clustering of the disease correlations. The distance between two diseases was
defined to be (1-correlation coefficient) of the two diseases. The tree was constructed using the average method of hierarchical clustering. The red
line corresponds to a p-value of 0.01 and FDR of 10.37% and, disease correlations below this line are considered significant. The different colors
represent the various categories of significant disease correlations. (B) The network of all the 138 significant disease correlations. The colors
correspond to significant disease correlation categories in (A). The nodes colored in grey are not marked in (A).
doi:10.1371/journal.pcbi.1000662.g002

Network-Based Elucidation of Disease Relationships
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many different cell types and having many different biological

causes ranging from mutations caused by chemical carcinogens to

bacterial and viral infection. This heterogeneity is seen even at the

transcriptional level [12]. We also have observed this heterogene-

ity in the results of our study as all the 17 cancers considered in our

analysis did not cluster together (Figure 2(A)). By combining both

mRNA expression and protein interaction data, we are providing

one of the first ways to compare and classify diseases systemat-

ically. The common organizing principle here is the molecular

pathology of a given disease.

At the outset, we explored the genetic basis of the diseases in our

study to explain and validate the observed disease correlations.

Specifically, we aimed to test the hypothesis that diseases which

are significantly associated through the MRS-based correlation

coefficient also significantly shared disease genes. For this purpose,

we collected a list of genes known to be associated with diseases,

hereinafter as the Disease Gene List (see Methods). We found

known gene variants associated with only 31 of the 54 diseases in

our study resulting in an overall total of 465 possible pair-wise

disease comparisons. A pair of diseases was considered to

significantly share disease genes only if the Hypergeometric p-

value of the overlap was less than 0.01. Eighty-two of the overall

465 comparisons significantly shared disease genes. On the other

hand, only 73 of the 465 disease pairs were significantly associated

using the MRS-based correlation coefficient. This gives rise to a

contingency table as shown in Table 1 with a one-sided Fisher’s

Exact Test p-value of 0.033. It suggests that the genetic similarity

between diseases significantly contributes to the molecular

pathological disease similarity observed in this study. Lack of a

strong p-value might be explained by the fact that the number of

known disease genes are much higher for well-studied diseases like

Schizophrenia (345 genes) as opposed to less well-studied diseases

like Mixed hyperlipidemia (4 genes). Mapping of genes to diseases

was also hindered due to fact that we used a very strict vocabulary

to define diseases (see Methods). Finally, this result might also

allude to the role of environment in disease causation and

similarity. A few of the significant disease correlations which also

significantly shared disease genes is provided in Table 2 and the

complete list is provided in Table S3.

In order to further understand the biology behind the

observed disease correlations, we examined some of their

underlying functional modules. First, we analyzed the sub-branch

of brain disorders, Alzheimer’s disease (ALZ), Bipolar disorder

(BIP), Schizophrenia (SCHZ), and Glioblastoma (GLIO), in the

hierarchical representation of the disease correlations (Figure 2(A))

in more detail. Figure 3(A.i) corresponds to the synaptic vesicle

and was one of most down-regulated modules in all four diseases

(second lowest average MRS value). This module is a secretory

organelle that stores neurotransmitters and releases them into the

synapse. Loss of synaptic functions and more specifically,

decreased expression of synaptic vesicle proteins such as SNAP-

25 is one of the main effects of ALZ [13,14]. Decreased synaptic

function has also been observed for both BIP and SCHZ [15,16].

In particular, the levels of protein SNAP-25 was shown to be

reduced in both BIP and SCHZ [17]. The function of this module

in GLIO is still to be explored. Uterine leiomyomas (UTL) are

benign tumors affecting the uterus. As shown in Figure 2(A), UTL

shares a strong correlation with lung cancers. Figure 3(A.ii)

corresponds to the DNA repair pathway which had the highest

average MRS value for the three diseases. Polymorphisms in the

genes involved in the DNA repair pathway such as PCNA, POLB

have been associated with increased risk of lung cancer [18].

Moreover, the Arg399Glu allele of the XRCC1 gene has been

shown to be a risk factor for lung adenocarcinoma [19] and lung

squamous cell carcinoma [20]. Surprisingly, the same Arg399Glu

polymorphism in the XRCC1 gene has also been associated with

an increased risk of UTLs [21] giving causal genetic evidence for

the correlation we observed between the diseases using micro-

array-based molecular pathological measurements.

Knowledge of a comprehensive disease-similarity tree (net-

work) based on molecular data could possibly be used in finding

new uses for existing drugs. Similar diseases share similar

molecular phenotypes and could potentially be treated by similar

drugs. To explore this avenue, we collected a list of drugs, their

corresponding target genes and the diseases they are known to

treat (US FDA approved indications) or off-label uses. This

information was obtained from the RxNorm from National

Library of Medicine [22], DrugBank [23], National Drug File

Reference Terminology (ND-FRT) [24] and MicroMedex [25].

Overall, 17 of the 138 significant disease correlations shared at

least one drug in common and 14 of them had a significant

Hypergeometric p-value less than 0.01 (Table 3, Table S4). For

instance, we found that the FDA approved drug Flouroucil, used

to treat Actinic keratosis, has been shown to have positive

indications for treating Malignant tumor of the colon [25].

Similarly, the drug Doxorubicin is FDA approved to treat both

Urothelial carcinoma and Acute myeloid leukemia [25]. This

number is a conservative estimate as the list of drugs used here is

incomplete. Moreover, we used a very specific vocabulary to

define diseases (see Methods) and accordingly mapped drugs to

them. For instance, we found many drugs treating lung cancer;

however in many cases, our combined knowledge base doesn’t

specify whether the cancer was an adenocarcinoma or a

squamous cell carcinoma. In those cases, we excluded the drug

from our consideration. A caveat to this approach is that drugs

can be shared between diseases mainly because the correspond-

ing diseases belong to the same category. For instance, drugs can

be shared between two cancers etc. As a result, it is difficult to

differentiate whether two diseases shared drugs due to the

similarity in their molecular pathology or due to their underlying

disease type. Moreover, the chemical similarity between drugs

can also affect the reported p-values.

Table 1. Contingency table to evaluate the hypothesis that significant disease correlations also significantly shared disease genes.

Number of disease pairs MRS-based disease correlations

Significant Not significant Totals

Shared disease genes Significant 19 63 82

Not significant 54 329 383

Totals 73 392 465

We performed a one-sided Fisher’s Exact Test on this table giving a p-value of 0.033.
doi:10.1371/journal.pcbi.1000662.t001

Network-Based Elucidation of Disease Relationships
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Another consequence of elucidating and quantifying the

response of the cell system to a disease is that we can use this

methodology to find modules that are generally dysregulated

(activated or repressed) in the disease-state. In other words, we

used the MRS values to characterize a common ‘‘signature’’ across

disease-states. In order to generate the set of modules that are

commonly dysregulated in the 54 diseases considered in this study,

we used a two-fold approach. Firstly, a module was selected if the

median of its absolute MRS values across all diseases was

significantly higher than expected at random. We generated a

random background distribution of median scores by shuffling the

gene to module assignments (see Methods). Overall, at a p-value of

0.01 and associated FDR of 16.15%, we selected 286 modules. We

then filtered the above set of 286 modules to only include those

modules which were significantly differentially expressed in many

diseases. A module was determined to be significantly differentially

expressed in a given disease if the absolute value of its MRS was

above 1.5 (p-value = 0.028). Finally, we selected 59 modules that

were significantly differentially expressed in 20 or more diseases as

the common disease state signature. These modules were not only

dysregulated in at least half of the diseases each but were also

significantly differentially expressed in more than 20 diseases.

Moreover, these 59 modules taken together were dysregulated in

45 of the 54 diseases in our study. Figure S2 shows the combined

illustration of all the 59 modules. They were mainly enriched for

the functions of immune system response (p-value = 6E-70) and

DNA repair (p-value = 4.1E-30). A representative sample of 7

modules is shown in Figure 3(B.iii–vii).

We investigated the 59 modules further by searching for known

drug target genes/proteins. We obtained the list of drugs and their

corresponding targets from the DrugBank database [23]. Overall,

70 genes/proteins within the 59 signature pathways were

identified as targets of known drugs giving a Hypergeometric p-

value of 1.8E-11. Thus, the set of the signature modules was

significantly enriched for drug target genes compared to that

expected by chance. We then predicted that other genes/proteins

in these modules would also serve as prime candidates for

designing new drugs. Most existing drug target genes usually fall

into a comparatively small set of gene families such as G protein

coupled receptors, serine proteases etc [26]. Hence, new drug

targets can be found by exploring other members of the protein

families of the existing drug targets. We explored the 59 signature

modules for genes which belonged to the same protein families as

known drug target genes. For that purpose, we obtained a list of

genes and their corresponding families and sub-families from the

PANTHER database [27]. Overall, we found 241 genes among a

total of 450 genes in the signature modules sharing the same

protein families as the known drug target genes compared to a

total of only 3,520 such genes in the whole human PPI giving a

Hypergeometric p-value of 1.47E-12. Therefore, the 59 signature

modules were also significantly enriched for druggable genes.

Further, we also counted the number of distinct diseases that are

known to be treated by the drugs corresponding to each of the 70

known drug targets. We observed that drugs targeting these 70

genes are known to treat an average of 65 diseases each compared

to an average of ,42 diseases for all known drug targets (p-

value = 0.02). These results provide evidence that the genes in the

signature modules are more likely to be good drug targets and

drugs that target these proteins are more likely to treat many

diseases. Yildirim et al. [28] showed that most drugs seemed to be

palliative and only cured the symptoms of the diseases rather than

the diseases themselves. Therefore, the enrichment for drug target

genes which treat many diseases might be due to the shared

symptoms of the diseases.

In summary, this study demonstrates the value of an integrated

approach in revealing disease relationships and the resultant

opportunities for therapeutic applications. Looking forward, we

aim to incorporate more gene expression data from GEO and

other similar repositories, and expand the set of diseases in our

disease-similarity network.

Methods

Gene expression dataset
The gene expression data used in this analysis was obtained

from the NCBI Gene Expression Omnibus (GEO) [11]. In this

study, we restricted to using only those microarrays that were

curated and reported in the GEO Datasets (or GDS). We selected

for microarrays that were assigned to human disease conditions.

These assignments were made by the method explained in Butte

et al. [29]. Briefly, the experimental context of a collection of

microarrays from GEO (or GEO Series, GSE) can be obtained

from the Medical Subject Headings (MeSH) [9] terms associated

with the records of corresponding publications in PUBMED.

Subsequently, the MeSH terms were connected to disease

concepts using the Unified Medical Language System (UMLS)

[30]. The GDS curation provided more details such as the tissue

or biological substance from which the samples were derived. We

only included those GSEs in which both disease as well as their

corresponding control condition was measured in the same tissue

(cell type) in the same experiment, using a previously described

method [31]. We also manually selected for GSEs in which the

control was a healthy sample. Further, we removed all GSEs that

included time-series data to avoid complications arising due to

temporal changes in gene expression. For consistency, we also

restricted the GSEs to only those arrays which used Affymetrix

Gene Chip Human Genome U133 Array Set HG-U133A or U95

Version 2 platforms, which are among the most commonly used

Table 2. Genetic similarity between significant disease correlations.

Disease 1 Disease 2 Correlation
# shared disease
genes

Disease 1
genes

Disease 2
genes

Hypergeometric p-
value

Bipolar disorder Schizophrenia 0.524 98 145 345 1.6E-23

Endometriosis Malignant neoplasm of prostate 0.356 28 56 173 6.69E-11

Crohn’s disease Malaria 0.381 23 120 63 2.86E-9

This table shows only 3 of the 19 disease correlations significantly sharing at least one disease gene. The complete list is in Table S3. The ‘‘correlation’’ column indicates
the calculated MRS-based correlation between the respective diseases. The number of genes whose variants are associated with any given disease was obtained from
the Disease Gene List. We calculated the hypergeometric p-value by estimating the probability of seeing the observed overlap or more by chance accounting for the
total number of disease genes present in our dataset (N = 2,104).
doi:10.1371/journal.pcbi.1000662.t002

Network-Based Elucidation of Disease Relationships
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Figure 3. Underlying functional modules. (A) Two representative samples of functional modules. (i) The synaptic vesicle module is one of the
most down-regulated modules among set of brain disorders: Alzheimer’s disease, Bipolar disorder, Schizophrenia and Glioblastoma. (ii) The DNA
repair module is one of the most up-regulated modules among the lung cancers and Uterine leioyomyoma. The colors of the nodes represent their
average gene expression in their corresponding diseases. The genes marked with a red star next to them are genes with known variants associated
with disease (see methods). (B) A representative sample of common disease ‘‘signature’’ modules. The genes colored in orange correspond to known
drug targets. The functions for the modules were obtained by the functional enrichment tool of the DAVID database [45].
doi:10.1371/journal.pcbi.1000662.g003

Network-Based Elucidation of Disease Relationships

PLoS Computational Biology | www.ploscompbiol.org 7 February 2010 | Volume 6 | Issue 2 | e1000662



platforms, mapping to current gene identifiers as previously

described [32]. As both of these platforms have shared probe-sets,

the bias of the platform used on the overall analysis would be

reduced considerably. We subsequently selected GSEs that had at

least two disease samples and two control samples. GEO contains

some experiments (GSEs) that have gene expression measure-

ments for more than one disease but share the same control

measurements. Such measurements might induce correlations

between their component diseases, which are not necessarily

biological. Thus, to avoid bias, in all such cases, we included only

one representative disease for each set of control samples in

contrast to Hu et al. [10]. This entire process yielded 54 diseases for

our final analysis.

Protein interaction data
The protein-protein interaction (PPI) data for human was

obtained from the Human Protein Reference Database (HPRD)

[33]. This database contains PPI obtained from the two high-

throughput yeast two-hybrid experiments [34,35] as well as

through literature curation. Further, HPRD contains the maxi-

mum number of PPI of any of publicly available literature-derived

databases for human PPI [36]. We filtered the PPI for human

proteins that had a corresponding Entrez Gene ID, yielding

34,998 unique protein interactions spanning 9303 proteins in

human. Previously, Sharan et al. [37] presented the PathBLAST

family of network alignment tools. Briefly, these methods help

identify conserved modules between protein networks of two (or

more) species. Suthram et al. [38] also used it effectively to identify

dense subnetworks corresponding to functional modules within a

protein network of a single species. Applying the same approach

here, we identified 4,620 functional modules in the human PPI

network.

Module Response Score (MRS) generation
First, we normalized the gene expression data in each

microarray sample (disease state or control) using the Z-score

transformation. This transformation allows for the direct compar-

ison of gene expression values across various microarray samples

and diseases. Next, we computed the activity level of a gene i in

disease k as the t-test statistic (Sik) of its Z-transformed score

between the disease and the control samples for each disease. In

cases where there was more than one experiment (or GEO Series)

for a given disease, we employed a meta-analysis technique using

linear regression to obtain a combined t-test statistic. This

approach takes into account the variations between different

experiments in the calculation of the gene activity score (Sik) (see

section below). Finally, the module response score (Mik) for each

module i in a disease k is assigned to be the mean of the gene

activity scores (Sik) of its component genes. In the end, we obtained

a vector of module response scores (Mik) for each disease.

Combined t-test statistic for multiple experiments
The t-test statistic between two conditions can be represented

using linear regression. For instance, let Yi and Xi be gene

expression values and disease state (disease has a value of 1 and

control a value of 0), respectively. Then, we have a linear

regression model as follows:

Yi~b0zb1Xi

where b0 and b1 are the parameters of the model. The t-test

statistic when estimating the value of b1 is the same as the standard

t-test statistic between disease and control states. The advantage of

the linear regression model is that we can add more terms to the

model to account for other sources of variation such as the

experiment number. In the present work, we expanded on the

above model as follows:

Yi~b0zb1Xiza1I1
i za2I2

i z � � �zakIk
i z � � �zan{1In{1

i

where n is the number of different experiments for a given disease

and, Ik
i is an indicator variable which is 1 if the i’th gene expression

measurement is from the experiment number k. Again, the b0s and

a0s are the parameters of the model which need to be estimated.

The addition of the new terms allows for explicitly accounting for

the effect of the experiment on the gene expression value. This

approach is similar to a mixed effects model for adjusting for the

within-experiment dependencies, but is more aggressive in

removing such effects. Consequently, the t-test statistic in the

estimation of b1 will now be a combined metric for the different

studies.

Partial correlation
The partial correlation coefficient gives the correlation between

two variables, say x and y, keeping a third variable, z, constant.

This method tries to measure the similarity between x and y, over

and above that caused by their common dependency on z. The

partial correlation can be calculated as follows:

cxy:z~
cxy{cxzcyzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{c2
xz)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{c2

yz

q
)

The above formula can be expanded to condition on two

variables as follows:

cxy:zw~
cxy:z{cxw:zcyw:zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{c2
xw:z)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{c2

yw:z

q
)

Table 3. Shared drugs among significant disease correlations.

Disease 1 Disease 2 Correlation # shared Drugs Drugs 1 Drugs 2
Hypergeometric p-
value

Actinic keratosis Malignant tumor of colon 0.428 1 9 13 4.40E-04

Bipolar disorder Schizophrenia 0.524 16 37 106 3.35E-17

Acute myeloid leukemia Urothelial carcinoma 0.496 2 31 10 7.00E-05

This table shows only 3 of the 14 significant disease correlations that significantly shared at least one drug. The complete list is in Table S4. The ‘‘correlation’’ column
indicates the calculated correlation between the respective diseases. We calculated the hypergeometric p-value by estimating probability of seeing the observed
overlap or more by chance accounting for the total number of drugs in our knowledge base (N = 3,536).
doi:10.1371/journal.pcbi.1000662.t003
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In this study, we calculated the Partial Spearman correlation

between two diseases conditioned on the responses of the

functional modules in their respective control samples. The

response of a functional module in the control samples for a

given disease was calculated as the mean of the z-transformed

scores of its component genes. As a result, the Partial Spearman

correlation coefficient provided a quantitative metric to assess

disease similarity and also explicitly factored out the possible

dependencies between different gene-expression experiments due

to their underlying tissue or cell types [39]. Our approach is

consistent with the findings by Dudley et al. [40] that the disease

signal in the GEO datasets is stronger than the tissue signal and

hence, implying that the observed disease correlations reflect true

biology. We used the R script provided by Kim et al. [41] for

calculating the Partial Spearman correlation between two diseases.

Randomization procedure
To assign significance to the observed disease correlations, we

created a background distribution of disease correlations

expected at random. First, we randomized the gene to module

assignments. We envisioned the gene to module assignments as a

bi-partite graph (Figure S3) where there exists a link between a

gene and a module if that gene is a member of that module. We

then randomized the graph by randomly swapping links. This

process preserved the number of modules, the number of genes

assigned to a module as well as the number of modules a given

gene belongs to. Next, we also shuffled the disease and the control

sample labels. We then calculated the MRS values for the

modules using the randomized data and computed the corre-

sponding disease correlations. Finally, we repeated the whole

process 100 times to create a background distribution of disease

correlations.

Disease gene list generation
We built a comprehensive disease-associated gene database,

referred to as the Disease Gene List, by collecting genes known to

be associated with various diseases from literature curation and

large databases. In particular, we first curated 37,953 disease

Single Nucleotide Polymorphism (SNP) associations from 2,679

papers, mapping 10,167 specific SNPs from the SNP Database

(dbSNP) to 748 diseases and phenotypes. We then annotated each

SNP with its corresponding gene(s) using dbSNP (Chen and Butte,

unpublished data). Next, we extracted genes that are significantly

associated with diseases in Genetic Association Database (GAD)

[42]. These consisted of associations that were reported to be

positive at least once. We also collected genes that are associated

with disorders in the Online Mendelian Inheritance in Man

(OMIM) [5]. Lastly, we retrieved genes that are associated with

diseases in the professional version of Human Gene Mutation

Database (HGMD) [43]. Finally, we combined disease genes

obtained from the above four different sources by relating them to

Entrez gene IDs and removing outdated Gene IDs using AILUN

[32].

Module visualization
The module figures in the paper were drawn using the

Cytoscape software [44].

Supporting Information

Figure S1 Schematic of the calculation of the Partial Spearman

correlation between two diseases.

Found at: doi:10.1371/journal.pcbi.1000662.s001 (0.49 MB EPS)

Figure S2 Combined representation of the 59 common disease-

state ‘‘signature’’ modules. The genes marked in orange are known

drug target genes.

Found at: doi:10.1371/journal.pcbi.1000662.s002 (2.35 MB EPS)

Figure S3 Graphical representation of the genes to modules

assignments.

Found at: doi:10.1371/journal.pcbi.1000662.s003 (0.40 MB EPS)

Table S1 List of the 54 diseases considered in this study.

Found at: doi:10.1371/journal.pcbi.1000662.s004 (0.02 MB XLS)

Table S2 List of the 138 significant disease correlations.

Found at: doi:10.1371/journal.pcbi.1000662.s005 (0.03 MB XLS)

Table S3 Genetic similarity between significant disease correla-

tions. This table shows the 19 disease correlations significantly

sharing at least one disease gene. The number of genes whose

variants are associated with any given disease was obtained from

the Disease Gene List. We calculated the hypergeometric p-value

by estimating the probability of seeing the observed overlap or

more by chance accounting for the total number of disease genes

present in our dataset (N = 2,104).

Found at: doi:10.1371/journal.pcbi.1000662.s006 (0.02 MB XLS)

Table S4 This table shows the 14 significant disease correlations

that significantly shared at least one drug. We calculated the

hypergeometric p-value by estimating probability of seeing the

observed overlap or more by chance accounting for the total

number of drugs in our knowledge base (N = 3,536).

Found at: doi:10.1371/journal.pcbi.1000662.s007 (0.02 MB XLS)
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